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A New Hybrid Updating Scheme for an Evolutionary
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This paper presents an efficient evolutionary search strategy based on design of exper-
iments, genetic algorithms and response surface modelling. The strategy is constructed
around a genetic algorithm while incorporating elements from design of experiment (DoE)
and Kriging. In particular, the design points used to update the approximation model are
derived from two surfaces, one is the approximation itself which provides the prediction
of the function and the other is based on the error surface computed from posterior error
estimates of the Kriging model. A genetic algorithm, which supports clustering, is used
on both surfaces to return multiple points for parallel evaluation of the true function. A
screening method is also used to remove points lying close to existing points based on the
correlation coefficients between the point to be evaluated and all existing points. Numeri-
cal experiments suggest that significant improvements can be achieved using the proposed
approach. Applications of the approach on engineering design problems are also studied.

I. Introduction

HE robustness in finding near-global optimal solutions of evolutionary search methods, and in particular,
Tgene‘cic algorithms, has attracted wide-spread use of such methods in a large number of optimisation
and design problems such as engineering design, approximation, and scheduling. Improving the efficiency of
evolutionary search algorithms has become a key factor in their successful application to real-world problems
due to the high computational cost related to the high-fidelity simulation codes commonly used in such
processes. Two categories of techniques have been proposed to tackle the efficiency issue of evolutionary
search methods; the first type is focused on devising more efficient variants of the canonical algorithms,3
the second type involves using approximations in lieu of the exact and often expensive function evaluations.
The common feature of these two types of techniques is that they both try to reduce the number of fitness
evaluations used since this is the most expensive part of the evolutionary process. As these two types of
techniques can be easily combined together to further speed up the process, research effort can be focused on
them separately. The focus of the current paper is on an efficient framework for combining genetic algorithms
and Kriging, i.e., the focus is on the way in which genetic algorithms are used to search for near-optima and
meta-models are updated to balance the need for searching for optima and building accurate approximations.

The first question is how to build approximation models based on computational simulation results.
There have been various techniques developed for building meta-models; these can be broadly divided into
two categories, interpolation and approximation, where the former interpolates the data points and the
latter regreses them. Polynomials are often used for the later while interpolation methods include neural
network methods and Kriging. Earlier work has been reported comparing the two types of methods in
the context of optimisation studies. For example, comparisons between polynomial approximation and
neural network and Kriging were presented by Carpenter et al.*° and Giunta et al.,® respectively. The
second question involves the use of approximation models in the optimisation study. Although these two
processes are relatively independent from each other, building certain frameworks by combining the two can
be beneficial and overcome some difficulties in building accurate approximate models, especially for high
dimensional problems. The hybrid approach can also further improve efficiency by reducing the number of
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exact evaluations required for building sufficiently accurate metamodels. Different frameworks have been
studied by a number of researchers, for example, Ong et al.” proposed a framework incorporating Genetic
Algorithms and radial-basis function (RBF)-based local searches; Ulmer et al.® presented a Genetic algorithm
framework based Gaussian Process using concepts similar to the expected improvements proposed by Jones
et al.® Jin et al.l% provided a comprehensive overview on using approximations within the evolutionary
computation framework. The fundamental issue that needs to be addressed is the balance of building
accurate meta-models (exploration) and locating near-global optima (exploitation). The most notable effort
on this aspect is probably the use of the concept of expected improvements in choosing update points.
Approaches based on Memetic Algorithms including Lamarckian learning and Baldwinian learning are also
used to exploit local improvements in the global EA search. However, these efforts are more biased towards
finding the optimal points, and less biased towards building accurate meta-models, which can be more
important when the meta-models will be coupled with other meta-models in the context of a multidisciplinary
optimisation study. Soboster and Keane!! proposed a concept of weighted expected improvements to balance
exploration and exploitation by using a weighting coeflicient and also provided some useful guidelines for
choosing the initial size of design of experiments and weighting coeflicient values. Instead of using results
obtained from searches on a weighted expected improvement surface, this work uses results obtained from
parallel searches on two extreme surfaces to update the meta-models, which eliminates the computation of
expected improvements. Also a screening phase is added after the search to remove those points close to
existing ones by examining the correlation vectors between the candidate points and existing points in the
data set.

This paper is organised as follows: section two describes the rational for the Kriging modelling. Section
three gives details on the hybrid update scheme. Section four illustrate the effectiveness of the frameworks
using numerical test functions, and section five concludes the paper.

II. Surrogate Modeling

Let Y(x) denote the true response of the system under study, and x = (x1,2,...,Zm)7 denote the
vector of control variables. Sometimes the true response of the system can be represented in explicit math-
ematical forms, but, in most cases, the knowledge of the system is incomplete or the model is too complex
to represent using explicit functions, and therefore a complex computer code is used to simulate the rela-
tionship between the responses and inputs. Whatever the case, observations can be made either through
physical experiments or computer simulations at some chosen values of the design variables, often using
experimental design methods. In this work, let us suppose that data has been collected at n points denoted
by x( = (mf), :cgi), z), (i =1,2, ...n), and the associated responses denoted by y* = Y (x(i)) . Let y(z)
represent the approximation model. The relationship between the true response and approximation can be
represented as follows:

Y(x) =y(x) +Ax) 1)

The difference between the true response and approximated response, the total error or residual, is due to two
types of errors, one is system error (bias error) denoted by €(x), which exists because of the incompleteness
of the models employed. The second type is random error denoted by 4(x), which exists because of a
number of reasons such as the effect of uncontrollable factors in the physical experiments, discretization
errors typically encountered in the finite element analysis and computational fluid dynamics, and round off
errors, etc. Therefore the total error is the sum of these two types of errors:

Ax) = e(x) +d(x) (2)

Random errors can usually be controlled within certain level so that the output of a deterministic simulation
code can be regarded as deterministic. Therefore the same set of inputs will produce the same outputs, this
partly explains why a least squares model does not always provide a reasonably good approximation to a
deterministic computer simulation code. In this case, an interpolation model would be more suitable for
_ creating approximations. Among various techniques which interpolate the data, radial basis function (RBF)
and Kriging were identified by Jin et al.!® as being able to produce better results than other methods under
multiple modelling criteria. The choice of Kriging techniques in this work is due to the fact that this method
not only provides an estimate of the function values but also an estimate of posterior variance, which is
used to control the frequency of re-sampling. A brief description of the Kriging model is provided below and
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detailed discussions can also be found in.? The Kriging model is here expressed as
y(x) =B+ 2Z(x) (3)

where 0 represents a constant term in the model, and Z(x) is a Gaussian random process with zero mean
and variance of 02, The covariance matrix of Z(x) is given by

Cov(Z(x', Z(x7) = o?R(x*, x%) (4)

where o2 is the variance of the stochastic process and R(.,.) is a correlation function between x* and x7.
Different types of correlation function can be employed as noted in Jones et al.® A commonly used type of
correlation function can be expressed as

R(x', %) = [ eap(~0xlz} — 21 |7) (5)
k=1

where 6,0 and 1 < pr < 2 are the hyperparameters. Note that the above equation asserts that there is
a complete correlation of a point with itself and this correlation decreases rapidly as the two points move
away from each other in the parameter space. The choice of pr = 2 would provide enough flexibility for
modelling smooth but highly non-linear functions for most cases. The hyperparameters 8 are estimated by
maximizing the log-likelihood function given by

- 3lnIng? + I [R|+ (v ~ 16 Ry - 19) ©)

where ¢ and 3 can be derived using the following equations once the 6}, are given
g=1TR'1)"117TR 1y 1)

. 1 N

0 =—(y-18)"R™(y - 16) 8)
A numerical optimisation procedure is required to obtain the Maximum Likelihood Estimates (MLE) of the
hyperparameters. Once the hyperparameters are obtained from the training data, the function value at a
new point can be predicted by

§(x") =B+ "R (y - 18) 9)
along with the posterior variance s?(x*) given by
2 2 ~1,, 1-1"R7'r)?
s(x):a[ler I'-I-—-‘(“]Tﬁ‘_ll—)} (10)
where r(x) = R(x,x!),..., R(x,x") is the correlation vector between the new point x and the training

dataset. This quantity provides a good indication on the accuracy of the prediction at new points and will
be used in our framework to decide whether and where further exact analyses are required. To obtain an
estimate of the accuracy of the predictions of the Kriging model, a leave-one-out cross-validation procedure
can be employed. The measure used in such a procedure is called the ‘standardized cross validated residual’
(SCVR) defined

SCVR; = LX) = I=5(¥) (11)

s—j(x7)

where §_;(x7) and s_;(x?) denotes the mean and variance computed by (9) and (10) without using the jth
training data. A good predictor would mean that the Gaussian process prior is appropriate for the dataset
and the majority of results will be scattered in the interval [—3,3]. Plotting the values of SCVR; against
the predicted function values would also provide clues and suggest solutions to problems that might exist in
the model For example, if there is any linear trend in such a plot, it is sometimes possible to improve the
prediction by using a log transformation.

3 of 8

American Institute of Aeronautics and Astronautics




III. Hybrid Update Strategy for Use with Genetic Algorithms and Kriging

The aim of using approximations or meta-models is to reduce the cost of finding global optimal designs.
This is equivalent to reducing the number of function calls to the exact problem codes. Therefore the optimal
points on a meta-model should converge to the optimal points on the exact model, which is the requirement
of global convergence for meta-models. Global convergence will be naturally achieved if an exact meta-model
can be built. However, due to the modelling errors inherent in the meta-models, there needs to be a balance
to be made in building an accurate meta-model and locating the global optima.

A number of methods can be used when it comes to updating the Kring models with added data points
evaluated using exact objective functions. The most straightforward technique is to use the best points
found on the Kriging model. This approach depends on the quality of the search on the Kriging, and the
process may miss the global optima as it lacks the ability to identify promising but unsearched areas due to
prediction errors involved in the Kriging. A more promising method is to update the Kriging model with
points where the expected improvement (EI) is large compared to existing exact solutions, as shown by Jones
et al. [9]. However, the update procedure in these two approaches is very much separated from the overall
process of identifying the global optimum. Therefore, almost any optimisation method can be applied in
the search for optima on Kriging or expected improvements, although the Branch-and Bound method is
suggested by Jones et al.? in the search for EI ‘

Compared to above approaches, several other frameworks have been presented which involve strong
coupling of the Kriging with Genetic algorithms due to the robustness of GAs and its ability to locate
near-global optimal solutions. This paper adopts GAs as the basic framework and also the search algorithm
used in the search on the Krig model, leading to a two-level search strategy. The searches on the Krig are
carried out twice: the first to locate optimal objective function positions, and the second to locate positions
of maximum posterior error. This is the reason why Krig is chosen here as the approximated objective
function and its posterior error can be obtained in one go. Suggested points from these two GA searches
are evaluated in parallel after being congregated and compared with the available exact solutions in order
to remove overlapping points to further improve the efficiency. Adding these newly available exact points to
the metamodel achieves the following two aims simultaneously: reduced approximation errors and improved
search efficiency. The framework is shown in Fig.

BEGIN
Generate the initial population using design of experiments, the population size will be 10n;
Evaluate the 10n points using high fidelity analysis codes, and store objective function values
Build the initial response surface model using kriging, the hyperparemeters are tuned using
GA/DHC ( Dynamic Hill Climber) code;
While (number of exact evaluations less than the number requested/affordable)
Search the response surface model, return the best n points in terms of the best objective
function on the response surface, and also search the response surface error model, return n
points in terms of the maximum posterior prediction errors
Remove those points from combined set of design points based on correlation criteria or
Euclidean distance criteriathis will produce the candidate points for exact evaluations
Evaluate these points using exact codes and place these points into database, otherwise if
the aggregated data set is empty, terminate the search.
Update the response surface by updating the hyperparameters of the Kriging model
End While
END

Figure 1. Hybrid update scheme using genetic algorithm and Kriging
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IV. Numerical Experiments

Numerical experiments have been carried out on two multimodal test functions, which are defined in
Table 1. These two test functions share the common feature of point symmetry, so to avoid this feature
being exploited, a non-symmetric design space with respect to the symmetry point is used in the search. In
addition, these functions have known global optimum at x = 0. Also both functions have a large number of
local optimum points within the search range defined in the table, which makes it even more challenging to
build an accurate global approximation model and locate the near global optimum.

Table 1. Test functions and Variable Bounds

Name Function Bound
Ackley f(x)=20-20 exp(—0.2\/% Yo @2) +e—exp(: ST cos(2mz;)) [-5,30]"
Griewank  f(x) = 5 Sore1 @7 — [Ty cos(£) +1 [—10, 600]™

A two dimensional Ackley function is first used in the experiments, as the two dimensional problem can
be readily visualized to illustrate the effect of the current strategy, as shown in Fig. 2 and Fig. 3. It can be
seen that without increasing the total number of function evaluations (which is often a rough measurement
of the computational cost), a more accurate global approximation can be achieved, and therefore a higher
probability of locating the near-global optimum at lower computational cost is provided. As discussed earlier,
the basic issue in optimisation problems using surrogate models in the balance between achieving an accurate
surrogate model and locating the near global optimum. Depending on the type of surrogate models used, the
computational effort required to achieve a good approximation model varies. In the case of krig models and
the current scheme, tuning the hyperparameters is quite an expensive process, especially when the number
of sample points grows. The search traces for the standalone GA and current scheme on these two test
functions are shown in Fig. 4

V. Engine Nacelle Shape Optimisation

Next an aero engine nacelle shape optimisation problem is used to illustrate the effectiveness of the scheme.
The engine nacelle geometry is defined in ProEngineer with around 40 parameters, here six parameters that
define the shape of top lip profile plus the scarf angle parameter are used to formulate a seven parameter
problem. The aim is to study the aerodynamic effect of top lip profile under different scarf angles. The
parameters are listed in Table 2, along with parameter ranges and reference values. The meshing package
Gambit and flow solver Fluent are used in the study. First, an appropriate mesh density is determined based
on the accuracy of the solution and computational time it requires. Here it was decided based on the number
of available processors and licenses: the ideal situation using 30 fluent jobs on 8 processors means that each
calculation can be finished within 10 hours, and around 200 jobs should be finished within a week if jobs
are run immediately after placed into the queue. In practice, it has taken a little more than three weeks to
finish 200 calculations.

The geometries and pressure distributions for the base design and final result achieved using 200 calcu-
lations are presented in Fig. 5.

VI. Conclusions

An efficient evolutionary framework using GAs and Kriging is presented in this paper. Two types of
updates are incorporated in the process to improve the robustness of locating global optima within a limited
computational budget. The approach is validated using mathematical test functions and applied to an aero
engine nacelle optimisation problem using solutions obtained from a computational fluid dynamics (CFD)
calculation.
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(a) Surface plot for exact function(Ackley) (Ub) Contour plot for exact function(Ackley)
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Figure 2. Surface and Contour plots of Ackley function using 40 DOE points. (a) Exact surface (b) Contour
of exact function (c) Approximated surface (d) Contour of approximated surface (e) Error surface (f) Contour
of error surface

Table 2. Design Variables for Engine Nacelle Geometry

Variables T Zo z,  Description
Scarf angle -10 -5 25 Negative scarf angle (deg.)

Teaxis 5 12 20  Axial coordinate of top external profile (mm)

Telater 5 10 20  Radial coordinate of top external profile (mm)

Tiaxis 1.5 2 2.5 Ratio of top inner profile coordinate in axial direction
against radial direction

Tilater 1 1.34 1.6 Coeflicient used to determine top inner profile coor-

dinate in lateral direction
Var_d225 22 254 28 Radial control length of top lip profile (mm)
Var_d226 22 254 28  Axial control length of top lip profile (mm)
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(a) Surface plot for the approximate function(Ackley) (b) Contour plot for the approximate function(Ackley)
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(c) Surface plot for the error function(Ackley) (d) Contour plot for the error function(Ackley)
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Figure 3. Surface and Contour plots of Ackley function using 10 initial DOE points plus 30 update points. (a)
Approximated surface (b) Contour of approximated surface (c) Error surface (d) Contour of error surface
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Figure 4. Search histories: a comparison between a canonical GA and hybrid scheme on two test functions
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Figure 5. Geometry and pressure distribution of base design and search result
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