A Neurofuzzy Network Structure for Modelling and State Estimation of Unknown Nonlinear Systems
A Neurofuzzy Network Structure for Modelling and State Estimation of Unknown Nonlinear Systems
A Fuzzy logic system has been shown to be able to arbitrarily approximate any nonlinear function and has been successfully applied to system modelling. The functional rule fuzzy system enables the input-output relation of the fuzzy logic system to be analysed. B-spline basis functions have many desirable numerical properties and as such can be used as membership functions of fuzzy system. This paper analyses the input-output relation of a fuzzy system with a functional rule base and B-spline basis functions as membership functions; constructing a neurofuzzy network for systems representation in which the training algorithm for this network structure is very simple since the network is linear in the weights. It is also desired to merge the neural network identification technique and the Kalman filter to achieve optimal adaptive filtering and prediction for unknown but observable nonlinear processes. In this paper, the derived neurofuzzy network is applied to state estimation in which the system model identified is converted to its equivalent state-space representation with which a Kalman filter is applied to perform state estimation. Two approaches that combine the neurofuzzy modelling and the Kalman filter algorithm, the indirect method and direct method, are presented. A simulated example is also given to illustrate the approaches based on real data.
335-345
Wu, Z.Q.
fc163085-376c-4f78-9e5a-77c8bc5038ad
Harris, C.J.
c4fd3763-7b3f-4db1-9ca3-5501080f797a
1997
Wu, Z.Q.
fc163085-376c-4f78-9e5a-77c8bc5038ad
Harris, C.J.
c4fd3763-7b3f-4db1-9ca3-5501080f797a
Wu, Z.Q. and Harris, C.J.
(1997)
A Neurofuzzy Network Structure for Modelling and State Estimation of Unknown Nonlinear Systems.
International Journal of Systems Science, 28 (4), .
Abstract
A Fuzzy logic system has been shown to be able to arbitrarily approximate any nonlinear function and has been successfully applied to system modelling. The functional rule fuzzy system enables the input-output relation of the fuzzy logic system to be analysed. B-spline basis functions have many desirable numerical properties and as such can be used as membership functions of fuzzy system. This paper analyses the input-output relation of a fuzzy system with a functional rule base and B-spline basis functions as membership functions; constructing a neurofuzzy network for systems representation in which the training algorithm for this network structure is very simple since the network is linear in the weights. It is also desired to merge the neural network identification technique and the Kalman filter to achieve optimal adaptive filtering and prediction for unknown but observable nonlinear processes. In this paper, the derived neurofuzzy network is applied to state estimation in which the system model identified is converted to its equivalent state-space representation with which a Kalman filter is applied to perform state estimation. Two approaches that combine the neurofuzzy modelling and the Kalman filter algorithm, the indirect method and direct method, are presented. A simulated example is also given to illustrate the approaches based on real data.
This record has no associated files available for download.
More information
Published date: 1997
Organisations:
Southampton Wireless Group
Identifiers
Local EPrints ID: 250009
URI: http://eprints.soton.ac.uk/id/eprint/250009
ISSN: 0020-7721
PURE UUID: 4fd213b2-066b-4110-85e1-84e17504f632
Catalogue record
Date deposited: 04 May 1999
Last modified: 07 Jan 2022 21:08
Export record
Contributors
Author:
Z.Q. Wu
Author:
C.J. Harris
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics