
Combining physical simulations and

chargeable W eb service applications

in engineering workflows

M arc M olinari and Simon J Cox

Southampton Regional e-Science Centre

School of Engineering Sciences

University of Southampton, SO17 1BJ

m.molinari@ soton.ac.uk

Abstract

W e demonstrate with a case study extending previous work how to integrate and consume a distrib-

uted framework for chargeable W eb services providing a specialist software package for engineer-

ing applications and show with an example how this service can be integrated into scientific re-

search problems in science and engineering. W e discuss the complexity of the problem and list

some of the issues encountered.

1. Introduction

Physical scientific simulations and engineering

design optimisation processes frequently require

specialist expensive software packages which

often run only on dedicated hardware. Business-

es have the increasing choice of using such soft-

ware as services via well-defined web interfaces

instead of the ordinary licensing channels. This

can reduce spending on purchase, maintenance

and upgrade expenses, possible on a pay-per-

use basis, thus effectively reducing the cost of

ownership in the long-run.

The use of chargeable web services on demand

will complement the purchase of software in the

future and will open the market to small enter-

prises for which the access to these resources on

a full-purchase basis might not be commercially

viable. Demand from Grid industry is on the

rise as a recent publication in BusinessW eek [1]

shows.

This paper is a follow-on article on previous

experiences [2]. W e demonstrate how a client

user can integrate and use a specialist finite

element meshing web service provided through

the University of Swansea or the University of

Southampton with payment infrastructure lo-

cated at Imperial College and resource usage

service located at Manchester. The application,

compute and database facilities and tools are

part of the GeodiseLab project [3], the frame-

work for chargeable web services is part of the

Computational Markets project [4].

As part of the client functionality, we present a

client script which integrates the negotiation and

W eb service interaction process into an engi-

neer's scripting environment. The integration

and orchestration takes place behind the scenes

of a standard commercial Matlab problem solv-

ing environment (PSE). Thus, it can also take

advantage of the OMII-sponsored GeodiseLab

project with interaction of a wider range of Grid

technologies such as database and compute pool

usage.

Our application demonstrates how to use the

available W eb service in an engineering work-

flow to search for novel physical properties in

the area of computational electromagnetics and

we show an application of design optimisation.

W e will show how the components of this dis-

tributed framework interact as part of the user's

application and how to implement this in a real

engineering workflow.

2. Physical Simulation

A sample problem in the field of electromag-

netic design optimization is the parametric de-

sign study of a component for next-generation

integrated photonic devices [5]. This approach,

however, can be extended and applied in the

same way to other science or engineering appli-

cations.

In this application, the scientist wants to opti-

mise the electromagnetic transmission proper-

ties of a Photonic Crystal device for a specific

Proceedings of the UK e-Science All Hands Meeting 2005, ©EPSRC Sept 2005, ISBN 1-904425-53-4

1094

high-performance optical communication de-

vice. A base geometry of the Photonic Crystal

that leads to bandgaps in the energy spectrum is

a periodic array of holes etched into a slab of

dielectric material. The scientist will be able to

vary the hole distance and radius to obtain dif-

ferent energy bandgaps. To perform such an

investigation and design optimisation numeri-

cally before manufacturing the device, the sci-

entist will need to perform a number of compu-

tational tasks as indicated in figure 1.

Parametric Geometry

CAD Design

FE MeshingFE Meshing

Solver

Design Evaluation

Visualisation

Update optimisation

parameters

(R,D)0

(R,D)i+1

2R

D

2R

D

Figure 1: Computational tasks of a scientific

workflow in design optimisation, including the

call to finite element meshing software.

The optimisation of the design is an iterative

process during which the parameters are up-

dated to give and improved design. Each itera-

tion requires the use of a number of software

components which can be very complex and

often require the purchase of specialist software

or even hardware to run on.

Here, we focus on the finite element meshing

software package, indicated by the field "FE

Meshing". We detail in the following how this

component can be integrated as a web service

into a GeodiseLab workflow script of a scientist

or engineer.

3. Web Service Framework

A functionality often required by engineers is a

finite element meshing application which takes

a geometric design as input and converts this

into a topological assembly of finite elements

representing the area or volume under investiga-

tion. We have implemented such a meshing

application as a Web service and extended its

functionality with the framework provided by

the Computational Markets project so that its

use can be charged for on both a pre-pay and

pay-per-use basis.

This framework includes the following func-

tionalities usable in this example.

Negotiation

Payment Service

Application Web Service

Resource Usage

3.1 Negotiation cycle

In the negotiation cycle which takes place be-

fore any others, clients can specify limits to the

parameters within which the meshing service

should operate. These usually include the price

the client is willing to pay and the number of

runs required as part of a bundle as well as an

expiry of the agreement made. Possible exten-

sions are the size of mesh or output data and the

availability of the service for a specific time

period.

3.2 Payment Service

The payment service delivers the accounting

backbone for (virtual) money transfers. Ac-

counts of service providers and client users are

maintained and the money transfers that take

place are authorised by X.509 certificates which

are countersigned by the owners. All traffic is

encrypted on the message level (via SSL con-

nections) and also signed using these certifi-

cates.

3.3 Application Web Service

The application Web service wraps a meshing

executable exposed to the user by a standard

WS interface WSDL document. The owner has

the possibility to set the negotiation parameters

through an incorporated web page interface.

Technical details on the framework and the pro-

vided services can be found in the Computa-

tional Markets paper in these proceedings.

3.4 Usage diagramm

Figure 2 shows the distributed framework cur-

rently in use by our example application. The

payment service is hosted at LeSC, the negotia-

tion takes place between the user and the appli-

cation web service site, and the resource usage

is registered in Manchester. We have the choice

of integration two meshing web service applica-

tions hosted in Southampton (for 2D meshing)

and in Swansea (for 3D meshing).

Proceedings of the UK e-Science All Hands Meeting 2005, ©EPSRC Sept 2005, ISBN 1-904425-53-4

1095

The numbers in figure 2 describe the procedural

order of process steps that has evolved from our

web service integration tests.

London

Payment Service

Southampton 2D / Swansea 3D

Meshing Service

Manchester

Resource Usage Service

1
Client User

2

23

4

Figure 2: Distributed Computational Markets
framework for chargeable Web Services.

The process of integrating this web service in

the scientist's script can be described as:

0. Find Web Service (UDDI register).

1. Negotiation

a. Contact WS for an offer

b. User accepts offer or specifies new re-

quirements and re-negotiates

c. Service provider sends acceptable offer

d. User accepts offer

e. User provides account details

2. Payment authorisation

a. User authorises transactions from own

account to service provider's account

b. Payment service checks details with

provider

c. User obtains contract details in form of

a digital ticket

3. Consumption

a. User prepares service by sending

agreement ticket

b. User sends input data stream to service

c. Invoke service with process command

d. Poll service until finished

e. When service finished, WS contacts

payment service to transfer money

f. User retrieves data

4. Resource Usage

a. WS sends usage data to resource usage

service (pending).

4. Combining Application and Web

 Services in Engineering Scripts

In section 2 we have described the parametric

design search to solve the problem of finding an

optimal solution for a photonic crystal design.

Section 3 contained the details of the chargeable

web service framework which offers the finite

element meshing application for our workflow.

To combine these two together, an engineer

working with a scripting problem solving envi-

ronment such as Matlab or Python has to be

able to integrate the functionality easily. As an

engineer is usually more familiar with their

scripting language rather than Grid program-

ming knowledge, we tried to incorporate the

complex client functionality in a small number

of essential functions.

These aim to separate the negotiation and pay-

ment authorisation from the actual consumption

of the Web service application. Consuming the

meshing service may then actually be performed

automatically without user interaction if enough

executions have been purchased as part of the

agreement.

In the Matlab scripting environment, the proce-

dure looks as follows, where the function calls

contain the necessary client calls to the Java

API's provided by the Computational Markets

framework:

Negotiation & payment authorisation

% load user details such as keystore location

userDetails = cfg_load('user.cfg');

% get offers, if unsuitable re-negotiate

% prints out offers in PSE and waits for

% user confirmation

selectedOffer = getOffers(userDetails);

% accept offer and authorise payment

TicketFile = acceptOffer(selectedOffer);

Consume Web service from within PSE

% update selectedOffer
selectedOffer.ticket = TicketFile;

% specify input files

InputFiles = {'fe_mesh.inp', 'fe_mesh.ctrl'};
OutputFile = 'fe_mesh_result.msh';

% consume service and store results

consume_meshing_ws(InputFiles, OutputFile, …
 seletedOffer)

This creates – if successfully completed – an

output file with the finite element mesh data in

the local directory. The transaction of the pay-

ment has taken place as can be seen on the

payment service account web page interface.

Proceedings of the UK e-Science All Hands Meeting 2005, ©EPSRC Sept 2005, ISBN 1-904425-53-4

1096

This functionality can now easily be extended

by the engineer to include access to databases

for parameter storage and retrieval as well as

metadata for the files created. The analysis of

the photonic crystal design is usually carried out

on a Condor or Globus compute resource

through the Geodise Compute or CondorNative

toolboxes. Figure 3 shows the possible exten-

sion of the local PSE to integrate these diverse

distributed components into the workflow.

Further details can be found in [6] in these pro-

ceedings.

Local PSE

Parametric Geometry

CAD Design

FE MeshingFE Meshing

Analysis

Design Evaluation

Visualisation

Update optimisation

parameters

(R,D)i+1

Meshing

W eb Service

Condor &

Globus

Database

& Filestorage

Figure 3: Incorporation of Grid data, compute
and Web service resources into scientific work-

flows in the Matlab PSE, supportedby Geodise

Toolboxes and the Computational Market client.

5. Experiences

As with all distributed and network-based envi-

ronments, there are a number of technical, us-

ability and maintenance issues we have encoun-

tered:

Development

o Remote debugging

o Certification (SSL, X.509)

Maintenance of Services

o Changes in one location affect sev-

eral others

o Contract expiry

Charging Issues

o non-transparency (sometimes)

o non-runs charged for

o error during execution

o trial periods

Contractual arrangements

o Expiry of contracts

o Per-user /per-group agreements

Client Software

o Versioning of libraries

Script integration

o Training of implementation details

Each of these has been more or less difficult to

address in the course of this work.

6. Conclusions & Future W ork

We have set out to show how a scientific prob-

lem and a web service which holds the func-

tionality to part of the solution can be combined

to solve an engineering design search. Within

the framework of the Computational Markets

project which provides facilities to make this

meshing web service chargeable with distrib-

uted negotiation, payment and resource usage

services and the usage of the GeodiseLab Tool-

boxes for database, file storage and compute

resource access, we managed successfully to

federate the services and combine them in a

Matlab script.

It is worth noting that the OMII software stack

is likely to supersede the GMarkets framework

by offering a freely downloadable, open source

web service container with WS-Security en-

hancements. It will provide process based ac-

cess control and extension for secure and ac-

countable file and compute grid access.

References

[1]Hamm S (2004). Getting A Grip On Grid

Computing. BusinessWeek Online, 18 Oct 2004

[2] Molinari M, Nammuni K, Cox S (2004).

Integration of chargeable Web Services into

Engineering Applications. e-Science All Hands

Meeting, Nottingham Sept. 2004.

[3] The GeodiseLab Project, www.geodise.org,

Southampton eScience Centre

[4] The Computational Markets Project, www.

lesc.ic.ac.uk/markets, London eScience Centre

[5] Parker G and Charlton M (2000). Photonic

Crystals. Physics World 13(8), 29-34

[6] Pound G, Wason J, Molinari M, Jiao Z, Cox

S. GeodiseLab: Making the Grid Usable. In

these proceedings.

[7] See www.omii.ac.uk for the omii_2 software

stack.

Proceedings of the UK e-Science All Hands Meeting 2005, ©EPSRC Sept 2005, ISBN 1-904425-53-4

1097

