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Multiobjective and multidisciplinary optimization with high-fidelity analysis is becoming
an essential factor in the design of turbomachinery blades. Grid-computing environments
enable the solution of optimization problem requiring large computational resources. Here,
the Geodise computing system is used as a Grid-enabled tool, which realizes the client
functionalities for a Globus Grid service in the Matlab environment. It allows users to
handle their computing jobs on Grid-enabled machines as Matlab functions. As Matlab
includes various useful functions to analyze and visualize data, and to integrate several
components via its scripting language, Matlab is used as the main framework of the work
presented. In this research, single stage rotor/stator blades for a multistage compressor are
optimized to improve aerodynamic performance in terms of efficiency, blockage and loss,
while satisfying four aerodynamic constraints to maintain the flow similar to a baseline
geometry. To identify the trade-off between three objectives with a reasonable number of
function evaluations, the Adaptive Range Multi-Objective Genetic Algorithm is adopted as
the optimizer. The benefits of constrained multi-objective optimization of single-stage blades -
by Evolutionary Algorithms using Grid-enabled environment are discussed.
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s = isentropic efficiency

P = density
Subscripts

base = baseline geometry
design = designed geometry
exit = exit condition
inlet = inlet condition
‘max = maximum

min = minimum

I. Introduction

PTIMIZATION has become a key technology for developing products in many industries. In turbomachinery

design, there are many components to be improved in terms of aerodynamics, structure, vibration, etc, thus
multiobjective and/or multidisciplinary optimisation is essential. However, these optimizations tend to require large
computational power, especially when high-fidelity analysis such as Computational Fluid Dynamics (CFD) is used
in the design evaluation. Therefore, Grid-computing methods are of interest because they enable designers to
conduct large numbers of computations on widely distributed computing nodes. Many approaches have therefore
been considered for developing Grid-computing techniques by providing middleware and assisted tools."”

One such is the Grid-Enabled Optimisation and Design Search for Engineering (GEODISE) project which has
been conducted at the University of Southampton. This aims to assist engineers to improve the characteristics of
their designs by providing a Grid-enabled Problem Solving Environment.>>” As part of this work, the Geodise
computational tool box has been developed for the Matlab® environment. Matlab is widely-used in the engineering
community, including in industry.® It provides a large number of tool boxes including ones for visualization and data
analysis. The Geodise computational tool box works in a similar function. Therefore, designers who are familiar
with Matlab can easily conduct Grid computing using the Geodise tool kit. In addition to ease of use for Grid
computing, there are other advantages to using Matlab for multiobjective/multidisciplinary optimization. Matlab has
many functions and algorithms which help designers to analyze and visualize data after optimization. Moreover,
several optimization methods can be easily integrated with the Matlab environment. The Geodise project provides a
large collection of such methods.

The design optimization of turbomachinery blade rows is still a challenging problem, because this problem tends
to have many components, a large design space, and a large computational domain.”" In the case of compressor
design, empirical models and through-flow analysis have been widely used as design tools to predict performance.™
However, the actual flow in a compressor is very complicated because of viscous effects. When more precise
prediction of flow in the compressor or of performance is required, high-fidelity CFD such as Reynolds-Averaged
Navier-Stokes computation has to be used. Although progress in computational resources and CFD techniques
enables three-dimensional Navier-Stokes computation to be conducted for complicated geometry, there are still
difficulties, especially the computational effort required. To conduct optimization using three-dimensional Navier-
Stokes calculations, large computational resources are required. Therefore, a Grid-enabled environment is highly
desirable in such studies.

In this research, the aerodynamic design target is a blade row in a multi-stage low speed compressor. The
compressor rig consists of four stages, each with identical blades, parallel annulus and cantilever stators. It is
currently unrealistic to optimize the four-stage compressor directly in terms of computational time. In this study, a
single stage is considered for optimization. In the end, the full-stage configuration of the optimized design is
computed and compared with the datum design for the validation. The aim of the optimization is to improve
efficiency, blockage and total pressure loss by changing the shapes of the rotor and stator blades. In addition, it is
also important to identify the trade-offs between the three objectives in comparison to baseline flow conditions. For
the purpose of finding designs that satisfy the baseline flow requirements, four equality constraints are imposed. The
aerodynamic performances of the compressor stage is analyzed using the HYDRA suite that has been developed by
Rolls-Royce jointly with its University Technology Centres (UTC:s) to study turbomachinery flows.

Although Grid-computing is effective for aerodynamic optimization, computational time or number of
evaluations still has to be kept to a practical level. A simple utility function with gradient-based method is often used
to conduct multiobjective optimization efficiently to identify trade-offs. However, it is not always effective to use
such a formulation, and it can cause misunderstandings of the trade-off surface. As long as the aim of optimization is
to collect multiple non-dominated solutions that form trade-offs, Multiobjective Evolutionary Algorithms (MOEAs)
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can be reasonable alternatives. As MOEAs generally require a large number of function calls, methods to control the
number of expensive evaluations have to be used. One of the ways to conduct these problems efficiently is to use
MOEAs coupled with Response Surface Methodology such as Kriging or Neural Networks.”™® An alternative
method is to use efficient MOEAs without any approximation model. The former is quite powerful, but we need to
consider that errors of approximation vary locally. In addition, this method also requires a significant number of
Design of Experiment (DOE) runs to build precise approximation models if the numbers of design variable, design
objective and constraint are large. Therefore, a direct apporach is considered in the present optimization. The
Adaptive Range Multi-Objective Genetic Algorithm (ARMOGA) is adopted as an optimizer.”®?! This method has
been developed to efficiently identify trade-offs of aerodynamic design problems with high-fidelity codes.

This paper is laid out as follows. In Section 2, the Geodise computing tool box for Grid computing and the
optimization framework based on Matlab are described. The details of the design problem are defined in Section 3.
Optimization results are presented in Section 4, with concluding remarks in Section 5.

II. Grid Computing and Optimization Framework

The aim of Grid computing is to provide users with access to widely distributed computational resources. The
technology has been developed to provide secure access, file transfer, data management, scheduling of jobs, etc.
These functions are accomplished by middleware, which enables users to conduct grid computing. The Globus tool
kit provides one such set of middleware, including secure authentication and communication (Grid Security
Infrastructure, GSI), job submission and control (Grid Resource Allocation and Management, GRAM), file transfer
(GridFTP) and resource information (Monitoring and Discovery System). Client software making use of Globus
Grid services exists on a number of platforms, and a number of Commodity Grid (CoG) kits that expose Grid
services to ‘commodity technologies’ are provided.”? By using the interfaces to commodity technologies provided
by Java, Python, Perl, etc, the client software can be independent of platform and operating system.

The Java CoG kit provides a number of java packages, which give Application Program Interfaces (APIs)
corresponding to the Globus Grid service clients. The Geodise tool kit has been developed to expose such Globus
functionalities in the Matlab environment. For this purpose, all functions are programmed in the interpretive Matlab
language, and these functions make use of Java classes to access the Java CoG API. As the Geodise function
behavior and syntax are consistent with the Matlab environment, Matlab users can use the tool very easily.

The Geodise tool kit provides users with a collection of functions for Grid computing, and typical commands are
detailed in Table 1.> The authentication of valid certificate is conducted by the gd_createproxy command. Users are
able to submit compute jobs using the gd jobsubmit command, which makes use of GRAM job managers via the
Resource Specification Language (RSL). The command returns a unique job handle to identify the job, which may
be used to query or terminate the specified job. Another job submission command gd_submitunique provides an
extension of gd_jobsubmit: it creates a unique directory on the remote machine and the job is then performed in the
directory. Two file transfer commands gd putfile and gd getfile are provided to transfer files to and from Grid-
enabled resources, respectively.

- In this research, Matlab is chosen as the central framework
to control the optimization, which is based on time-consuming

computing jobs using Grid-enabled facilities, as well as to input files

execute the stand-alone in-house optimizer, the Adaptive "I ARMOGA
Range Multi-Objective Genetic Algorithm (ARMOGA)."” The Matlab | population data

optimization framework is illustrated in Fig.1. Matlab produces with

all the input files which ARMOGA requires to run, and then Geodise | parameter and

invokes ARMOGA to generate population data to be evaluated tool kit | job submission |Grid-enabled
on the grid. Matlab loads the data, and creates design parameter > resources
files that are submitted to remote machines so that the roeult dota

corresponding designs are generated and evaluated on the
machine (by means of the command gd_submiunique). Matlab Figure 1. Optimization framework.
polls the computing jobs until they finish using gd jobpoll, and

then retrieves the data from the remote computing node using

gd_getfile. When all the results are archived, Matlab provides

the required input files and invokes ARMOGA again to

produce the next generation data. The optimization continues

until the given generation count is reached.
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Table 1. Geodise toolkit commands.

job is completed.

IIL

The design target considered here is the third stage
blade row in a four-stage compressor, working at a low
speed condition. The datum rotor blades in each stage
are identical, and so are those in the stator. The target
compressor incorporates a parallel annuls, in other words,
the annulus area is constant between stages.

The aim of the optimization is to re-design the three-

dimensional blades of both rotor and stator
simultaneously to  improve three aerodynamic
performance measures while keeping similar flow

conditions and capacity to the baseline geometry that has
already been designed. ARMOGA is used to identify the
trade-offs near the baseline condition. The geometry and
corresponding mesh of each design candidate is
automatically generated using the PArametric Design
and RApid Meshing System (PADRAM).2* ~ The
aerodynamic performance of the designs are evaluated
using the three-dimensional Reynolds-Averaged Navier-
Stokes solver, HYDRA,* which is described briefly below.

A. Evaluation tools

The simulation codes used to evaluate the
compressor stage are a collection of programs developed
at Rolls-Royce jointly with its UTCs. The evaluation
sequence is shown in Fig. 3. Based on the input design
parameters, a three-dimensional blade geometry is
defined by PADRAM, and then PADRAM creates a
good quality viscous mesh. The boundary conditions and
initial flow fields for the flow solver are set in a pre-
CFD tool. In addition, multiple coarse meshes are
generated to make use of multigrid approaches to
improve the convergence performance in steady flow.
An in-house, Reynolds-Averaged Navier-Stokes solver,
HYDRA, is then used to predict the flow fields, Finally,
objective and constraint functions are calculated from
the converged flow field.

PADRAM has been developed with the aim of
generating  blade geometry from well-understood

4

Function Name Description Function Name | Description

Creates a Globus proxy certificate from - Terminates the GRAM job specified by
gd_createproxy the user's credentials gd_jobkil a job handle.

Submits a GRAM job specified bya Returnsjob handles for all GRAM jobs
gd_jobsubmit RSL string to a Globus server. Returns gd_listjobs associated with the users credentials

a job handle to the user registered on a MDS server.

Creates a unique directory on a remote .
gd_submitunique | host and submits a GRAM job that is gd_getfile Rejtneves. a file from a remote host

. using GridFTP.
computed at the directory.
. Returns the status of the GRAM job Transfers a file to a remote host using

gd_jobstatus specified by a job handle. gd_putfile GridFTP.
gd_jobpoll Polls the status of a GRAM job until the

Problem Definition

hub

Stator

Rotor

Figure 2. Base geometry and corresponding mesh.

Parameter file
PADRAM
Pre-CFD

Post-CFD

Result file

Figure 3. Evaluation sequence,
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turbomachinery blade design parameters, and rapidly meshing the resultant geometry. By specifying a parameter
name and value, the corresponding shape based on a change to a given baseline geometry is produced. In the present
optimization, the three-dimensional blade shape is re-designed by varying stagger angle, lean and sweep at different
spanwise locations. PADRAM is capable of producing good quality meshes for viscous computation in such
multistage compressors. The mesh for the stage is based on O-H mesh topology, and the tip and hub gap meshes are
automatically generated. The mesh density and quality are controlled by the number of nodes in the O-mesh or H-
mesh, and their stretching factor.

After the geometry and mesh of the rotor and stator are created, the pre-processing tool is used to integrate
separate meshes, to compute edge weights, to provide connectivity information, and to set up boundary conditions.
In addition, the tool creates a number of multirgrid levels in order to improve convergence performance. In this
approach, the multigrid scheme is achieved by edge collapsing, removing certain edges to selectively coarsen the
mesh on which the flow is solved, and damping out high frequency error nodes.”® In the present evaluation, a four-
level multigrid is adopted.

The flow solver, HYDRA, is an unstructured hybrid code using an edge-based data structure to give the
flexibility to run on different mesh types.”’ The non-linear solver computes the steady-state Navier-Stokes equations
with the Spalart-Allmaras turbulence model.”® The solver works in an explicit time marching fashion, based on a
five-step Runge-Kutta stepping procedure.”” Typical boundary conditions in compressible aerodynamics are used for
the rotor inlet and the stator exit boundary. Radial profiles of total temperature, total pressure, and absolute flow
angle are specified at the rotor inlet, and radial profiles of static pressure are specified at the stator exit. A mixing
plane boundary is applied for the contact surface between the outflow of the rotor and the inflow of the downstream
stator. In the formulation of the mixing plane boundary condition in HYDRA, circumferentially flux averaged
values of density, axial velocity, circumferential velocity, radial velocity and static pressure are transformed from
the inflow boundary of the mixing plane to the nodes on the outflow boundary and vice versa.

In this research, a part-converged solution is used to reduce the computational time of each CFD evaluation. The
flowfield at the fully converged solution of the baseline geometry is set as the initial condition for a design candidate
to be computed. This assists in providing rapid convergence compared to the use of an assumed uniform initial
condition.

B. Design Parameters

The three-dimensional shape of the blades is re-designed from the baseline geometry by parameters specified in
PADRAM. The following four parameters are chosen here to control the shape.

1) XCEN: axial movement of sections along the engine axis (or sweep)

2) DELT: circumferential movement of sections (or lean)

3) SKEW: solid body rotation of sections based on trailing edge position

4)  PITCH: pitch angle (controls the number of blades)
Some re-designed shapes of rotor blades produced using the above parameters are shown in Fig. 4. These parameters
are applied for rotor and stator blade simultaneously. The variation of the shape is defined at various radial locations.
The radial profile can be represented by polynomial functions or NURBS curves.

a) Baseline b) XCEN ¢) DELT d) SKEW
Figure 4. Geometries defined by parameters in PADRAM.

C. Design Criteria
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1. Objective Functions :
The following objective functions are considered here in the design of compressor stage 3 (which consists of

rotor and stator). The aerodynamic performance of the compressor is measured by the isentropic efficiency 7;s
(because isentropic and polytropic efficiencies are almost identical for single stage analysis):

r-1
(}.’exit j r _1
Maximi _ l)inlet ‘
aximize 77, = ~——F0——. 1)
exit _1
T,

inlet

Blockage is perhaps one of the most critical quantities in stage design, as it causes reduction in the passage area
because of viscous effects. In the definition shown in Fig. 5, the blockage B is computed purely using the axial
velocity u instead of 17% :

J (Vhigh - min[Vhigh’ maX[VIaw: V]])dAx
I

Minimize B = , 2
fia4,
A
9 1 ’
here V,,,, = —V .. +—V_ ., 3
where high 1 O max 1 0 min (a)
and ¥, =EV- +-—2—V . (3b)

low 10 mi 10 max

The blockage is an estimation of the amount of low momentum mass flow in the vicinity of the hub and casing
endwalls, or the stage inefficiency. The blockage function is computed at the exit measurement station of each blade
row, and an arithmetic mean blockage is adopted as the objective function.

In addition to the above two objective functions, flow loss is also considered. In the optimization, the stage total
pressure loss is adopted as the third design objective:

P, P
Minimize Loss = —e——eit » 100 . “)
inlet

The loss is computed for the rotor using relative total pressure and the stator, respectively, and an arithmetic mean
loss is to be minimized.

Tip e

Blockage

Radius

Hub

Vjow Vhigh Vnnx
Axial Velocity

Figure 5. Blockage definition.
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2. Constraint Functions
The following constraint functions are considered to maintain the flow and operating conditions similar to those

of the baseline geometry; stage loading L, mass flow rate 71, stage exit whirl angle £, and pressure ratio PR:

cPAT
L= U (5)
m=pVA, (6)
p=tan™" (1) , )

u

P
PR=—=% 8
P (®)

inlet

The mass flow rate and pressure ratio are used to ensure that the new design is operating at a similar location in the
compressor characteristic to the baseline design. The stage exit whirl angle is controlled to prevent large flow
incidence in the blade rows downstream and to maintain sensible matching between stages.

D. Optimization

ARMOGA is used to solve the present multiobjective constrained optimization problem with the aim of
identifying trade-offs between objectives efficiently. The characteristic of ARMOGA is the introduction of range
adaptation as described in Fig. 6. Within the range adaptation routine held every M generations, a new search region
is determined according to average and standard deviation of selected better solutions. New individuals are then
randomly generated in the new design space. Optimization continues and genetic operators are applied to the
improved design range. In ARMOGA, each new parent set is selected from the present population and the previous
parent set by CHC®' (so-called best-N selection) and Stochastic Universal Sampling® according to fitness values
determined by a constraint-handling Pareto ranking method®® with fitness sharing®. In this optimization, Simulated
Binary Crossover with a probability of 100% and Polynomial Mutation with a probability of 10% are adopted. To
prevent searching similar regions, the crossover probability is set to high. '

The three objective-functions (maximize isentropic efficiency and minimize mean blockage and mean total
pressure loss) are normalized with the values of baseline geometry as follows:

F, —F,
F: design basexloo' (9)

base

Ideally, the four constraint functions should be treated as equality constraints to maintain the baseline condition,
However, as it is difficult to treat the constraints as equality function during optimization, a threshold for each
constraint is defined and then feasible designs are those that satisfy all the constraints within these thresholds:

Giin — G
G - design base % 1 00 , (1 O)
Gbase
G'=abs(G) < threshold . ’ (11)
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To find good designs which have the required constraint values taken from the baseline geometry, the threshold
value decreases as the optimization proceeds. This process is implemented in ARMOGA by making use of the
feature that ARMOGA collects all the designs computed previously during the range adaptation routine. In order to
search for feasible solutions effectively, constrained-Pareto ranking is adopted. In addition, several infeasible
designs which violate each constraint slightly are preserved in an archive for generating new design spaces during
range adaptation. This enables the process to create more new designs near the border between feasible and
infeasible space.

Here, the initial population is generated based on three different strategies: uniform random generation, normal-
distributed random generation, and perturbation generation. Uniform random generation can produce design
candidates randomly across the whole design space. As the baseline geometry is already well-designed and the
constraints based on the baseline geometry have to be satisfied, designs having similar geometry to the baseline are
assumed to be more practical. Normal-distributed random number sampling produces design variables nearer the
baseline with higher probabilities. In addition, perturbation generation is used: all design variables are set to values
of the baseline initially, and perturbation is added to each design variable with a probability of 50%. In this
optimization, 16 individuals are used at each generation, and the initial population is composed of four uniformly
random generated designs, six normal-distributed random designs and six perturbation generated designs. This
relatively small population is adopted because of the expense of design evaluation.

Initialization

Evaluation

every M generations

CONnsSIraints

Range Adaptatoin
Re-initialization

Figure 6. Flowchart of ARMOGA with constraint updating process.

E. Validation of Mesh Density and Part-Converged Computation

As each evaluation is time-consuming, it is reasonable to examine the effects of using a coarse mesh instead of a
fine mesh. For the validation of mesh density, the baseline geometry is computed using the original fine mesh (967K
nodes) and a coarse mesh (608K nodes). The values are normalized by the original mesh values and summarized in
Table 2. The coarse mesh values are within 2%, and thus the coarse mesh reasonably matches the original one.

A rotated geometry having all SKEW values set at -3.0 degrees for the rotor and 3.0 degrees for the stator was
also chosen for comparison between fine and coarse meshes. The aerodynamic performance of the geometry
obtained from these meshes has been normalized based on the corresponding results for the baseline geometry. The
results show a similar trend to the original mesh as indicated in Table 2.

In addition to the use of a coarse mesh, part-converged solutions may be used for rapid convergence studies. The
initial flowfield is set to the converged flowfield of the baseline geometry, and 200 multigrid iterations used. The
resulting data is also given in the table. As the values of the part-converged solution are almost the same as the fully-
converged solution, the part-converged solution with 200 iterations is used here for evaluations during optimization.
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Table 2. Comparison of normalized aerodynamic performance.

Baseline Rotated geometry

Mesh ) original coarse original coarse coarse
Convergence full full full full part
Isentropic Efficiency 0 -0.26 0.055 0.093 0.081
Blockage 0 1.71 5.63 5.81 5.90
Total Pressure Loss 0 1.96 3.17 2.84 2.93
Loading 0 -0.26 71.71 71.72 71.72
Mass Flow Rate 0 -0.53 5.88 5.92 5.91
Flow Angle 0 -0.38 -16.70 -16.61 -16.62
Pressure Ratio 0 -0.0088 0.062 0.063 0.062

IV. Optimization

A. Fixed numbers of rotor and stator blades

First of all, an optimization is conducted with the same number of rotor and stator blades as the datum geometry
(75 rotor blades and 96 stator blades). The three parameters (DELT, XCEN, SKEW) are chosen here to control the
shape. To represent the radial profiles efficiently, the parameter radial distributions are defined by the following

cubic function:
y=a+bx+cx +dx’ (12)

Five control points are set along the radial direction (0, 25, 50, 75, and 100%)) to represent the radial variation by this
cubic function with least-square fitting to the chosen control points, as shown in Fig. 7. All values at the five control
points can be specified for XCEN and SKEW. As the value at the tip (hub for stator) is fixed to 0 for parameter
DELT, for this case only four values out of the five control points can be changed. Therefore, 14 design variables
are used to define each blade shape, i.e., a single stage shape is defined by 28 design variables. The ranges of the
design variables are detailed in Table 3. The perturbation size of XCEN is normalized based on the chord length of
the baseline blade at mid-spanwise location.

Constrained three-objective optimization has been conducted using ARMOGA for 20 generations. It took nearly
five hours to evaluate each design using a node, and 16 different geometries at one generation were computed in
parallel using the available Grid resources. In all, 320 different geometries were evaluated during the optimization.
As already noted, the equality-constraint functions are treated by decreasing the thresholds on the inequality
constraints as the optimization proceeds. The distributions of constraint according to the design number that has
been successfully evaluated are plotted in Fig. 8. The final thresholds are also shown in the figure. The figure shows
that the constraint values are widely spread and this illustrates the difficulty in obtaining similar values for all
constraints at the same time when using ARMOGA. Actually, by analyzing all computed designs, only eight designs
satisfy all four constraints.

The three objective-function values for all the solutions are projected onto the two-dimensional plot in Fig. 9.
The direction of the optimization is drawn as an arrow. As the values are normalized by the baseline geometry, the
dotted lines that cross the point (0,0) in the figure indicate the baseline value. From the figure, it may be seen that
the improvement in efficiency lies within 1 % even when unfeasible solutions are included. Simple trade-offs are
observed between the objectives. To investigate the relationship between constraint functions, the relationships of
flow angle and pressure ratio against mass flow rate are presented in Fig. 10. When a design satisfies the required
mass flow rate, the design can easily satisfy the pressure ratio constraint, because their trends are quite similar. On
the other hand, it seems quite hard to obtain a design that satisfies the flow angle constraint even though the design
satisfies the mass flow rate because the flow angle distribution is widely spread.

Based on the final constraint thresholds, seven non-dominated solutions have been obtained. The solutions are
also plotted in Fig. 9. The trade-offs in the non-dominated solutions are clearly observed, except for the relationship
between efficiency and loss. The relationship between efficiency and loss in the non-dominated solutions are
roughly linear, and it seems that both performances can be improved at the same time. Three non-dominated
solutions are selected for comparison and their performances are summarized in Table 4. S1 has maximum
efficiency as well as minimum loss, and S2 has minimum blockage. The non-dominated solution S3 that is superior
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to the baseline geometry in all three objective functions is also chosen for comparison and the shapes of these

designs with their pressure surfaces are presented in Fig. 11.

As flow angle and mass flow rate are not in a simple relationship, either the mass flow rate or the flow angle of
the selected three solutions has more than 1% difference compared to the baseline geometry, as described in Table 4.
In the table, in addition to the mean values of blockage and loss, rotor and stator values are also noted. Regarding
total pressure loss, the loss caused at the stator increases. This indicates that the stator can be improved or that the
rotor’s contribution to performance is higher than that of the stator. This is also true for blockage.

0.4
= Control points
—— Cubic function
0.3 ] 4

e
N

Perturbation size
o

o

-0.10 1

02 04 08
Span position (%)
Figure 8. Radial distribution of perturbation.
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Figure 7. Constraint distributions according to design number.
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Figure 9. Objective-function space. All solutions are plotted.
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a) Mass flow rate and flow angle
Figure 10.  Selected constraint-function space. All solutions are plotted.
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(a) Baseline ) (b) SC3
Figure 11.  Baseline geometry and SC3 geometry with pressure surface.

Table 3. Upper and lower boundaries of design parameters.

Rotor Stator
Lower boundary | Upper boundary | Lower boundary | Upper boundary
XCEN (%) -5.35 5.35 -6.20 6.20
DELT (degree) -2.0 2.0 -2.0 2.0
SKEW (degree) -5.0 5.0 -5.0 5.0

Table 4. Comparison of normalized aerodynamic performance of selected non-dominated solutions.

SC1 SC2 SC3
Isentropic Efficiency 0.12 -0.66 0.080
Blockage (Rotor/Stator) 13.16 (-5.1/35.3) -9.42 (-11.9/0.08) -0.52 (-10.6/11.7)
Total Pressure Loss (Rotor/Stator) -4.25 (-8.2/3.0) 3.44 (3.0/4.2) -3.01 (-7.0/4.3)
Loading 0.13 0.21 -0.073
Mass Flow Rate 1.17 0.15 - 077
Flow Angle -0.10 -1.21 -1.30
Pressure Ratio 0.012 -0.0010 0.0069

B. Variable numbers of rotor and stator blades
In the previous optimization, the improvement in the efficiency was quite small. It is assumed that the following

two factors prevent increase in the efficiency: fixed number of blades, and the low freedom of the three-dimensional
shape definition using a cubic-spline function. Therefore, the PITCH parameter is introduced to change the numbers
of rotor and stator blades. In addition, instead of the cubic function, B-spline curvature is used to control the radial
distribution of the other three parameters (DELT, XCEN, SKEW). In the end, the total number of design variables is
then 30. The boundaries of the design variables are specified in Table. 5.

Table 5. Upper and lower boundaries of design parameters (blanket represents number of blades).

Rotor Stator
Lower boundary | Upper boundary | Lower boundary | Upper boundary
XCEN (%) -5.35 5.35 -6.20 6.20
DELT (degree) -2.0 2.0 -2.0 2.0
SKEW (degree) -5.0 5.0 -5.0 5.0
PITCH (radian) 0.069 (90) 0.1047 (60) 0.0537 (116) 0.0827 (76)
12
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Optimization using these variables has been conducted following exactly the same procedure and settings as
before using ARMOGA. The three objective-function values for all the solutions are projected onto the two-
dimensional plot in Fig. 12. As the figure shows, nearly 1.5% increase of the efficiency is accomplished in this
optimization. Figure 13 shows the relationship between the number of blades and the efficiency, and the mass flow
rate as well. From the figure, reduction in the number of blades tends to increase the efficiency. On the other hand, it
seems that reducing the number of blades does not affect the mass flow rate. Therefore, it is assumed that the
number of blades does not have a large effect on constraint values used in this study.

Based on the same final constraint thresholds as the former optimization, 14 designs satisfy all four constraints.
Within the feasible designs, there are four non-dominated solutions shown in Fig. 12. Three of these non-dominated
solutions are selected for comparison and their performances are summarized in Table 6. SV1 has maximum
efficiency, SV2 has minimum loss, and SV3 has minimum blockage. The non-dominated solutions SV1 and SV2 are
superior to the baseline geometry in all three objective functions. Here, the shapes of SV1 and datum designs with
pressure surface are presented in Fig. 14. The design SV1 will be a good candidate to increase the performance of
the current compressor in terms of aerodynamics at this flow condition.

n
(=
hmmmm e m e m e ]

W Solutions
@ Non-dominated solutions

Blockage
o

Efficiency

Loss
Loss

-2 -1 0 1 2
Efficiency Blockage

Figure 12.  Objective-function space. All solutions are plotted.
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Figure 13. Relationship between functions with number of blades of rotors and stators.

(a) Baseline (b) SV1
Figure 14. Baseline geometry and SV1 geometry with pressure surface.

Table 6. Comparison of normalized aerodynamic performance of selected non-dominated solutions.

SVi SV2 ) SV3
Isentropic Efficiency 0.71 0.44 -0.54
Blockage (Rotor/Stator) -6.10 -3.99 -11.64
Total Pressure Loss (Rotor/Stator) -5.59 -7.93 3.01
Stage Loading -0.15 -0.095 0.038
Mass Flow Rate 0.64 1.40 -0.36
Flow Angle 1.40 -0.93 0.86
Pressure Ratio 0.0090 0.016 -0.0039
Number of Blades (Rotor/Stator) 68/84 61/81 84/90
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C. Flow characteristics of the optimal and datum designs

As a compressor has to work at different conditions, it is desirable that the entire performance is reasonable.
Therefore, it is important to evaluate the profile of the performance at various mass flow rates. The optimal design
SV1 is analyzed here by changing the pressure profile at the stator exit. In Fig. 15, the efficiency and pressure ratio
of SV1 and datum designs are shown. The values are normalized based on the values at the design point of the
baseline geometry. Compared to the datum profile, SV1 shows reasonable profiles in terms of efficiency and
pressure ratio over different working conditions. Therefore, SV1 is a good candidate to replace the datum
configuration.

-—o— Baseline —a— SV1

—¢— Baselne —4—SV1

2 &
o £
= ]
&
<

AMass flow rate AMass flow rate

(a) Efficiency (b) Pressure ratio

Figure 15.  Profiles of flow characteristics according to different mass flow rates.

D. Full-stage calculations of the optimal and datum designs

The optimal design SV1 has been obtained by single-stage compressor optimization. However, the compressor is
originally composed of four stages with identical rotors and stators. It is therefore necessary to validate the
performance of the optimal design in the full-stage configuration. Here, in addition to the isentropic efficiency, the
following polytropic efficiency is calculated for comparison because the polytropic efficiency is more reliable for a
multi-stage case:

- P
7 1 ]xvnlet . (13)

The boundary conditions of the current full-stage calculations are specified by throughflow analysis. The pressure
contours at mid-location of both SV1 and the baseline geometries are shown in Fig. 16. It is observed that both
pressure fields are quite similar. The isentropic and polytropic efficiencies of SV1 normalized by the baseline
geometry are described in Table 7. Although 0.7% increase of efficiency is obtained in the single-stage calculation,
a slightly reduces 0.53% increase is confirmed in the multi-stage calculation. It is concluded that the improvement in
the efficiency of the single-stage optimization contributes to the increase in the efficiency of entire full-stage design.
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(a) Baseline

(b) SV1
Figure 16.  Baseline geometry and SV1 geometry with pressure surface.

Table 7. Comparison of normalized isentropic and polytropic efficiencies of SV1
for single-stage and four-stage computations.

Single stage Four stages
Alsentropic Efficiency +0.709 +0.535
APolytropic Efficiency +0.699 +0.529

V. Conclusion

Two constrained three-objective optimizations of a compressor stage have been conducted using ARMOGA and
a Grid-enabled environment. Equality constraints to satisfy the aerodynamic performance and flow conditions of the
baseline geometry were treated as tight pairs of inequality constraints by reducing the constraint thresholds as the
optimization advanced. The first optimization has been conducted assuming a constant number of blades, however,
the resulting improvement in efficiency was quite low. The second optimization has been conducted with the aim of
increasing efficiency by after changing the number of blades. This enabled the search to find better designs that
satisfy all four constraints considered. The optimal design’s flow profile was evaluated over different working
conditions, and it showed a reasonable profile comparable to the datum geometry. Finally, the optimal design was
analyzed using a four-stage calculation. Although the size of the increase in efficiency in the multi-stage
computation was slightly reduced compared to ‘that in the single-stage computation, the improvement in efficiency
was confirmed. The following observations are obtained throughout this study. The number of blades has an effect
on the efficiency, but its effect on the aerodynamic constraints is not large. Single-stage optimization is useful to
improve the performance of a full-stage compressor, but it cannot evaluate the precise improvement of the full-stage
computation. ARMOGA can efficiently explore a large design space having tight constraints.
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