The University of Southampton
University of Southampton Institutional Repository

Neurofuzzy modelling approaches in system identification

Neurofuzzy modelling approaches in system identification
Neurofuzzy modelling approaches in system identification
System identification is the task of constructing representative models of processes and has become an invaluable tool in many different areas of science and engineering. Due to the inherent complexity of many real world systems the application of traditional techniques is limited. In such instances more sophisticated (so called intelligent) modelling approaches are required. Neurofuzzy modelling is one such technique, which by integrating the attributes of fuzzy systems and neural networks is ideally suited to system identification. This attractive paradigm combines the well established learning techniques of a particular form of neural network i.e. generalised linear models with the transparent knowledge representation of fuzzy systems, thus producing models which possess the ability to learn from real world observations and whose behaviour can be described naturally as a series of linguistic humanly understandable rules. Unfortunately, the application of these systems is limited to low dimensional problems for which good quality expert knowledge and data are available. The work described in this thesis addresses this fundamental problem with neurofuzzy modelling, as a result algorithms which are less sensitive to the quality of the a priori knowledge and empirical data are developed. The true modelling capabilities of any strategy is heavily reliant on the model's structure, and hence an important (arguably the most important) task is structure identification. Also, due to the curse of dimensionality, in high dimensional problems the size of conventional neurofuzzy models gets prohibitively large. These issues are tackled by the development of automatic neurofuzzy model identification algorithms, which exploit the available expert knowledge and empirical data. To alleviate problems associated with the curse of dimensionality, aid model generalisation and enhance model transparency, parsimonious models are identified. This is achieved by the application of additive and multiplicative neurofuzzy models which exploit structural redundancies found in conventional systems. The developed construction algorithms successfully identify parsimonious models, but as a result of noisy and poorly distributed empirical data, these models can still generalise inadequately. This problem is addressed by the application of Bayesian inferencing techniques; a form of regularisation. Smooth model outputs are assumed and superfluous model parameters are controlled, sufficiently aiding model generalisation and transparency, and data interpolation and extrapolation. By exploiting the structural decomposition of the identified neurofuzzy models, an efficient local method of regularisation is developed. All the methods introduced in this thesis are illustrated on many different examples, including simulated time series, complex functional equations, and multi-dimensional dynamical systems. For many of these problems conventional neurofuzzy modelling is unsuitable, and the developed techniques have extended the range of problems to which neurofuzzy modelling can successfully be applied.
University of Southampton
Bossley, K.M.
de1a2979-b9e9-481e-af09-0b4887f0f360
Bossley, K.M.
de1a2979-b9e9-481e-af09-0b4887f0f360
Harris, C.J.
c4fd3763-7b3f-4db1-9ca3-5501080f797a

Bossley, K.M. (1997) Neurofuzzy modelling approaches in system identification. University of Southampton, : University of Southampton, Doctoral Thesis.

Record type: Thesis (Doctoral)

Abstract

System identification is the task of constructing representative models of processes and has become an invaluable tool in many different areas of science and engineering. Due to the inherent complexity of many real world systems the application of traditional techniques is limited. In such instances more sophisticated (so called intelligent) modelling approaches are required. Neurofuzzy modelling is one such technique, which by integrating the attributes of fuzzy systems and neural networks is ideally suited to system identification. This attractive paradigm combines the well established learning techniques of a particular form of neural network i.e. generalised linear models with the transparent knowledge representation of fuzzy systems, thus producing models which possess the ability to learn from real world observations and whose behaviour can be described naturally as a series of linguistic humanly understandable rules. Unfortunately, the application of these systems is limited to low dimensional problems for which good quality expert knowledge and data are available. The work described in this thesis addresses this fundamental problem with neurofuzzy modelling, as a result algorithms which are less sensitive to the quality of the a priori knowledge and empirical data are developed. The true modelling capabilities of any strategy is heavily reliant on the model's structure, and hence an important (arguably the most important) task is structure identification. Also, due to the curse of dimensionality, in high dimensional problems the size of conventional neurofuzzy models gets prohibitively large. These issues are tackled by the development of automatic neurofuzzy model identification algorithms, which exploit the available expert knowledge and empirical data. To alleviate problems associated with the curse of dimensionality, aid model generalisation and enhance model transparency, parsimonious models are identified. This is achieved by the application of additive and multiplicative neurofuzzy models which exploit structural redundancies found in conventional systems. The developed construction algorithms successfully identify parsimonious models, but as a result of noisy and poorly distributed empirical data, these models can still generalise inadequately. This problem is addressed by the application of Bayesian inferencing techniques; a form of regularisation. Smooth model outputs are assumed and superfluous model parameters are controlled, sufficiently aiding model generalisation and transparency, and data interpolation and extrapolation. By exploiting the structural decomposition of the identified neurofuzzy models, an efficient local method of regularisation is developed. All the methods introduced in this thesis are illustrated on many different examples, including simulated time series, complex functional equations, and multi-dimensional dynamical systems. For many of these problems conventional neurofuzzy modelling is unsuitable, and the developed techniques have extended the range of problems to which neurofuzzy modelling can successfully be applied.

This record has no associated files available for download.

More information

Published date: 1997
Organisations: University of Southampton, Southampton Wireless Group

Identifiers

Local EPrints ID: 250027
URI: http://eprints.soton.ac.uk/id/eprint/250027
PURE UUID: 8a5a769e-3982-4c0b-aadb-6e7ca618e3c9

Catalogue record

Date deposited: 04 May 1999
Last modified: 10 Dec 2021 20:06

Export record

Contributors

Author: K.M. Bossley
Thesis advisor: C.J. Harris

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×