The University of Southampton
University of Southampton Institutional Repository

Primitive extraction via gathering evidence of global parameterised models

Primitive extraction via gathering evidence of global parameterised models
Primitive extraction via gathering evidence of global parameterised models
The extraction of geometric primitives from images is a fundamental task in computer vision. The objective of shape extraction is to find the position and recognise descriptive features of objects (such as size and rotation) for scene analysis and interpretation. The Hough transform is an established technique for extracting geometric shapes based on the duality definition of the points on a curve and their parameters. This technique has been developed for extracting simple geometric shapes such as lines, circles and ellipses as well as arbitrary shapes represented in a non-analytically tabular form. The main drawback of the Hough transform technique is the computational requirement which has an exponential growth of memory space and processing time as the number of parameters used to represent a primitive increases. For this reason most of the research on the Hough transform has focused on reducing the computational burden for extracting simple geometric shapes. This thesis presents two novel techniques based on the Hough transform approach, one for ellipse extraction and the other for arbitrary shape extraction. The ellipse extraction technique confronts the primary problems of the Hough transform, namely the storage and computational load, by considering the angular changes in the position vector function of the points in an ellipse. These changes are expressed in terms of sets of points and gradient direction to obtain simplified mappings which split the five-dimensional parameter space required for ellipse extraction into two two-dimensional and one one-dimensional spaces. The new technique for arbitrary shape extraction uses an analytic representation of arbitrary shapes. This representation extends the applicability of the Hough transform from lines and quadratic forms, such as circles and ellipses, to arbitrary shapes avoiding the discretisation problems inherent in current (tabular) approaches. The analytic representation of shapes is based on the Fourier expansion of a curve and the extraction process is formulated by including this representation in a general novel definition of the Hough transform. In the development of this technique some strategies of parameter reduction are implemented and evaluated.
University of Southampton
Aguado, A.S.
ad7e99c5-47ab-4f88-849a-c6e6d77e4200
Aguado, A.S.
ad7e99c5-47ab-4f88-849a-c6e6d77e4200
Nixon, M.S.
2b5b9804-5a81-462a-82e6-92ee5fa74e12

Aguado, A.S. (1996) Primitive extraction via gathering evidence of global parameterised models. University of Southampton, : University of Southampton, Doctoral Thesis.

Record type: Thesis (Doctoral)

Abstract

The extraction of geometric primitives from images is a fundamental task in computer vision. The objective of shape extraction is to find the position and recognise descriptive features of objects (such as size and rotation) for scene analysis and interpretation. The Hough transform is an established technique for extracting geometric shapes based on the duality definition of the points on a curve and their parameters. This technique has been developed for extracting simple geometric shapes such as lines, circles and ellipses as well as arbitrary shapes represented in a non-analytically tabular form. The main drawback of the Hough transform technique is the computational requirement which has an exponential growth of memory space and processing time as the number of parameters used to represent a primitive increases. For this reason most of the research on the Hough transform has focused on reducing the computational burden for extracting simple geometric shapes. This thesis presents two novel techniques based on the Hough transform approach, one for ellipse extraction and the other for arbitrary shape extraction. The ellipse extraction technique confronts the primary problems of the Hough transform, namely the storage and computational load, by considering the angular changes in the position vector function of the points in an ellipse. These changes are expressed in terms of sets of points and gradient direction to obtain simplified mappings which split the five-dimensional parameter space required for ellipse extraction into two two-dimensional and one one-dimensional spaces. The new technique for arbitrary shape extraction uses an analytic representation of arbitrary shapes. This representation extends the applicability of the Hough transform from lines and quadratic forms, such as circles and ellipses, to arbitrary shapes avoiding the discretisation problems inherent in current (tabular) approaches. The analytic representation of shapes is based on the Fourier expansion of a curve and the extraction process is formulated by including this representation in a general novel definition of the Hough transform. In the development of this technique some strategies of parameter reduction are implemented and evaluated.

This record has no associated files available for download.

More information

Published date: 1996
Organisations: University of Southampton, Southampton Wireless Group

Identifiers

Local EPrints ID: 250023
URI: http://eprints.soton.ac.uk/id/eprint/250023
PURE UUID: c0207bce-bd0d-4862-9d59-cff98a4cb0e4
ORCID for M.S. Nixon: ORCID iD orcid.org/0000-0002-9174-5934

Catalogue record

Date deposited: 04 May 1999
Last modified: 11 Dec 2021 02:38

Export record

Contributors

Author: A.S. Aguado
Thesis advisor: M.S. Nixon ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×