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Biased Motion-Adaptive
Temporal Filtering for
Speckle Reduction in Echocardiography

Adrian N. Evans* and Mark S. Nixon

Abstract— This paper describes a new fully motion-adaptive
spatio-temporal filtering technique to reduce the speckle in ultra-
sound images. The advantages of this approach are demonstrated
in echocardiographic boundary detection and in comparison with
other techniques. The first stage of many automated echocardio-
graphic image interpretation schemes is filtering to reduce the
amount of speckle noise. We show how the two-dimensional least
mean squares (TDLMS) filter can be configured as a motion-
compensated filter for a time sequence of ultrasound images that
eliminates the blurring associated with direct averaging. For an
image corrupted by multiplicative speckle noise, the mode of
the intensity distribution approximates the maximum likelihood
estimator. In consequence, the temporal filter’s output is biased
towards the mode from the mean, using information contained
within the speckle itself. A new adaptive algorithm for controlling
the filter’s convergence is also included. To evaluate performance,
application to simulated, phantom, and an in vivo test sequence
of the carotid artery are considered in comparison with other
techniques. The effect of filtering on edges is of great importance,
as these are used by subsequent image interpretation schemes.
Quantitative measurements demonstrate the effectiveness of the
Biased TDLMS filter, for both noise reduction and edge preser-
vation. Echocardiographic images have a high noise content and
suffer from poor contrast. Despite this challenging environment,
the Biased TDLMS filter is shown to produce images that are
better inputs for subsequent feature extraction. The benefits
for echocardiographic images are highlighted by considering the
problems of mitral valve analysis and extraction of the left atrium
boundary.

I. INTRODUCTION

LTRASOUND (US) is a commonly used modality for
cardiac imaging since it is noninvasive and real-time.

- However, its inherently poor image quality has consistently
hampered attempts to automatically evaluate the cardiac func-
tion through spatial analysis of the left ventricular endocar-
dial and epicardial boundaries in two-dimensional echocar-
diographic images. Even with the advent of transesophageal
echocardiography, which improves image quality, difficulties
still exist due to low spatial resolution, high speckle content,
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and frequently discontinuous reflections from the myocardium
boundaries.

Many techniques have been proposed to automatically in- .
terpret anatomical boundaries in echocardiographic images,
with the motivation being to remove the requirement for
laborious manual tracing of contours which is often prone to
error. Application of simple edge detection algorithms do not
produce satisfactory results and must be augmented by further
image interpretation. Echocardiographic boundary detection
schemes generally comprise of three main stages: smoothing,
contour extraction, and grouping. The first two stages attempt
to produce a faithful representation of the true edge points
in the image. The final step is the identification of a single,
smooth contour which corresponds to the desired anatomical
boundary. Han et al. have applied a knowledge-based approach
[1] to aid these processes while Chou et al. [2] have used
relaxation to identify the epicardial boundary. Radial searching
is often used to reduce the edge detection problem from two
dimensions to one [3]. Other high-level techniques that have
been used for automated or semi-automated echocardiographic
boundary detection include simulated annealing [4], mathe-
matical morphology [5], fuzzy reasoning [6] and optical flow
[71; these are often computationally expensive and reflect the
problem’s complexity.

While much research effort has been dedicated to the
edge detection and subsequent grouping tasks, smoothing
the echocardiographic image to reduce speckle has received
relatively little attention. This is surprising as many proposed -
techniques seek to use higher level knowledge to refine and
augment the results of initial edge detection operators [8], [6],
[4] and better initial boundaries would therefore reduce the
constraints placed upon subsequent processes. Massay et al.
{9] have applied an adaptive filter based on that of Bamber
and Daft [10] to a single frame of echocardiographic data and
studied the effect of reducing speckle on the definition and
measurement of anatomical boundaries. To overcome the low
quality of a single echocardiographic frame, compared with
many noncardiac applications, speckle suppression schemes
proposed for echocardiography often seek to incorporate tem-
poral information. This contrasts with US images of other
anatomical targets where advanced adaptive, single-image
filters have been developed, that can accommodate the wide
variation in image statistics.

Freidland and Adam included temporal information from
adjacent frames in a simulated annealing method for ventricu-
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lar cavity [4] and Zwehl ez al. [11] temporally averaged three
frames, weighting the central frame by two compared with
the weighting for the outer frames, before applying a spatial
filter. Neither method can reduce speckle with high temporal
correlation since both techniques only consider a sequence
of three frames. The optical flow method of Mailloux et al.
[7] produces information of image movement over time but
requires input images with a smooth spatial derivative; this is
achieved by applying a 15 x 15 mean filter to each frame.
Alternatively, Klingler e al. [5] average the images from a
number of heart cycles and include a motion detection and
rejection algorithm, though further interaction is required to
confirm that the remaining frames exhibit no apparent motion.

None of the above are true three-dimensional filter structures
and though they incorporate temporal information, they do
so in a limited way. Simply extending an established spatial
filter from two to three dimensions by including time has
been found to result in the blurring of the moving edges [12].
Here we adopt the philosophy that to successfully integrate
a larger number of frames into a three-dimensional filter
structure, a degree of motion adaptability must be introduced.
Exploiting temporal redundancy has particular application to
echocardiographic imaging, where the single frame image
quality is low.

The maximum likelihood (ML) estimator for an image
corrupted by speckle noise with unity expected value occurs at
the modal value of the intensity distribution. Unfortunately, the
mode can rarely be directly obtained from a small distribution,
which may be multi-modal or display a mode that does not
accurately reflect the underlying distribution. This is generally
the case for distributions defined by local regions of interest
and instead the mode must be estimated indirectly. The trun-
cated median filter has been used to extract the mode to reduce
speckle [13] but this was restricted to restoring single frames.

To translate this concept for image sequences, we take as
our starting point the two-dimensional least mean squares
(TDLMS) filter of Hadhoud and Thomas [14]. This has
properties which make it attractive for temporal filtering and
can reduce noise while preserving moving edges. Its function
is equivalent to a mean-based filter but, using statistics of the
speckle noise itself, the filter’s output can be adaptively modi-
fied from the mean toward the mode. Additionally we propose
an adaptive technique to control the filter’s convergence, to
increase smoothing in homogeneous regions while retaining
sharp edges at discontinuities.

The organization of this paper is as follows: Section II-A
demonstrates the mode as the ML estimator for speckle noise,
Section II-B shows how the TDLMS filter can be used as a
spatio-temporal filter to reduce speckle in US images, Section
II-C details how its performance can be improved by biasing
its output toward the mode, and Section II-D describes the
adaptive convergence control, In Section III the performance
of the filter is established in application to simulated, phantom,
and in vivo images of the carotid artery, in comparison with
standard averaging and the original TDLMS technique. Section
IV shows the advantages that this new technique can accrue
in application to improving the quality of echocardiographic
images. Conclusions are made in Section V.

II. SPATIO-TEMPORAL SPECKLE FILTERING

A. Speckle Filtering

Noise suppression is a fundamental stage of many automatic
contour exiraction schemes for echocardiographic images. This
is generally achieved by prefiltering, often with a relatively
low degree of complexity. To reduce speckle in single frame
US images, several advanced adaptive spatial filters have
been proposed. These exhibit increased edge preservation
while retaining a strong smoothing action in speckle affected
regions. The adaptive Kalman filter of Castellini et al. [15]
used image statistics to improve speckle reduction. However,
the underlying Kalman filter theory assumptions, that the
noise is white and Gaussian with zero mean, are not valid
and the technique is restricted to one dimension; B-mode
images must be filtered on a line-by-line basis. Sun and
Venetsanpoulos [16] have investigated adaptive noise filtering
and edge detection schemes for several noise distributions
using a minimum mean square error criteria, though only
additive noise was considered. Adaptive smoothing of images
with signal-dependent noise using a nonstationary mean non-
stationary variance model has been proposed by Kuan et al.
[17] and subsequently applied to speckle corrupted images
Kuan et al. [18]. This research developed a model for speckle
based on the physical process of coherent image formation and
used the correlation properties of speckle to further enhance
the filter’s performance. An alternative approach after Koo
and Park [19] used image statistics to find the maximum
homogeneous region surrounding each predetermined seed
region and then output the arithmetic mean of the region, a
strategy that was demonstrated to have good edge preserving
properties.

The adaptive weighted median filter of Loupas et al. [20]
and the unsharp masking filter of Bamber and Daft [10] (as
applied to echocardiographic images by Massay et al. [9]) use
local image statistics to vary the output between the original
value and the median or mean of a local region, respectively.
In both cases the ratio of the local mean to the local variance
conirols the output, tending toward the original image data
where the ratio is low, thus improving the performance of
the filter at discontinuities and providing the mean or median
values in homogeneous regions. Neither the median nor the
mean can be considered an optimal estimator for US images.
Modeling speckle as multiplicative Rayleigh distributed noise,
such that

z=m X n 1
where m is the signal component and n is the Rayleigh
distributed noise component with unity standard deviation,
yields a Rayleigh distributed observed signal, z, given by

z —z? :
) {0 otherwise

where ¢ is the variance. Kotropoulos et al. [21] have shown
the Ly sealed by a constant mean to be the ML estimator of the
original US B-mode image of a constant signal and more re-
cently have shown that it provides a close approximation to the
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ML estimator for the displayed US image [22]. Alternatively,
the maximum of the Rayleigh distribution provides a value
of the underlying signal, consistent with the ML estimator,
which by differentiation occurs at

op(z) I 2?
bz Vo7 P (ﬁ T @)

and this identifies a value for the corrupted signal of z = &
which maximizes the probability density function; this value is
the statistical mode. Displayed B-mode images are modified
so that their statistical properties no longer resemble those
of Rayleigh distributed noise, most noticeably by logarithmic
compression. The use of the mode as an estimator has the
advantage of being invariant to logarithmic compression but
may be effected by other image processing functions, used
by some scanners to produce the displayed B-mode image.
Crawford et al. [23] have investigated the characteristics
of ultrasound scanners, with respect to the performance of
adaptive speckle reduction, and presented an inverse transform
that returns the statistical properties of speckle regions to
a Rayleigh distribution for those scanners that exhibit a
nonlinear relationship between local variance and mean.

B. Spatio-Temporal Speckle Reduction

Although temporal redundancy is a rich source of infor-
mation, few dedicated fully three-dimensional spatio-temporal
filters have been proposed for US images. Many US scanners
offer the option of frame averaging to reduce the speckle
but this blurs moving edges. Mochizuki et al. [24] have
used a volume based three-dimensional median/median filter,
whose output is the median value of the medians from one-
dimensional lines of sight through the pixel of interest in a
reconstructed voxel-based image. Consideration for feature
movement has to date constrained the evolution of spatial
filters into the time dimension; typically only two or three
frames are used.

The TDLMS filter [14] is an extension of the adaptive
LMS algorithm to two dimensions and can be configured as a
multi-input, single-output motion-compensated filter for image
sequences. It has several properties that favor its application
to US images: it does not require any signal preparation or
alignment (providing the shift in feature position is within
the filter window), it produces a large signal to noise ratio
(SNR) improvement for low SNR inputs, and it is relatively
computationally inexpensive. The operation of the filter can
be explained with reference to Fig. 1 and by considering the
application of the filter to a time sequence of frames. At each
iteration the first frame in the sequence is used as the desired
response (d;) and the remaining frames form the reference
inputs. Each reference input is convolved with its weight
matrix to produce a value which is summed with those of
the other reference inputs, producing the output value and, by
subtraction from the desired response, the error signal. This is
repeated on a pixel by pixel basis. At the next iteration the first
frame is removed and replaced as the desired response by the
next frame in the sequence and a new frame is added. More
formally, if X;; is a square N x N moving window on the
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Fig. 1. Operation of the TDLMS filter.

image g; at the 4** input and iteration j, then, for a sequence of
k images, an input vector matrix X; of dimensions (k — 1)N
by N can be constructed as
Xj=[Xn Xj2 - Xjge-n]” @
where k is the number of images. A weight vector matrix W;

of the same dimensions can be defined similarly and the output
for image point, y;, is given by the inner product

y =W X; =X W )

This output y; is the new estimate at that point in the frame
1 = 0 and the new image is the result of this window operation
repeated across the entire image. The best result, y;, that the
TDLMS filter can achieve, in terms of SNR improvement,
is one comparable with that of direct-averaging; the TDLMS
output is equivalent to the mean of the filtered signal.

The error signal at each image point, e;, is formed by
subtracting the output response from the desired response d;,
which is the value of frame ¢ = 0 for that point, giving

ej=dj—yj=dj—XjT~Wj. (6)

Using the method of steepest descent for weight updating
and estimating the instantaneous gradient yields the Widrow-
Hoff LMS algorithm (Widrow et al. [25]) which derives
new weight values W;, by correcting the previous values
according to error signal

Wj+1 = Wj + 2U€ij @)
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where the convergence factor U controls both the speed of
convergence and the residual error.

C. Biasing the TDLMS Output

It has been shown in Section II-A that the mode, corre-
sponding to an approximation of an ML estimator, is a good
representation of the underlying image intensity for speckle
corrupted US images. Determining the modal value therefore
appears advantageous but unlike the mean or median values
it may not be statistically accurate for small populations;
consider the difficulty in deciding which of the 25 intensities
contained within a 5 x 5 window is the modal value, when
all may be different. To ascertain a close approximation to
the modal value an indirect method that uses properties of the
local amplitude histogram of speckle noise is proposed.

Recalling that the TDLMS filter’s output corresponds to the
mean, we develop this model by considering the expectations
of the mean and mode for a Rayleigh distribution [26]

(2
T
Mean = ¢/ —

2

The ratio of the mean to the mode is thus given by \/g . For
pure Rayleigh statistics, this provides a method of estimating
the mode, having found the mean with the TDLMS filter.
However, displayed US images conform to a Rayleigh model
only when the number of scattering sites within the imaging
resolution cell is large, resulting in fully developed speckle.
When the number of scatterers is small the probability density
function is modified; with less speckle the variance of the
distribution is reduced and the mode is closer to the mean.
When specular reflection occurs the mean, median, and mode
are congruent. The mode can therefore be approximated by
the mean/+/x/2 for fully developed speckle, by the mean
for specular reflection, and by somewhere between these two
extremes for partially developed speckle.

When biasing the TDLMS filter’s output to an appropriate
output value, a means of determining the amount of speckle
present is required. A fundamental measure that is widely used
to determine the local speckle content is the SNR given by
the ratio of the mean to the standard deviation of those pixels
contained within a local region

Mode = 0.

SNR =

Q| &

®

For fully developed speckle, the SNR has an expected value
of 1.91 [27]. As the amount of speckle decreases the SNR rises,
reaching infinity for specular reflection. To gauge the degree
of departure from fully developed speckle we form the SNR
difference by

SNR—-191 if SNR>1.91

SN R = {
it 0 otherwise ©
and adaptively bias the output of the TDLMS filter by
@) O
Ogpias = &WMS +k x SNRag (OTDLMS - —&,FMS>
2 e
(10)

where Orprms and Opyag are the outputs of the TDLMS filter
before and after biasing toward the mode, respectively. The
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Fig. 2. Theoretical distribution of median for Rayleigh population with
o = 30; output of TOLMS and Biased TDLMS filters for simulated Rayleigh
images with ¢ = 30.

constant k scales SN Rair to make the product k& x SN Rgg
lie between zero and unity, ensuring the output Ograg does
not exceed the mean in cases of high SNR. The output
Ogias for specular reflection equals Orprvs while for fully
developed speckle Opras equals Orprvs/+/7/2, hence the
mode, as required. A suitable value for k results in Opag
being slightly greater than the modal value and closer to the
value of the median. This is advantageous since at edges
the mode can be considered a harsh operator as the output
is essentially restricted to one of the bimodal population
peaks [28]. Indeed, by choosing an appropriate value of k,
the TDLMS filter’s output can be modified to match the
characteristics required by the application. Fig. 2 shows the
distributions of the outputs produced by the TDLMS and
Biased TDLMS filters, with various values of &, when filtering
a series of independent images of pure Rayleigh data with a
mode of 30 and a mean intensity level of 37.6. Also shown
is the theoretical distribution of the median of the Rayleigh
distribution, obtained using order statistics theory, as presented
in Appendix A. The TDLMS filter’s output is centered on the
known mean of the distribution, as anticipated. With k& = 0.35
the Biased TDLMS filter mimics the operation of a median
filter, with a distribution very close to that of the theoretical
median, and should therefore display the well-known edge
preserving and noise reduction characteristics. It should be
stressed that this is the median of a three-dimensional spatio-
temporal data cube, rather than simply the spatial median.
When £ = 0, the resulting population’s distribution is focused
on the mode and has thus elicited the ML estimator of the
underlying distribution.

The SNR is affected by other image components as well
as speckle; for example, a feature boundary will result in a
low local SNR. Biasing the output of the TDLMS filter will
still occur as the SNR measure cannot identify the cause of
its reduction, only the effect. In cases of low SNR, Ograg
is lowered to below the mean value, and the effect at edges
is to slightly reduce the output, introducing a form of edge
enhancement or crispening. This is illustrated in Fig. 3 for
a line of sight crossing the arterial wall in an in vivo scan
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of the carotid artery. Fig. 3(b) shows the SNR through the
artery/tissue interface and (c) displays the output of Direct
Average, TDLMS and Biased TDLMS filters. It can be seen
that the Biased TDLMS has produced a smooth, well localized
output, with steep edge gradients and it can be anticipated
that this will improve the performance of subsequent edge
detection algorithms. This profile is typical of that found at
edges within the image.

The potential advantages of the Biased TDLMS filter are
thus two-fold: improved speckle reduction by approximating
the ML estimator and clearer, stronger edges at (moving)
feature boundaries.

D. Adaptive Control of Convergence

The Widrow-Hoff weight update (7) has a convergence
factor U that can be optimized to produce satisfactory results.
Starting with an arbitrary initial weight vector, the algorithm
will converge and remain stable providing U lies between zero
and the reciprocal of the largest eigenvalue, Anyay, of the input
autocorrelation matrix [X;X7]

0<UK< . a1

)\max

This leaves many possible values for U, the choice of which
will affect both the rate of convergence and the residual error.

For image processing applications, the assumption that
images possess stationary spatial statistics is rarely valid.
Additionally, there is a strong correlation between successive
input image masks. Hadhoud and Thomas [14] have presented
an analysis of the TDLMS algorithm that takes into account
the nonstationarity and the correlation of input data, giving an
expression for the mean square error (MSE) as

Total MSE = Stationary MSE + Lag MSE

where the Stationary MSE is the same as for the stationary
inputs case and the Lag MSE is due to time variation in
the inputs. For nonstationary signals, it is not necessary that
the TDLMS algorithm converges to its optimum weights, but
it must be able to follow variations in the signal statistics.
A suitable value for the convergence factor will enable the
filter to track changes in the image data over time, preserving
edges, and to smooth noise in homogeneous areas. The local
mean of the intensity value also influences the convergence
but its effect can be minimized by ensuring the sum of the
weights is set equal to unity [29], SN, SO, W(i,j) = 1.
Though convergence is guaranteed for a wide range of initial
weight values, better initial values can reduce the number of
iterations required. For the implementations reported here, the
initial weight values were set equal to the reciprocal of the
number of image points used, simply given by the product of
the mask size and the number of frames. Careful selection of
initial weights is equivalent to starting the algorithm further
down the learning curve.

Alexander and Ragala [30] have used a visual fidelity
criteria to derive an optimal value for the convergence factor.
An important conclusion from their work and that of Hadhoud
and Thomas [14] is that satisfactory results can be produced
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Fig. 3. Effect of Biased TDLMS filter at edges (a) cross section through

arterial wall, (b) SNR along cross section and (c) output of direct averaging,
TDLMS and Biased TDLMS filters.

by using a value for the convergence factor that only approx-
imates the optimal value and they further demonstrated that
a wide variation in image statistics does not produce extreme
variations in the optimum value for the convergence factor;
acceptable results can be produced for the TDLMS filter for
an order of magnitude variation in the convergence factor.
For specific applications trial and error can be used to find a
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suitable value of U. Alternatively, self-optimization methods
do not require an a priori knowledge of the image statistics
and are invariant to image sequences.

Harris er al. [31] have proposed a variable step (V5)
algorithm that uses the gradient of the error surface to increase
or decrease the current value of U within a specified range of
Uiz t0 Upax. The method of individual parameter adaptation,
proposed by Mikhael et al. [32], used signal dependent con-
stants to individually adapt filter parameters, using a matrix
of convergence factors. Individual matrix elements adapt the
filter parameters that promise a larger reduction of the error
signal to a greater extent than those parameters offering a lesser
reduction, improving performance in nonstationary images.

None of these techniques obtain directly for speckle cor-
rupted US images; here we describe a signal-adaptive tech-
nique for convergence control that is used throughout this
paper. For US images, a convergence factor must be chosen
that can follow any movement present to preserve features
of interest that are moving in time. However, when there are
no feature boundaries present, this requirement is redundant,
and instead it is desirable to smooth the speckle corrupted re-
gion. In practice, images consist of regions containing feature
boundaries and uniform areas, and it therefore appears sensible
to choose a convergence factor U that is higher at feature
boundaries, to follow motion and preserve edges, and lower
in continuous regions to provide more smoothing. By adapting
U locally, the spatial variance of images can be compensated
for and a better result should ensue. The success of adaptive
methods in single image US filters argues well for such an
approach.

The question of how to adapt U to local image statistics
needs to be addressed. One measure that has been used to
characterize image regions locally is the SNR which is high
in uniform regions and low at discontinuities, precisely the
response that can be used to adaptively adjust U. As the Biased
TDLMS filter involves the local SNR at each image point, no
additional computational cost is incurred. The range of values
for U in which the filter will operate satisfactorily is finite and
defined by the upper and lower bounds, Upax and Uiy, of
[31]. The local SNR is calculated (8) at each point, using the
values within a moving window centered on that point from
each frame in the time sequence to calculate the mean and
standard deviation values. Including this in the weight update
equation produces an adaptive weight update equation

cx U

—SNRZ erj (12)
where ¢ is the constant of adaptivity such that Uy, <
g JG RZ < Umax. The affect of the SNR is controlled by the
power of the denominator; the square of the SNR produces
a suitable variation of the effective convergence factor within

the predefined range.

Wit1=W; +

E. Summary of New Technique

The conventional implementation of the TDLMS technique
is contained in (4), (5) and (6), producing output y;. Weight
updating is then carried out in accordance with (7). The Biased
TDLMS filter uses this value for y; in (10) (Orprms = ¥;)

to provide the new estimate, Opjag, at each point. Equation
(12) is used for adaptive weight updating, using the original
value of y; to ensure convergence to the mean value.

III. EXPERIMENTAL RESULTS

Within the framework of automatic image interpretation,
the filtering operation aims to improve the suitability of the
image for subsequent processes. The effect of filtering on the
position and contrast of the edges within the image is of critical
importance as it is this information that often provides the basis
for further analysis. Application of an edge detector, being
analogous to primary feature extraction, provides a means
of assessment. Our aims are therefore different from many
existing schemes for evaluating speckle reduction, since these
are usually concerned with the observable diagnostic value of
the resulting image. Application to simulated, phantom, and
in vivo sequences is used to establish the performance to the
Biased TDLMS filter in comparison with the standard TDLMS
filter and direct averaging. By using a simulated image, the
probability of speckle affecting an image point and the position
of edges can be tightly controlled but this is fundamentally
restricted as we are interested in what happens to real edges
in US images. The approach adopted here additionally uses
a circular plastic pipe in a water bath to provide a real B-
scan image, with all the limitations of the imaging system,
containing an object of known dimensions, allowing objective
measurements of the filters’ performance on edges. The final
test sequence is an in vivo scan of the carotid artery. A single
image from each test sequence is shown in Fig. 4, the in vivo
image has undergone logarithmic compression, as it is this
form that is familiar to radiologists.

Measures that have been proposed to determine the amount
of speckle present within an image include the contrast to
speckle ratio (CSR) of Patterson and Foster [33], introduced
as an attempt to quantify the ability of an observer to perceive
anechoic areas against a background of speckle. It measures
the image contrast of cylindrical voids in a random scattering
medium relative to the contrast fluctuation due to speckle and
is given by

Lo — Ty

(02 +02)"/*

k3

CSR = (13)

where Z; and o2, respectively, are the average signal value
and the variance inside the void and #, and &2 are those
outside the region. In addition to the CSR, local SNR measures
(8) can be used to measure the speckle reduction at discrete
locations in an image. In an homogeneous region the SNR
measures the amount of speckle whereas at a discontinuity
the local SNR indicates the degree of edge preservation, little
SNR improvement over that of the original, unfiliered image
being synonymous with no modification.

The results presented in the following sections used a kernel
size of 5 x 5. For single frame adaptive filters, the kernel size
relates to the size of the observed speckle cell. With spatio-
temporal filtering, the kernel is three dimensional and must
be large enough in spatial dimension to contain the interframe
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Fig. 4. Single images from test sequences (a) simulated, (b) phantom and (c) in vivo.
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Fig. 5. Edge detected simulated test sequence results: (a) direct averaging, (b) TDLMS, and (c) Biased TDLMS.

movement of features. All local SNR and CSR measurements
were taken using a.5 X 5 mask, matching the filter size.

A. Simulated Test Sequence

The simulated test sequence consisted of a series of eight
256 x 256 images of fully developed speckle containing a
central circular region of lower underlying intensity than the
background. In each frame the coordinates of this circle were
varied, producing motion from the upper left to lower right of
the image. The center coordinates for successive frames were
(128, 128), (130, 128), (130, 130), (132, 130), (132, 132),
(134, 132), (134, 134), and (136, 134), where (z = 0, y =
0) corresponded to the top left corner of the image. These
coordinates were chosen to isolate any artifacts introduced
by horizontal and vertical movement. To imitate a continuous
sequence these frames were recycled; at each iteration one
frame provides the desired response and the remainder formed
the reference inputs that were adaptively filtered.

The results produced by direct averaging, TDLMS, and
Biased filters for the simulated test sequence, after Canny
edge detection [34], are shown in Fig. 5. Application of an
edge detection stage allows observations on the influence of
filtering on edges to be assessed. In each case the threshold
was adjusted to produce the best result in terms of removing
spurious edge responses while preserving the feature boundary,
thus highlighting the relative strength of the true and false edge
points. Two aspects of these results are of particular interest:
speckle reduction and performance at edges. Inspection of
Fig. 5 reveals that the number of edge responses due to speckle

noise is similar for direct averaging and TDLMS filtering
and dramatically reduced by the Biased TDLMS filter; this is
confirmed by the total number of edge points found for each
image which are 12357, 12056, and 2929, respectively. Local
SNR measurements are 5.31 for direct averaging, 5.98 for
TDLMS and 8.68 for Biased TDLMS, with each value being
the average of the reading from 10 localities. For comparison
the SNR of an original single frame was 1.91, the expected
value for a Rayleigh distribution. As no anechoic regions exist
in these simulated images, the CSR is not an appropriate
measure.

The edge response to the circular disc can be divided into
two categories. In the lower left and upper right quadrants
of the disc the edges are regions where the edges present are
parallel to the direction of motion of the disc; here the response
is well defined and reasonably continuous, though the effect
of direct averaging has been to elongate and straighten the
edges. The upper left and lower right quadrants display edges
are normal to the direction of motion. Fig. 5(a) has broken,
insubstantial edges and also shows a multiple response to the
single edge present, caused by severe blurring. In contrast the
motion adaptive methods [Fig. 5(b) and(c)] show a clearer,
more continuous response.

B. Phantom Test Sequence

To obtain the phantom image sequence a section of hard
circular plastic pipe was moved slowly in a water bath, while
the transducer was held in a fixed position by a clamp, produc-
ing a series of images with interframe motion approximately
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Fig. 6. Edge detected phantom test sequence results: (a) direct averaging, (b) TDLMS, and (c) Biased TDLMS.

ranging between two and four pixels; the direction of motion
roughly followed an arc moving left and upwards. Mixing
fine particles of chalk with the water surrounding the phantom
introduced various degrees of partially developed speckle, with
the amount being dependent on the distribution of the chalk
particles. Eight frames from the time sequence were used for
direct averaging and to provide the ideal and reference inputs
for the motion-adaptive techniques at each iteration.

Using the response of the Canny edge detector on the
phantom sequence of images, the strength and positional
accuracy of the edges present can be evaluated. Evidence of
blurring is present in the right side of Fig. 6(a) where smearing
has resulted in longer, straighter edges that do not correspond
with the known structure of the phantom, but instead are a
result of the motion. Here, the inner and outer edges of the
phantom that are normal to the direction of motion have not
been well detected and at the bottom of the phantom the edges
are slightly elongated. This situation is ameliorated by the
TDLMS and Biased TDLMS filters.

We are interested in the number of edge points found that are
congruent with the known physical position of the edge points,
characterized by two concentric circles. By considering the
ratio of the number of edge points that match the ideal edge to
the total number of edge points a quantitative measure can be
obtained, row two of Table I. Also given is the improvement
upon the result from an original, unfiltered, single frame.
However, this measure is very precise and gives no credit
to those techniques which produce points that are close to, but
not exactly on, the ideal edge points. Accommodating this, a
match is said to occur if an edge point coincides with any of
the eight nearest neighbors of the ideal edge points, giving row
three of Table I. Row one of Table I gives the actual number
of edge points found; a reduction in this number accompanied
by an increase in the match ratios is analogous to the removal
of false edge points while retaining the true ones. The TDLMS
filter has found slightly fewer points than direct averaging but
of these a higher proportion correspond with the ideal points.
Better results for both exact and nearest neighbor matches have
been produced by the Biased TDLMS filter.

C. In Vivo Test Sequence

A sequence of in vivo scans of the carotid artery complete
the test set. In the in vivo scans motion is introduced by

TABLE I
RATIO OF NUMBER OF EDGE POINTS MATCHING IDEAL EDGE
TO TOTAL NUMBER OF EDGE POINTS FOR PHANTOM TEST OBJECT

Filter Type Direct Average | TDLMS | Biased TDLMS
Number of Edge 318 302 258
Points Found
Exact Match (%) 13.2 146 18.6
Improvement on Single Frame (dB) 3.33 4.18 6.30
Nearest Neighbour (%) 43.1 44.4 46.9
Improvement on Single Frame (dB) 2.80 3.05 3.53

two sources. First from movement of features within the
image, in this case due to pulsating blood flow and second,
during the scanning process the hand-held transducer moves
relative to the target, either interactively to obtain a more
suitable image or due to unavoidable movements, such as that
produced by respiration in echocardiographic imaging. Fig. 7
displays the resultant images produced by direct averaging,
TDLMS and Biased TDLMS filters; consistent with previous
results eight frames of image data have been used. For
interpretation, we again consider the speckle reduction and
edge preservation qualities. SNR and CSR measurements in
Table I gives measures for the images in Fig. 7. The SNR
was taken in 10 regions of interest considered to consist
predominantly of speckle and the readings averaged. For the
CSR the interior of the artery was used for the anechoic
region and the average of ten readings used to provide each
of the values used in (13). All techniques improve upon
the original image, this is apparent in the darker regions
of Fig. 7 which exhibit reduced speckle. Table II quantifies
the degree of improvement, for which the ranking order is:
Biased TDLMS technique (greatest); standard TDLMS; direct
averaging (smallest).

Although no ideal edge model exists, comparison of the
Canny edge detected in vivo images, Fig. 8, provides a means
of assessing the filters” performance. A smooth, continuous
edge response at the arterial wall bears testimony to the



EVANS AND NIXON: BIASED MOTION-ADAPTIVE TEMPORAL FILTERING FOR SPECKLE REDUCTION IN ECHOCARDIOGRAPHY 47

(@
Fig. 7. In vivo test sequence results: (a) direct averaging (b) TDLMS, and (c) Biased TDLMS.

TABLE 1II
MEeaN SNR (SD) anp CSR MEASUREMENTS FROM
10 SpaTIAL LOCATIONS WITHIN IN Vivo IMAGES

Filter Type Direct Average | TDLMS | Biased TDLMS
Mean SN R in Artery (o) 13.19(3.8) |19.26 (8.8)| 20.26 (8.3)
Improvement on Single Frame (dB) 5.87 9.15 9.59
Mean SN R in Speckle (o) 7.83 (2.6) 12.49 (6.8) 12.85 (6.7)
Improvement on Single Frame (dB) 4.69 8.75 9.00
CSR 4.80 6.34 6.58
Improvement on Single Frame (dB) 4.93 7.40 7.67

quality of the filter. The response of the Biased TDLMS
filter displays a well-defined arterial wall with less residual
clutter than standard TDLMS filter while direct averaging has
been unable to resolve the associated movement, producing a
broken, discontinuous response.

D. Results Summary

The advantages of the Biased TDLMS filter potentially
offers are two-fold. Firstly the speckle reduction performance
of the filter is enhanced slightly above that of the standard
TDLMS filter for both the simulated and in vivo test sequences.
Both temporal methods compare favorably in this respect with
direct averaging, the improvement in the standard TDLMS
filter resulting from the adaptive convergence control. The
other area of importance is the influence of filtering on the edge
points within the image. For the simulated image the motion-
adaptive ability of the temporal filters is demonstrated and an
objective assessment provided by the phantom test sequence.
Biased TDLMS filtering has been shown to quantitatively
produce the best results on feature boundaries, marking true
boundaries with good locational accuracy and without the blur-
ring associated with direct averaging. The smooth, continuous
boundaries exhibited by the edge detected filtered images of
the carotid artery confirm this point. Though these results
would be strengthened by a full series of more exhaustive

©

tests, they clearly indicate the potential advantages that the
Biased TDLMS filters confers to ultrasound images

IV. APPLICATION TO ECHOCARDIOGRAPHY

Automatic interpretation of echocardiographic images is
consistently limited by the low image quality. To demonstrate
the advantages of the Biased TDLMS filter we consider
the problem of mitral valve analysis and detection of the
left atrium boundary. We do not aim to produce an opti-
mum scheme but instead, by determining the benefits filtering
confers to a standard edge detector, to establish the image
improvement that is produced for any latter feature extraction
stage.

Fig. 9(a) is a parasternal long axis view of the left atrium
and mitral valve in early diastole, shown in the familiar
logarithmically compressed form. The valve leaflets are hard
to discern against the background and identification of the
hinge points is difficult. Biased TDLMS filtering has produced
the result in Fig. 9(c); although this image still exhibits low
contrast it provides a much better input for the Canny edge
detector as reflected in Fig. 9(f). Although speckle has been
much reduced in the Biased TDLMS result the border of the
mitral leaflets has not been dimensionally compromised and
is clearer than that of the original image. For comparison the
results produced by direct averaging are given in Fig. 9(b)
and (e). Direct averaging has been unable to accommodate
the feature movement and as a result multiple responses to a
single edge abound. Further, although the clarity of the valve
leaflets has been improved, because of the blurring there is
little confidence on the dimensional accuracy of the feature
boundaries.

A feature extraction technique for labeling the left atrium
wall is applied to the original and filtered images, to illustrate
the improvements afforded by the Biased TDLMS filter. For
this technique the left atrium is recorded during systole and
the Canny edge detector applied. Then a radial search from the
atrium’s center is undertaken; the first Canny edge response
found is marked as wall data. There are many possible
extensions to this scheme, such as using anatomical knowledge
to limit the search area, but the aim here is to show the benefits
of the filtering for even a simple feature extraction scheme.

The results of feature extraction are shown in Fig. 10. The
original image, Fig. 10(a), highlights many of the problems
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Fig. 8. Edge detected In Vivo Test Sequence results: (a) Direct averaging, (b) TDLMS; and (c) Biased TDLMS.
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Fig. 9. Mitral value results: (a) original, (b) direct averaging, (c) Biased TDLMS, (d) edge-detected original, (e) edge-detected direct averaging; and
(f) edge detected Biased TDLMS.

associated with this application; speckle is present in the center ~ both manual and automatic, for determining anatomical bound-
of the atrium and the atrium boundary is very fragmented aries and subsequent measurements. The advantages that may
giving a very poor result. Direct averaging [Fig. 10(b)] has result from using the Biased TDLMS filter in echocardiog-
removed some of the spurious edge points from inside the raphy have been shown and a full clinical appraisal is the
atrium and response at the atrium wall is more continuous subject of further research.
but still unsatisfactory. The feature extraction result from the
Biased TDLMS image, Fig. 10(c), shows an easily discernible
improvement, devoid of speckle in the atrium and with smooth,
well-connected edges at the atrium wall. Deviation from the A new technique for reducing the speckle of US images
boundary occurs mainly occurs as a result of missing edge has been proposed that, by incorporating temporal information,
data, a problem easily addressed by a more sophisticated has particular application to echocardiographic imaging where
technique, such as an active contour model. the quality of a single frame is low. Motion-adaptability has
This paper does not attempt to provide a clinical evaluation been used to improve upon extant techniques by enabling
of the new filter in comparison with other extant techniques, a greater amount of temporal information to be included

V. CONCLUSION
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(a)

within the filter structure without compromising the clarity
of feature boundaries. Other novel features of the filter are the
use of an adaptive convergence factor and the biasing of the
filter’s output toward the ML estimator for speckle noise. A
comprehensive results assessment shows the Biased TDLMS
filter to successfully reduce speckle while preserving the
anatomical boundaries of the original image. This assessment
shows a better result on simulated, phantom and in vivo
image sequences. Application of the Biased TDLMS filter to
echocardiographic images has demonstrated that despite the
low image contrast the results produced have high potential for
use as inputs for a further automated interpretation stage. The
application of a simple feature extraction technique reinforces
this point. Several areas of further work have been identified.
The first of these is a clinical comparison with other adaptive
speckle reduction methods, to fully establish the diagnostic
value of the Biased TDLMS filter in echocardiography. Inte-
gration of the filter with a computer vision method of detecting
left ventricular endocardial and epicardial boundaries would
provide a means of fully assessing the benefits that the Biased
TDLMS filter confers to echocardiography.

APPENDIX A
DISTRIBUTION OF MEDIAN FOR RAYLEIGH POPULATION

The theory of order statistics provides the necessary under-
lying theory and is used here to produce a probability density
function (pdf) for the median of a population that is Rayleigh
distributed.

If X1,Xs,---,X, are n independent variates, each with
cumulative distribution function (cdf) P(z), then the cdf of
the rth largest order statistic X,y can be given by F.(z)
(r =1,2,---,n) such that

F.(z) = PT{X(T) <z}

-2 (1)

Given the pdf of X;as p(z) = P'(z), the pdf of X(rys
denoted by f.(x), can be given by [22, ch. 2] as

1
+9) = B =D

z)[1 - P(2)]"™

P (@)1 — P(2)]""p(x)

©
Fig. 10. Feature extraction stage applied to mitral valve images: (a) Original; (b) Direct average; and (c) Biased TDLMS

where B(z,y) is the Euler Beta function expressed in terms
of the Gamma function as

I'(z)T
e = T
Thus, simplifying
1 _ n!
Br,n—r+1)  (r—1n-7r)
The median value occurs when 7 = (n+1)/2 and therefore
fmea(z) = (n—lwpr Ya)[1 ~ P(2)]""p(2).

All is that is now required is to substitute for p(z) and P(z)
the cdf and pdf of a Rayleigh population given by
2 2

exp( ¢ )andP(a:)—l— exp (

P($)=% 22)

and thus the distribution of the median for a Rayleigh pop-
ulation is

—a?
fmed(x) [1 — exp (?—2—)]("_1)/2

. nl
T

lexp( 5 |2 2

n! z —z? e
=[(—n;1—),]2—2[1 - eXP(—U—)]( R
[exp(2 5 )](”+1)/2
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