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ABSTRACT

This paper presents an efficient genetic algorithm based
methodology for robust design that produces compressor fan
blades tolerant against erosion. A novel geometry modeling
method is employed to create eroded compressor fan blade sec-
tions. A multigrid Reynolds-Averaged Navier Stokes (RANS)
solver HYDRA with Spalart Allmaras turbulence model is used
* for CFD simulations to calculate the pressure losses. This is
used in conjunction with Design of Experiment techniques to
create Gaussian stochastic process surrogate models to predict
the mean and variance of the performance. The Non-dominated
Sorting Genetic Algorithm (NSGA-II) is employed for the multi-
objective optimization to find the global Pareto-optimal front.
This enables the designer to trade off between mean and vari-
ance of performance to propose robust designs.

INTRODUCTION

During operation, compressor fan blades are exposed to a
number of erosion processes [1]. This can lead to reduction of
the blade chord, alteration in the shape and increase in the surface
roughness [2]. This is critical to the blade performance and can
lead to degraded overall engine efficiency. Roberts [3] has shown
that geometric variability in the form of leading edge erosion in
compressor airfoils may account for an increase of 3 % or more
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on the thrust specific fuel consumption. Erosion can cause upto
5 % deterioration in total pressure loss of compressor fan blades
[4]. Replacing the eroded compressor fan blades can prove to be
expensive. Hence, it is desirable to design compressor fan blades
that are robust to erosion processes ie, blades whose performance
does not degrade significantly in the presence of erosion.

Traditional deterministic optimization methods seek to opti-
mize the mean performance of the system. These methods when
used for product design tend to produce solutions that perform
well at the design point but have poor off-design characteristics.
In recent years, there has been a resurgent interest in computa-
tional analysis and design methods that rationally accommodate
uncertainty arising from sources such as varying operating condi-
tions, manufacturing errors or inaccurate system parameters [5].
In most cases, removing the causes of uncertainty can be pro- -
hibitively expensive. Robust Design is concerned with minimiz-
ing the effect of uncertainty in design parameters on a design
without eliminating the source of uncertainty [6].

In the 1970’s Taguchi emphasized the need to reduce varia-
tion in product and processes to improve their quality [7,8]. An
overview of Taguchi’s experimentation strategy and parameter
design method can be found in [9,10]. The system design method
and the selection of Signal-to-Noise (SN) ratio as a measure of
robustness proposed by Taguchi had several limitations [11,12].
Welch et al [13, 14] proposed a system for quality improvement
via computer experiments as an alternative to Taguchi’s methods.
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Statistical decision theory has also been used to formulate robust
design as an optimization problem. Minimax strategy [15] can
be used to find a design with optimal worst case performance.
This method is conservative as it seeks to protect the decision
maker against the worst case scenario [12]. Huyse et al [16, 17]
use the Bayes principal to achieve consistent improvement of the
performance over a given range of uncertainty parameters. The
problem in using their formulation is that the evaluation of the
objective function is very expensive.

Many researchers have treated robust design as a multi-
objective problem [18], where the goal is to (1) optimize the
mean of the performance, and (2) minimize the variance of the
performance of the system. Parkinson [19] has discussed conven-
tional Weighted Sum (WS) methods to develop a single objective
function to be utilized for robust design. The WS methods can
only be used if the Pareto front is convex and fails to produce an
even distribution of points from all parts of the Pareto set [20].
Chen et all [21] solved the bi-objective robust design problem
from a utility perspective. They employ a Compromise Program-
ming (CP) approach based on the Tchebycheff method. Genetic
Algorithms (GA) are inherently well suited for Multi-objective
problems like robust design, as they have the ability to find mul-
tiple Pareto-optimal solutions in one single simulation run. In
our study we employ the Non-dominated Sorting GA (NSGA II)
proposed by Deb et al [22]. The NSGA-II method uses an elitism
based non-dominated GA to ensure much better spread of solu-
tions and better convergence near the true Pareto-optimal front
compared to conventional GA methods.

The robust design approach proposed here combines con-
ventional robust design methods with Design of Experiments
(DOE) techniques, sophisticated surrogate modeling and GA to
suggest an efficient hybrid method. In this method DOE tech-
niques are used to create an initial system design of inner control
and outer noise array. A sophisticated grid generation routine
is employed to generate meshes which are then used for com-
putational fluid dynamics (CFD) simulations. NSGA-II is used
in conjunction with Gaussian stochastic process model (Krig)
to search the design space for Pareto-optimal solutions. This
method is used to seek compressor fan blade sections that are
robust to erosion processes. The remainder of this paper is orga-
nized as follows. In the next section we present the methodology
used for robust design. This is followed by a description of the
geometry parameterization, grid generation and CFD simulation.
The following section will describe the surrogate modeling ap-
proach employed in the study. The latter sections will talk about
the GA search method, numerical analysis and results.

ROBUST DESIGN METHODOLOGY

This sections discusses the methodology proposed for ro-
bust design of compressor blade sections against erosion.In the
first step we select the design space and use DOE techniques to
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Figure 1. FLOWCHART OF ROBUST DESIGN METHODOLOGY

rationally choose a set of compressor fan blade sections as ini-
tial m candidate points. Subsequently a second level of DOE
is run to suggest » different erosion geometries on each candi-
date compressor fan blade section. This is very similar to the
inner control factor array of m points and noise factor array of
n points used in Taguchi’s system design. The eroded compres-
sor blades are modeled using a novel parameterization technique
based on Hicks-Henne functions, discussed in the next section. A
Parametric Design and Rapid Meshing (PADRAM) tool is used
to produce high quality hybrid meshes. A multigrid Reynolds-
Averaged Navier Stokes (RANS) solver HYDRA with Spalart
Allmaras turbulence model is used for Computational Fluid Dy-
namics (CFD) simulations to calculate the total pressure loss over
the compressor blade section at each of the m x n points. The
mean and standard deviation of the total pressure loss (over n
erosion types settings) is calculated for all the m blade sections.

Unlike conventional robust design procedures we do not
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limit ourselves to just searching the initial design space. A Gaus-
sian stochastic process model (Krig) is employed to generate a
computationally less expensive surrogate to predict the mean and
standard deviation of the total pressure loss. The hyperparame-
ters of the krig are calculated using a combination of GA and
Dynamic Hill Climbing (DHC) search methods. The elitist Non-
dominated Sorting Genetic Algorithm (NSGA-II) is then used
to search the entire design space to obtain Pareto-optimal solu-
tions. The prediction, using the surrogate model, at the points on
Parsto-front are then verified by running full scale CFD simula-
tions. If the Krig is not accurate enough, a low-crowding algo-
rithm is used to select points for update near the Pareto front. The
surrogate model (Krig) is then updated at the suggested points
and this process is performed iteratively until predictions are sat-
isfactory. After the optimizer converges to the true Pareto-front
the designer can use the optimal design set to trade off between
mean performance and variance to obtain robust designs. This
methodology is presented in the flowchart in figure 1.

MODELING AND PARAMETRIZATION

Robust design methods require definition of noise factors
and control (design) factors in the system design. For the noise
factors we need to develop a parametric model of the eroded
compressor blade section. Erosion leads to blade surface deteri-
oration and causes a depression in the original airfoil. Hence for
modeling eroded geometries, a tool that can model local dents in
the original airfoil shape is required. Hicks Henne filnctions [23]
provide a flexible tool to model local variation in the form of
bumps. Erosion patterns observed in compressor fan blades can
be very complex. A combination of piece-wise cubic polynomial
and Hicks-Henne function is used here to create a simple but re-
alistic model of the erosion patterns. The eroded compressor fan
blade section is parametrized in terms of the location, depth and
the width of the eroded section. The Hicks-Henne functions can
be expressed as:

b(x)=4 [sin (nx{‘%’%)} Z,OSxS 1. e))

Here, A is the maximum bump magnitude, #; locates the position
of the maximum of the bump at x = #;, and #, controls the width
of the bump. This provides us with three Noise factors - location
(¢1), width (¢2) and depth (4), for the robust design system. Fig-
ure 2 show some typical eroded blade models used to represent
noise factors this study.

The compressor blade geometry itself also needs to be
parametrized to create a set of control factors. To parametrize
the blade section geometry we use the Hicks-Henne method pro-
posed in [23]. Wu et al [24] discuss and compare the efficacy
of Hicks-Henne shape functions to other methods for modeling
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Figure 2. NOISE FACTORS: ERODED BLADE MODELS

compressor blade sections. In this specific case we have used 10
Hicks-Henne functions to define the compressor fan blade sec-
tion. The shape functions are added to a typical Rolls-Royce
compressor fan blade section to form new shapes. The weights
of these shapes are used as design parameters. Hence, for our
robust design study we have 10 design parameters which can be
treated as the control factors. Figure 3 shows the variations in
geometry caused by changing the control factors.
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Figure 3. VARIATIONS IN CONTROL FACTORS
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The model discussed above is combined with the Rolls-
Royce propriety code PADRAM, a parametric design and mesh-
ing routine employed for automating the geometry creation and
grid generation process. PADRAM makes use of both transfinite
interpolation and elliptic grid generation to generate hybrid C-O-
H meshes. An orthogonal body fitted O mesh is used to capture
the viscous region of the airfoil whilst an H mesh is used near
the boundary where stretched cells are required, for example in
the wake region. After Grid refinement studies we select a mesh
of the order of 28,000 cells in two dimensions. Figure 4 shows
a typical compressor fan blade section geometry with the CFD
mesh.
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Figure 4. A typical C-O-H mesh used for CFD analysis

In Figure 4 abdc is the CFD domain where boundary ab is
the inlet and boundary ¢d is the exit. A non-linear, unstructured
viscous flow solver HYDRA is used for the CFD simulation. It
solves the Reynolds Averaged steady Navier-Stokes equations
with the Spalart-Allmaras turbulence model. To accelerate the
convergence to steady-state it uses preconditioning and multi-
grids [25]. A four level multigrid is used for the present simu-
lations. The inlet boundary conditions for the CFD analysis are
Total temperature = 290 Kelvin, Total Pressure = 63400 Pascal,
Whirl Angle =-37.28 Degrees and the outlet boundary condition
is Static Pressure = 52000 Pascal. An initial uniform flow con-
dition with Density = 0.7675 kg/m3, Velocity = 0 and Pressure
= 66932 Pascal is considered. The converged CFD solution is
used to calculate the pressure loss at the nominal geometry. The

equation for the pressure loss is:

. — P,
Loss = Fintet —Fest 100 @)

inlet

where Py is the total pressure at the inlet and P,y is the
total pressure at the exit.

SURROGATE MODELING

In probabilistic analysis the computational cost involved in
solving high-fidelity simulation models many times over is very
high. Surrogate modeling uses the basic idea of analyzing an
initial set of design points to generate data which can be used
to construct approximations of the original high fidelity model.
The high-fidelity model CFD simulation in this study can be rep-
resented by a functional relationship y = f(x), where x is the vec-
tor of inputs to the simulation code and y is the output. The ob-
jective is to construct an approximate model j = f(x, ) ~ f(x),
that is computationally cheaper to evaluate. o is a vector of un-
determined hyperparameters which is estimated by employing a
black-box approach [26] to the input-output data. In general,
black-box surrogate modeling involves the following steps: (1)
data generation, (2) model structure selection, (3) parameter es-
timation and (4) model validation.

Data Generation

A surrogate modeling approach needs a set of training data
and the quality of the approximate model crucially depends on
the location of these training points. Design of experiments
(DOE) techniques offer a way to choose the training points so
that the maximum quantity of information can be extracted about
the underlying input-output relationship. As computer exper-
iments are deterministic, it is important to choose the training
points which fill the design space in an optimal sense [27]. The
Monte Carlo Simulation (MCS) technique is among the most ro-
bust and simple techniques, wherein the basic idea is to employ a
random number generator to sample the design space. However
MCS is used as the method of last resort as the points are not es-
sentially space filling and the computational cost involved with
high fidelity models can be prohibitively high. Other commonly
used methods are stratified MCS, Orthogonal arrays, Latin Hy-
percube Sampling (LHS) and minimum discrepancy sequences.
We use one of the minimum discrepancy methods based on Sobol
sequences [28] also known as the LP; method. LP; sampling is
based on uniformly distributed sequences in space and gives a
mechanism for generating points in n-dimensional space which
are uniformly distributed.
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Model Structure Selection

In our study we use a Gaussian stochastic process model
to build the surrogate model. The foundations of this method
were developed in the field of geostatistics, where this model
is referred to as Kriging and has been in use since the early
1960’s [29]. It is also widely used in the neural network commu-
nity where it is referred to as Gaussian process regression [30].
The model structure typically used in stochastic process approx-
imation of the relationship y = f(x) can be compactly written
as

Y(x) =B+2(x), €)

where {3 is an unknown hyperparameter to be estimated from the
data and Z(x) is a Gaussian stochastic process with zero mean
and covariance

Cov(Z(x,x")) =T'(x,X) = 6%,R(x,x'). 4)

In other words, the observed outputs of the simulation code
y = {y,3?,...,)/} are assumed to be realizations of a Gaussian
random field with mean B and covariance T. Here R(.,.) is a
parametrized correlation function that can be tuned to the train-
ing dataset and 62, is the so called process variance. A com-
monly used choice of covariance function is the stationary family
which obeys the product correlation rule [27].

R, ) = [Tep(-6,1x} —2P7), )
=1

where 6; > 0and 1 < p; < 2 are the hyperparameters. The values
of the hyperparameter 6 can be used to understand the relative
importance of each parameter on the performance of the airfoil.
Hence 6, which is the value corresponding to the jth parameter,
is an indicator of the its influence on the airfoil performance.
If a Gaussian process prior over functions is used, the posterior
process is also Gaussian. Hence using standard statistical results
from Bayesian inferencing, the posterior mean and covariance
can be stated as

39 =B+ 2(x)TR (y— 1), ®
and

Clx,¥) =0’ (R(x,x') - 'c(x)TR'IT(x')) . %)

Here R is the correlation matrix whose ijth element is calculated
as R(x® x()) and 1 = {R(x,xV),R(x,x(), ...,R(x,x(l))}T €
R* and 1={1,1,...,1} € R". This approach finally leads to an
approximation of the computational model as a multidimensional
Gaussian random field. The randomness in equation (7), given by
posterior variance 6%(x) = C(x,X’), can be interpreted as an es-
timate of the uncertainty involved in predicting the output at any
new points using the given finite dataset.

Parameter Estimation

After choosing an appropriate covariance function for the
surrogate model the next task at hand is to estimate the set of
unknown model parameters. The covariance function I can be
parametrized in the term of vectors 6 = {6,,0,, .,0p}. Given
the training dataset, we need to estimate 6 and the other hyper-
parameters B and 6,2, Martin et al [31] have compared Maxi-
mum Likelihood Estimation (MLE) and Cross-Validation (CV)
technique for estimating the parameters. Here we use the MLE
technique as proposed in the Design and Analysis of Computer
Experiments (DACE) [27]. The MLE approach leads to those
values of the undetermined parameters that are most likely to
have generated the training dataset. For the Gaussian process
interpolation, since we assume that the observed outputs have a
Gaussian distribution, the negative log-likelihood function to be
minimized becomes

1 1
L(6.8.0:2) =~ [nlno + R|+ 55y~ 1B) Ry - 19).
z
®
By taking the derivative of the log-likelihood function with re-
spect to B and 6,2 and equating them to zero, we get a closed
form solution for the optimal values of B and o, as

f="R'1) 1Ry, ©)
and
a 1 .
0.2 =~(y—1B)"R™'(y~ 1p). (10)

A closed-form solution does not exist for 6, requiring an iterative
optimization procedure to minimize L as a function of 8. For
a given value of 0, estimates of B and 6,% can obtained using
equation (10) and (11), respectively. These computed values of
B and 6,2 can be substituted into equation (9) to calculate the
log-likelihood function. In principle, any standard optimization
routine can be employed to compute the maximum likelihood
estimate of 6.
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Model Validation

In this study we employ an efficient method to verify and up-
date the surrogate model. After each iteration the NSGA-II pre-
dicts a set of Pareto optimal points. A low crowding algorithm
is used to select points from the Pareto optimal set for verifica-
tion and update. This ensures that the user is concentrating his
computational effort in the area of interest. Also the points with
the lowest rankings, predicted by the GA, are removed from the
design space before the hyperparameters of the metamodel are
trained. This ensures high accuracy of the metamodel in the re-
gion of interest.

NSGA-li FOR ROBUST DESIGN ‘

Robust design can be formulated as a multi-objective prob-
lem with the goal of minimizing (1) the mean (i) performance of
the system, and (2) the standard deviation (c) of the performance.
This can be expressed as

Minimize: = £ Y%, Pl; and

(In

Minimize : 0 = |/ gy Shy (Ph— ), i=1,2,...k

where PI is the pressure loss and k is the number of eroded com-
pressor blade types used for representing the sample space. The
presence of multiple objectives in a problem leads to a set of op-
timal solutions, rather than a single solution. Such a solution set
is referred to as Pareto-optimal set in the optimization literature.
Each point in the set is optimal in the sense that no improvement
can be achieved in one objective without worsening the other ob-
jective. In the absence of further information about the relative
importance of the objectives, it is not possible to decide which

- design is better than the rest. Hence, it is important to find as
many Pareto-optimal solutions as possible for the benefit of the
designer.

Classical optimization methods suggest converting the mul-
tiple objective optimization problem to a single objective opti-
mization problem emphasizing one particular Pareto-optimal so-
lution at a time. Such methods prove to be computationally ex-
pensive and do not ensure convergence to true optimal Pareto
sets in non-convex problems [33,34]. In contrast, Genetic Algo-
rithms are inherently suited for multi-objective problems as they
have the ability to find multiple Pareto-optimal solutions in one
simulation run. Since GAs work with a population of solutions,
it is easier to extend them to maintain high diversity in finding
multiple Pareto-optimal solutions at each stage, while moving
toward the true Pareto-optimal region [35].

In recent years several approaches have been proposed to
solve Multi-objective problems using GAs [36,37]. The elitism
based Non-dominated Sorting Genetic Algorithm (NSGA-II)

proposed by Deb et al [22] is employed here to seek the true
Pareto-optimal front. The NSGA-II method is fast as it has a
computational complexity of O(MN?) (where M is the number of
objectives and N is the population size) when compared to other
non-dominated GA with computational complexity O(MN?).
NSGA-II method also uses elitism to enhance the performance
of the GA and prevent the loss of good solutions once they are
found. Traditional GA methods ensure diversity in a population
by relying on the concept of sharing. In such methods it is nec-
essary to specify the sharing parameter (Gypqre) beforehand by
the user. The performance of sharing functions in ensuring di-
versity, is dependent upon the choice of Ggare. In practice it
is not very obvious how to select the best Gape. In NSGA-II
the sharing function approach is replaced by a crowded compar-
ison approach. The crowded comparison approach has a better
computational complexity and eliminates any user defined pa-
rameter for maintaining diversity among population members.
In this study NSGA-II is employed in conjunction with surrogate
models to identify the true Pareto-optimal front to seek robust
designs.

NUMERICAL STUDIES AND RESULTS .

The robust design method discussed above is applied to typ-
ical Rolls-Royce compressor fan blade section. LP; based DOE
is employed to create an initial control factor set of m (m = 50)
compressor fan blade shapes. This is followed by another set of
LP; based DOE to create n (n=15) types of erosion on each of
the m blade shapes. The noise factors - location (1), width (£2)
and depth (4) are represented by a uniform distribution. F igure
2 shows the shapes generated. PADRAM, a parametric and au-
tomatic grid generator is employed for generating high quality
CFD mesh. A multigrid RANS based CFD simulation is per-
formed at the m x n candidates points to evaluate 72 mean and
variance of the pressure losses. The hyperparameters 6, B, 6,2 of
the Krig are evaluated using a hybrid Genetic Algorithm (GA)
and Dynamic Hill Climbing (DHC) search method. The multi-
objective algorithm NSGA-II is used in conjunction with the krig
to seek the pareto optimal solutions. After each search iteration
10 points are selected on the Pareto front using a low crowding
algorithm. The quality of the Krig is evaluated using the selected
points after each iteration. Figure 5 and 6 show the regression
coefficient for the values of standard deviation and mean of the
pressure losses, predicted by the Krig, versus the values of stan-
dard deviation and mean of the pressure losses predicted by the
CFD simulations.

The R? = 0.789 for the values of 6 and R? = 0.9527 for the
values of u for the last update. The quality of the Krig can be
improved by further updating the Krig. The NSGA-II algorithm
with the update method is employed for 12 updates to find the
optimal robust design set. Figure 7 shows the initial dataset with
the initial Pareto front. The solid line represents the final Pareto

Copyright (© 2005 by ASME



S ff/
R // .
g e J,f‘
g /
E - /
]
S A
g L3 v . '/,f
i .
E paws -
& /
E wax .

0

BRI G i A L &Y LY A AR

Actust Vakee of Sid. Devistion

Figure 5. R? VALUES FOR G FOR PREDICTED VS ACTUAL VALUES -

“82.4

@ s - ©
s & B a

Predicted Vaiue of Mean
g

a3

1885 188 1895 8 1€0§ 191 185 132

Actual Value of VMean

Figure 6. R? VALUES FOR (1 FOR PREDICTED VS ACTUAL VALUES

front obtained by using NSGA-II in conjunction with Krig. The
improvement in the Pareto set is obvious from the figure 7. The
points on the Pareto front obtained by NSGA-II using the Krig
are verified by CFD simulations. Figure 8 shows the verified
Pareto points. The encircled points on the verified Pareto front
are selected for further analysis. A 50 point LP; based DOE
with noise factors - location (¢1),width (¢2) and depth (4) is ex-
ecuted for each of the selected geometry on the verified Pareto
front. The data is used to train a surrogate model (Krig), which
is further used for a Monte Carlo Simulation (MCS). A MCS of
10000 runs is executed for each selected blade geometry and the
histograms of the pressure loss are generated. Figure 9 shows the
histograms of pressure loss for the 3 selected blade geometries.
The same MCS analysis was conducted for the baseline ge-
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ometry. Figure 10 shows the histograms of the nominal geom-
etry and one of the selected robust geometries. It can be noted
that the robust design has a better mean performance as well as
lower variation as compared to the baseline geometry. This is not
usually the case in real life problems where more often than not
there is a trade-off between mean performance and variation. The
above observation can be explained by the fact that the baseline
geometry used here was not optimized for pressure loss alone.
Other factors such as strength, cost and manufacturability would
have effected the decision, which were not accounted for in this
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study. Hence, it was not surprising to find designs with better
nominal performance as well as lower variability.
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CONCLUSIONS
In this paper we have presented an efficient and fast ge-
netic algorithm based robust design methodology. A novel

By

parametrization method was developed to model eroded com-
pressor fan blade sections. A LP; based DOE technique was used
to construct an initial inner control array and outer noise array. A
parametric grid generation routine was used to automate geom-
etry creation and grid generation to construct high quality CFD
meshes. Gaussian stochastic process models (Krigs) were used
as computational surrogates to the high fidelity CFD simulations.

The Robust design problem was formulated as a multi-
objective problem. An elitism based non-dominated sorting ge-
netic algorithm was employed in conjunction with the surrogate
model to search the design space. A Pareto-optimal set was iden-
tified for trade off between the mean and standard deviation of
the pressure loss. The efficiency of the proposed solutions would
depend on the quality of the Krig used. The Pareto-optimal set
suggested by the NSGA-II, using the Krig, was verified using
CFD simulations and few points were selected from the verified
Pareto front for further analysis. A Monte Carlo simulation based
on surrogate models was executed for the selected blades and
the results were found to be considerably better and robust than
the baseline design. The method presented can be employed to
seek robust optimal sets which can be presented to the design-
ers to find compressor blade designs that are robust to erosion
processes.
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