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ABSTRACT

Design optimization algorithms have traditionally focused
on lowering weight and improving structural performance.
Although cost is a vital factor in every emerging design,
existing tools lack key features and capabilities in optimizing
designs for minimum product cost at acceptable performance
levels. This paper presents a novel methodology for developing
a decision support tool for designers based on manufacturing
cost. The approach focuses on exploiting the advantages
offered by combining parametric CAD, Finite element analysis,
feature based cost estimation and optimization techniques
within a single automated system. This methodology is then
applied in optimizing the geometry for minimum
manufacturing cost of an engine mounting link from a Rolls-
Royce civil aircraft engine.

INTRODUCTION

Cost is often one of the biggest considerations in product
design and development. Over the entire lifecycle, it is
generally accepted that the design process typically represents
only 5% of the total development cost but it can fix up to 75-
85% of the total product costs [1, 2]. Life cycle cost is
emerging as one of the key issues in aerospace manufacturing
as business models change from selling products to providing a
service, for example; the concept of “Power by the hour” and
the “Total Care” agreements by Rolls-Royce plc [3]. This
requires reliable and accurate cost predictions to be made as
early as possible within the design cycle and traded with other
product attributes, as it becomes progressively more difficult
and expensive to make modifications later on. This is a
paradoxical situation as making an accurate cost estimate
requires detailed product and process information, which is
usually unavailable during early design stages [4].

Advances in Computational Solid Mechanics (CSM),
Computational Fluid Dynamics (CFD) and optimization
algorithms have provided designers with sophisticated tools to
rapidly assess and modify designs to optimize performance.

A. J. Keane
School of Engineering Sciences,
University of Southampton,
SO17 1BJ, UK
andy.keane@soton.ac.uk

J. P. Scanlan
School of Engineering Sciences,
University of Southampton,
S017 1BJ, UK
j-p.scanlan@soton.ac.uk

However, designers working on new part designs find it
extremely difficult to estimate the cost effects of critical
decisions made by them, as there is a dearth of reasonably
accurate cost estimation and reduction techniques integrated
within the design process. Though various guidelines to
simplify design complexity and lower production costs are used
in the concept design stage, collectively known as Design for
Excellence (DFX) [5], it can be argued that many of these
guidelines are merely rules of thumb as they do not provide an
explicit metric for product cost to be used for comparison
between different designs [6]. Methods broadly classified as
Design for Manufacture and Assembly (DFMA) are quite
popular in industry to identify design problems at an overall
product structure level, but they cannot provide redesign
solutions or be employed to modify existing design geometry
and dimensions for achieving minimum manufacturing cost [7].
Although parametric relationships between weight, volume and
cost have been used in Multi disciplinary optimization (MDO)
processes, there are disadvantages to this cost estimation
approach [8] as it is designed to work at a higher layer of
design abstraction and cannot capture the detail necessary to
provide an effective comparison between differing design
geometries. A high performance design may be expensive to
manufacture causing a reduction in unit profit to the company
or an oversimplified design might unnecessarily increase
material volumes and cost. It is important to model these
conflicting interactions between cost and performance and to
simultaneously optimize designs for low cost at acceptable
performance levels.

This paper describes the construction of a system which
overcomes the above issues by presenting a quantitative
methodology for secking trade-offs between performance
measures and production costs, using feature based cost
estimation, a parametric CAD model, a finite element analysis
(FEA) tool and an optimizer concurrently to evaluate various
designs. The remainder of the paper is organized as follows:
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Figure 1. An overview of the proposed cost
optimization methodology

First we present an overview of the process followed by an
explanation on the role of geometry parameterization, stress
analysis and the cost modeling method used. This section also
briefly describes the various software tools used for the
functions listed above. Finally, in the last two sections, we
discuss two different strategies of optimization applied to this
problem with the results and conclusions drawn from this entire
study.

OVERVIEW OF THE PROCESS SEQUENCE

The four elements essential to the process used here are:
(1) a parameterized solid model of the component (2) a suitable
FEA tool for structural analysis of the component (3) a feature
based cost model for computing manufacturing costs and (4) a
robust optimizer to provide the inputs to the solid model while
simultaneously validating the output stresses, and cost values
against the formulated problem. Figure 1 shows the frame-work
and flow of data in this process. The optimizer drives the entire
process by feeding a set of input parameters to the parametric
solid model within a CAD tool. The modified geometry is then
passed on to the Finite Element solver for analysis by
converting it to the IGES format. The cost is computed from
the inputs given to the CAD tool and a few derived parameters
from the modified geometry such as volume and the area of the
surfaces generated. The calculated stress and cost are then
passed back to the optimizer. The optimizer uses a specified
algorithm to calculate the input parameters for the subsequent
iteration by comparing the stress and cost output against the
objective and constraint functions. This process is continued
iteratively evaluating numerous candidate geometries until the
optimum design solution is found.

Generating a Parametric Solid Model

The three dimensional geometry of a Rear Mount link from
one of the Rolls-Royce civil aircraft engines is used to
demonstrate the proposed methodology. Component geometry
can be parameterized in many different ways. For example,
Samareh [9] reviewed seven different methods of geometry
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Figure 2. Parametric master model of the Rear Mount
link with the design variables r & ¢

parameterization. Component specific codes written in C and
FORTRAN have been used to parameterize 2D aerofoil shapes
in many cases [10]. A solid modeling approach within a CAD
tool (CATIA V5™ is adopted here as it gives adequate control
for creating and modifying dimension driven objects [9].
Parameterization is achieved by a combination of geometric
constraints and Boolean expressions”. The parametric model is
shown in Fig. 2. Most modern CAD tools, including CATIA
V5™, permit external control of dimensions from a source
outside the software. In our study, the parametric master model
is loaded into the CAD tool and a function known as the
‘Design Table’ is used wherein a list of values pertaining to the
various dimensions on the part is acquired from a text file
written by the optimizer for every iteration. These dimensions
are the design variables for the optimization process. The
number of design variables in optimization can be controlled by
choosing the number of dimensions to be modified in the solid
model.

The parameters (inputs) to the CAD model varied for the
design search described in this paper are the Thickness (¢) and
the Arc Radius (7), See Fig. 2. These two parameters were
selected from a list of modifiable parameters to study their
influence on stress and cost. Each combination of » and ¢
represents a unique design concept. Figure A in the appendix
shows a range of geometries developed in this manner. The
CAD model is also programmed to generate as outputs a few
derived parameters from the modified geometry such as the
weight, volume, and the surface area, to provide inputs to the
cost model.

A detailed description of solid model construction using geometry and
Boolean expressions is omitted to maintain the logical structure of the paper.
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Figure 3. The Applied Boundary Conditions for Finite
Element Analysis

Stress Analysis
* Structural analysis is performed in ANSYS 6.1™, The

CAD geometry is transferred using the IGES format. The
component is meshed with higher order tetrahedral solid
elements (Element Number 187). Uniformly varying surface
loads are applied on the inside edges of hole-4, whereas
specific areas on holes-B & C are fixed, see Fig. 3. These
boundary conditions were adopted after studying the published
Rolls-Royce data and load bearing function of the mount link
within the engine [11]. Post-processing is carried out to extract
the maximum Von-Mises stress induced in the component, after
considering stress concentration effects arising from the FE
solution process, and this is written to the output file. The
results from one of the analyses are shown in Fig 4. All stresses
are in MPa.

Cost model structure and costing method

For the purpose of evaluating alternative designs and
subsequently optimize for low cost, it is necessary to identify
and isolate those constituents of product cost that vary with
changes in the design parameters such as geometry and
component dimensions. The selected method of estimation
must also be robust enough to provide a reasonably accurate
cost estimate with the limited amount of information available
in early design. Extensive research in machining economics has
produced quantitative models for evaluating times and costs
related to machining operations [12]. Boothroyd &
Radovanovic [13] published a report on cost estimation of
machined components during early design. The methods of cost
estimation also vary depending upon the amount of design
information needed as input to these systems. Here we contrast
parametric and feature based cost models.

Parametric costing

Parametric costing is typically based on the use of Cost
Estimating Relationships (CERs) which are quite popular as
they require sparse knowledge of the final design. Cost is
defined as a function of one or more parameters such as weight

Figure 4. Analysis Results showing the contours in
the stressed part

or volume and this relationship is determined by studying a
number of similar designs or model variants [8, 14]. The
demerits of such an approach are as follows;

A large amount of historical data is required in order to
identify parametric relationships in a statistically meaningful
manner which is generally hard to find in a low volume
production setup typical of aerospace manufacturing. New
manufacturing processes and significant changes to production
and assembly methods can invalidate these parametric
relationships and may misguide the optimization process in
which they are used. In some cases the initial condition of
supply for a product remains fixed. Therefore if a weight-based
parametric is used as a cost estimator, reducing weight may
seem to make the design cheaper when in fact it may become
costlier as further material has to be removed by additional
machining.

Feature based Costing (FBC)

The growth of CAD/CAM technology and 3D modeling
tools has brought into focus feature-based design. Feature based
costing follows from the basic concept of defining a finished
part as a collection of features such as slots, holes and surfaces.
Researchers have published a number of studies on cost
estimation through breaking the product into constituent
features [15-18]. Each feature has a cost associated with
production, material removal and labor. These costs, when
added, represent the cost of the entire product. Since this
method of costing relies on final component geometry and is
not an approximation, it is more accurate as compared to
parametric cost relationships. It also aids better decision
making by providing the designer with the incremental cost of
each geometric feature incorporated in the component.
Unfortunately, there have been many differing opinions on how
features should be classified and standardized [18-20].

The approach used here is based on calculating the cost of
a ‘manufacturing feature’. A manufacturing feature is defined
as a change in the state of a component. This state change is
often a change in geometry caused by a machining process.
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Figure 5. State Transition and Manufacturing Feature Costs

Some processes however do not cause any obvious change in
the geometry such as surface treatment but these also cause a
change in component state. The final component geometry is
achieved after a set of manufacturing features are applied to the
raw material. The cost of a manufacturing feature is the cost of
resources expended in making the transition from state #-1 to n
as shown in Fig. 5. Manufacturing features can be further sub-
divided into classes depending on material removal process
involved in each of them. For example; rotational (turned),
prismatic (face-milled), Slab (end-milled) and revolving
(drilled, reamed, bored) features. Every component can be
broken down into features which may belong to the above four
classes. The total manufacturing cost is a summation of the
costs incurred in making the constituent features. Machining
features costs are evaluated separately using the formulations
published by Jung [20]. ‘

Feature classification in this study is used to calculate the
manufacturing cost only and there is no attempt made to
automate the process of feature extraction or generating a
process plan based on them.

Table 1. Manufacturing Sequence

Here the component undergoes the processes listed in table 1
that are directly affected by the design variables Arc radius (r)
and Thickness (#). The processes required for drilling and
grinding the holes A, B and C (See Fig. 3) and shot-peening are
neglected as the design variables » and ¢ do not affect the cost
of these operations. This simplification was done to reduce the
time taken for computations. It is also possible to extend this
costing methodology to include company specific overheads.

The total cost is expressed as a summation of processing
and material cost. The material cost is expressed as a function
of the volume whereas processing cost is a product of the
utilized resources and a unit cost rate. We have expressed the
utilized resources in form of time (seconds) taken to complete
the entire operation (summation of all processes) which
includes both man and machine time with corrections for
allowances and setup. The operation cost rate per unit time
includes direct labor and cost of running the machine.

Surfaces .. Cost (derived from Machining
State Process Affected Resources utilized used resoutees) Feature
1 Condition of supply, Bought Price /
State when material bought Material cost

.- . Top and Quantity of material . . .
2 Face Milling (Roughing) Bottom removed, Man-hours Roughing Cost Prismatic
3 End Milling (Roughing) Periphery with correction for Roughing Cost Slab

— — Top and allowapces, Mac!nne- —
4 Face Milling (Finishing) hours with correction for | Finishing Cost Prismatic

° : Bottom setup, tool setup, tool

5 End Milling (Finishing) Periphery | wear and engaging time, | Finishing Cost Slab
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Therefore the total cost can be expressed as
Total Cost = Forging Cost + Operation cost.

Operation cost is expressed as
T
Costa,,=(Ra +Rm) (‘Qsl"'z;: +7:m] )

where
Cost,, is the Operation cost

R, & R are the unit cost rates of the operator and

machine respectively,
Q is the Batch quantity,

T,, is the setup time for tooling and machines over the

entire batch,

T, is the operation time required to carry out the various
processes to achieve final shape and

T, is the non-operation time involves loading, unloading
and fatigue allowances.

The formulations for calculating the operation time depend
on a) whether it is a roughing or finishing operation b) type of
feature generated from the operation (prismatic, slab....etc), ¢)
The material removal rate (M.R.R) for roughing and d) the
surface generation rate for finishing operations.” The MR.R
and surface generation rate were obtained from Rolls-Royce
machining database. The costing method explained above has
been encapsulated within DecisionPro™, a decision support
software tool [21]. DecisionPro, unlike commercial costing
tools is a modeling tool that was not overtly designed for
engineering cost analysis. Its attraction lies primarily in its
hierarchical structure allowing users to decompose a problem
into a logical series of steps. Consequently the resulting model
is more likely to have a clear and easy to comprehend structure.
A page from the model is shown in Fig. B of the appendix. The
hierarchical tree structure used for capturing cost computations
offers easy readability to end users (designers), and simplified
audit procedures for developers unlike spreadsheets where the
logic is often difficult to follow as calculations assume greater
complexity. The different nodes in the trees can be instantiated
as objects from a populated library. This allows for modularity
and reuse of costing knowledge and data on frequently used
manufacturing processes can be stored in the libraries. The
complete cost model can be uploaded to a server and queried
remotely which allows better integration capability in an
existing MDO environment. Few other functions include;

A. presentation of equations and logic in formal

mathematical notation,

B. sensitivity and Monte-Carlo analyses capabilities and

C. ability to link to data-bases.
These functions offer significant advantages over spreadsheets
or similar software which could be considered as an alternative
for building models and are instrumental in helping build
detailed cost models for complex products.

The resources utilized (see column 4, table 1) for each
manufacturing feature are computed within the model and
finally expressed in terms of the cost in GBP. Figure C in the

* Formulations used are omitted here due to space limit, Details can be found in
Jung [20].

appendix shows the time computed for the prismatic features,
‘Top & bottom face milling (Roughing cut)’ and ‘Top & bottom
Jace milling (finishing cut)’. The input ‘thsurfacearea’ is given
from the CAD tool (CATIA V5). Only the process stages
mentioned in table 1 are modeled in this study, but this could be
scaled up to represent downstream assembly and surface
coating processes by adding more features at the end of the
existing tree structure in this cost model. The inputs for the cost
model are three derived parameters from the CAD model: part
volume, the area of the surfaces generated by end-milling and
face-milling. This allows for flexibility in optimizing the design
as the variables can be changed or their number increased. The
part volume is used to calculate materials cost which is a
substitute for weight. In this manner, we need not minimize
weight separately. This is based on the assumption that the
initial product state can be modified. If this is not the case, then
lowering weight/volume has to be modeled conversely as a
machining process for removing material from the initial state.

DESIGN OPTIMIZATION AND AUTOMATION

Design optimization in the aerospace community has
generally focused on weight, aerodynamics, structural
performance or all three [22]. Cost of manufacture has rarely
been used in optimization as it is difficult to model cost in
terms of the design variables. However, Mitchell et. al [23]
have reported using a automated costing model to drive the
design of composite frames. Researchers at NASA published
work on custom built software tool for life-cycle cost
optimization called COSTADE [24]. An integrated data
management and optimization package called OPTIONS has
been used in this study [25]. OPTIONS provides a flexible
framework for incorporating user codes ranging from very
simple scripts to complete external software packages as well
as more than forty search algorithms that can be used
interactively or in batch mode. MatLab™ is used to provide the
scripting and automation required for running the optimization
process iteratively until the search strategy converges. The
bound constraints for the design variables are selected after
testing the behavior of the system on a range of values applied
to both variables, and omitting those combinations which cause
the CAD tool to produce infeasible geometries. Two different
optimization strategies have been adopted for this problem:

1. meta-model based optimization, and

2. multiobjective optimization and construction of a

Pareto front for stress and cost.

Meta-model based optimization

The presence of multiple software and computationally
intensive tools such as FE solvers in this integrated system
prohibit search using the full problem code over a very large
design space. Meta-model based optimization is a technique
designed to circumvent this problem. Meta-modeling uses the
basic idea of analyzing an initial set of candidate designs to
generate data which can be used to construct approximations of
the original system. The entire process can be represented by a
functional relationship y = f(x), where x is the vector of inputs

to the system code and y is the output. The objective is to
construct an approximate model (the meta-model)

y= j'(x)z f(x) that is computationally cheaper to evaluate
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and which approximates the outputs (objective function,
constraints) from the input parameters (design variables) with
reasonable accuracy [10]. The meta-model is then searched by
the optimizer over a very large number of design points for the
optimal values. When a good design is found, the
corresponding inputs are given to the original system code to
evaluate just this design. If there are significant differences in
the results given by the full code and the meta-model at this
point the new data is added to that used to construct the meta-
model and the search process carried out again. This sequence
can then be repeated as many times as desired, gradually
improving the meta-model. Consequently, this gives better
approximations and a better design at the end of the search. The
present problem is formulated as follows;

Minimize Cost,
subject to 120<r <1200, 10<¢<50, r,tc R 2)
and Von Mises Stress <200 MPa.

In our case, the design variables (» and #) form x (the input
vector) whereas cost and Von Mises stress form the j (the

output vector) of the meta-model which is constructed using the
following procedure; the initial set of candidate designs is
generated by one of the three following methods; a) Random
sampling, b) Latin hyper cube sampling ¢) LP7 sampling.
Random sampling is equivalent to a Monte Carlo Simulation
(MCS) technique, wherein the basic idea is to employ a random
number generator to sample the design space. Mckay et al [26]
proposed the Latin hypercube sampling (LHS) technique,
which is a computationally more efficient alternative to MCS
for designing computer experiments. The underlying idea is to
divide the design space into regions of equal probability and
generate pseudo random points, such that no two points lie in
the same bin. LP7 sampling [10] is based on distributed
sequences in space and gives a mechanism for generating
points in n-dimensional space which are reasonably uniformly
distributed. After generating an initial set with a suitable
technique, we have approximated the actual relationship
between r, ¢, Cost and Vorn Mises stress using a cubic spline
radial basis function (RBF) of the form

Vusr = i ai¢an+1 - Xi!)’ 3

i=1

where ¢(x) = x°.

Table 2. Results from meta-model based optimization
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Figure 6. The design concepts evaluated by the
optimizer.

A simulated annealing [27, 28] algorithm is used to search
the meta-model over 5,000 design points before every update
point is provided to the data set. The update loop is carried out
a fixed number of turns before the optimal design is predicted.
The meta-model structure, number of updates and results for
three different evaluations is given in table 2. Figures 6 and 7
depict the results obtained from model no.3 listed in table 2.
Figure 6 shows the search space with the feasible designs
shown in blue circles and the designs that violate the imposed
constraints are denoted by red asterisks. Figure 7 shows the
values of the objective function obtained during generation of
initial candidate designs and meta-model refinement over 50
updates.

The meta-model when searched returns the same optimal
value of the objective function (total cost) when it cannot be
refined anymore as may be seen from iteration numbers 126
onwards. A solid model representation of the optimal geometry
achieved at the end of this search is shown by Fig. D in the
appendix. Figures 8 and 9 show the variations of cost and Von
Mises stress with respect to » and ¢ as depicted by the refined
meta-model generated after all the updates. The Meta models
were validated by using multiple starting points for a few trial
searches prior to generating the results shown in table 2.

Model | Initial Design Technique Type of No. of Optimized Value of Total Cost
No. Set Size q Approximation updates | Design Variables (7, ) mm (€3]

Cubic Spline Radial

1 10 Random Basis Function 30 281,20 339.04
. Cubic Spline Radial

2 5 Latin Hyper Cube Basis Function 20 508, 20 338.57
Cubic Spline Radial

3 100 LPt Basis Function 50 378,20 337.92

6 Copyright © 2005 by ASME



600 T T T T T d T
0 —-Infeasible Designs

x ~--Optimal Designs

550 ¢1 ---Non-optimal Designs B

TOTAL COST (£)

250~

8 80100
ITERATION NUMBER
Figure 7. Optimization history

i 1
2OGO 20 40

EOTAG, EOUY @Ry

Figure 8. The Response Surface of Cost against the
Design Variables

From table 2, Fig.8 and Fig.9, it can be seen that the
thickness (f) dominates the cost value and the optimizer can
quite easily search for the best value of thickness to satisfy the
constraints for a minimum value of cost. The relation between
thickness and output parameters are relatively simple, however
the arc radius (¥) has a more complex non linear interaction
with the stress throughout and very little effect on total cost
once r is greater than 200 mm. it can also be deduced that a
relatively small initial dataset can approximate the cost and
thickness values with reasonable ease whereas searching for the
optimum # value needs more data and meta-model refinement.
These results suggest that the final design with minimum cost
must have a thickness of 20mm and an arc radius in the interval

280<r <510 mm.

! 1
120 140 160

VON MISES BIRESH (MPa)

Figure 9. Response Surfaces of Cost and Von-Mises
Stress against the Design Variables

A further optimization routine with minimum stress as the
sole objective could be run to determine the optimum arc radius
value. It can also be seen from the computed cost values that a
meta-model] search is very accurate and allows a search for the
minimum cost design within an error of = 1%,

Multiobjective Optimization of Stress and Cost

Conventional optimization algorithms are based on well
defined objective and constraint functions. Often design
problems cannot be formulated into explicit expressions. There
is also a possibility that there may be more than one objective
and that they are conflicting in nature. If a problem has
multiple, conflicting, objectives and these cannot be combined
by assigning relative importance to each of the goals, then the
problem leads to the construction of a Pareto front or surface
and the idea of Pareto Optimization [25]. A Pareto front is
formed from a set of design solutions to a single design
problem where each member of the set is an optimal solution
for an aggregate goal. This aggregate goal can be formulated by
assigning weights to each objective and taking the weighted
sum. The present problem can be formulated in such a manner
by simultaneously trying to minimize both stress and cost. This
means that in moving from any single design in the set to any
other, although one objective in the problem may be improved,
the other is made worse. In this case, there are two objectives
and the problem is formulated as follows;

Minimize ¢ = a(cost)+ b(stress)
subject to, 120 <r< 1200, and 10<¢<50, r,te R (4)
where a € (0,0.2,0.5,0.8, 1)and b€ (1, 0.8, 0.5, 0.2, 0)

In this problem there would be a set of five optimal
solutions for the aggregate objective function each of them
computed by assigning a unique combination of g and b values.
For example; (0, 1), (0.2, 0.8) ..... (1, 0). To construct an
appropriate aggregate function, the units of measure used to
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define cost and stress must also be considered. Therefore Eq.4
can be rewritten as

¢ = a(wy.cost) + b(wy.stress) %)
where w; and w;, are weight parameters.

Pareto Curve of Cost against Stress
T T T

T T

550, T T

&

Objective 1 (Cost) GBP

) . . L . . .
50 100 150 200 250 300 350 400 450
Objective 2 (Von Mises Stress) MPa

Figure 10. The Pareto curve plotted through five
. points of evaluation.

In this study we have set both weight parameters to unity
as the cost values in GBP and Von Mises stress values in MPa
have similar magnitudes. The results from this analysis are
shown in Fig.10.

Figure 10 shows a range of designs, all of them optimal
combinations of the parameters arc radius and thickness for
different values of weighting between stress and cost. A
designer can now easily move along this surface to choose the
best trade-off that fits into the specific requirements of his
product and company. We have evaluated only five different
combinations of the aggregate function in this study as these
evaluations were carried out by running the full problem code.
In practice, many more combinations would have to be
evaluated to form a dense Pareto curve to provide numerous
alternatives for the designer to choose from, which may make
this strategy computationally prohibitive. Moreover, for
modeling deceptive relationships between objectives (for
example; a convex Pareto curve), a more sophisticated strategy
would have to be applied.

CONCLUSION

This study aims to provide a realistic and effective tool in
generating cost driven designs aiding better decision making in
the product development process. Many organizations have a
traditional cost estimating department whose role has been to
provide specific estimates in response to requests from a
designer. This has often been a source of significant delay and
frustration to the design function. The methodology proposed
here is intended to shorten the lead time in acquiring the cost
estimates for most if not all candidate geometries. The results
obtained from the two different optimization strategies tested
on the engine rear mount link prove that the search for a low

cost, better performing design even for a simple mechanical
component involves modeling complex relationships between
geometry, stress, cost and manufacturability. This methodology
would be applied in the near future to design more
sophisticated parts than the present component to appreciate the
efficacy of this tool.

ACKNOWLEDGEMENTS

This work is part of the Design Analysis Tool for Unit Cost
Modeling (DATUM) research project headed by Rolls-Royce
ple, University of Southampton and the University of West of
England.

REFERENCES

[1] Boothroyd, G., Dewhurst, P., and Knight, W., 2001,
Product Design for Manufacture and Assembly
(Manufacturing  Engineering  and  Materials
Processing), Marcel Dekker, New York.

[2] Wierda, L.S., 1990, "Cost information tools for
designers, a survey of problems and possibilities with
an emphasis on mass produced sheet metal parts."
Ph.D. Thesis, University of Delft, The Netherlands.

[3] Scanlan, J.P., 2004, “DATUM (Design Analysis Tool
for Unit Cost Modeling): a tool for unit cost estimation
of gas turbine design within Rolls-Royce”, The Cost
Engineer, 42(6), pp.8-10

[4] Bode, J., 1998, “Decision support with neural
networks in the management of research and
development: concepts and application to cost
estimation”, Information & Management, 34, pp. 33-
40.

[5] Remich Jr, N.C, 1998,
Manufacturer, 100.

[6] Zannier, L., and Pardasani, A., 1999,
Manufacturability Analysis, State of the Art Survey,
Integrated Manufacturing Technologies Institute
Publication, National Research Council, Canada.

[7] Dalgleish, G., Jared, G., and Swift, K., 2000, “Design
for Assembly: influencing the design process”, Journal
of Engineering Design, 11(1), pp. 17-29.

[8] Scanlan, J., Hill, T., Marsh, R., Bru, C., Dunkley, M.,
and Cleevely, P., 2002, “Cost Modelling For Aircraft
Design Optimization”, Journal of Engineering Design,
13(3), pp. 261-269.

[9] Samareh, JA., 2001, “Survey of shape
parameterization  techniques  for  high-fidelity
multidisciplinary shape optimization”, ATAA Journal,
39(5), pp. 877-884.

[10]Keane, A.L, Nair, P.B., In Press, “Computational
Approaches to Aerospace Design: The Pursuit of
Excellence”, John Wiley & Sons.

[11]Chen, Y.M. 2002, “Nodal Based Evolutionary -
Structural Optimization Methods”, Ph.D. Thesis,
University of Southampton.

[12]Winchell, W., 1989, “Realistic Cost Estimating for
Manufacturing” Society of Manufacturing Engineers.

[13]Boothroyd, G., Radovanovic, P.,1989, “Estimating the
cost of machined components during the conceptual

DFX, Appliance

8 Copyright © 2005 by ASME



design of a product.”, Annals of the CIRP, 38(1),
pp.157.

[14]Rush, C., and Roy, R., 2000, “Analysis of cost
estimating processes used within a concurrent
engineering environment throughout a product life
cycle.!, Proc., 7th ISPE International Conference on
Concurrent Engineering: Research and Applications,
Technomic Inc., Pennsylvania USA, pp. 58-67.

[15]Wierda, L.S., 1991, “Linking design, process planning
and cost information by feature-based modelling”,
Journal of Engineering Design, 2(1), pp. 3-19.

[16]Broonsvoort, W.F., Jansen, F. W., 1994, “Multi-view
feature modelling for design and assembly”, In:
Advances in Feature Based Modelling, Ch.14, pp.
315-329.

[17]Catania, G., 1991, “Form features for mechanical
design and manufacturing”, Journal of Engineering
Design, 2(1), pp. 21-43.

[18]Feng C., Kusiak A. and Huang, C., 1996, “Cost
Evaluation in Design with Form Features”, Computer
Aided Design, 28(11), 879-885,

[19]Weustink LF., Ten Brinke E., Streppel A.H., Kals
HJJ., “A generic framework for cost estimation and
cost control in product design”, Journal of Materials
Processing Technology, 103, pp. 141-148, 2000

[20]Jung J., 2002, “Manufacturing Cost Estimation for
Machined Parts based on Manufacturing Features”,
Journal of Intelligent Manufacturing, 13(4), pp.227.

[21] www.vanguardsw.com accessed on 17 January 2004

APPENDIX

[22]Sobieszczanski-sobieski J., Haftka R.T., 1997,
“Multidisciplinary Aerospace Design Optimization:
Survey of Recent Developments”, Structural
Optimization, 14(1), pp.1-23.

[23]Mitchell S., Lachapelle D., Utkes R., Sargent K.,
“Benefits of using cost models to guide composite
frame designs”, www.galorath.com  accessed 23
January 2004

[24]Tlcesicz, L. B., Mabson, G. E. et al “Cost
Optimization Software for Transport Aircraft Design
Evaluation (COSTADE): Design Cost Methods,”
NASA Contractor Report 4737, 1996.

[25]Keane, A.J, 2003, “The OPTIONS Design
Exploration System: Reference Manual and User

Guide-Version B3.I”,
http://www.soton.ac.uk/~ajk/options.ps accessed on 4
April 2004

[26]Mckay, M. D., Conover, W. J., and Beckman, R. I.,
1979, “A comparison of three methods for selecting
values of input variables in the analysis of output from
a computer code”. Technometrics, 21, pp. 239 245.

[27]Kirkpatrick, S., Gelatt, C.D. Jr., and Vecchi, M.P,,
1983, “Optimization by Simulated Annealing”,
Science, 220 (4598), pp. 671-680.

[28] “Mathematical Optimization”, The Computational
Science Education Project, e-book available at
http://csepl.phy.oml.gov/CSEP/MO/MO.html, on 24
April 2004

Figure A. Range of Geometries generated by varying the inputs of a Parametric CAD Model
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Figure B. Snapshot of the Cost Model within DecisionPro™
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Figure C. Detail from cost model
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Figure D. Minimum Cost Geometry for Result No. 3 in Table 2
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