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ABSTRACT

This papercomparesthe useof multilayer perceptrons(MLPs) trainedon back-propagationandradial
basisfunction (RBF) neuralnetworks for the taskof text-dependentspeaker recognition. 10 classifier
networksweregeneratedfor eachof 20 malespeakersusingrandomly-generatedtrainingsetsconsisting
of 6 true speaker utterancesand19 falsespeaker utterances(onefrom eachof the falsespeakers). The
resultingnetworks werethenusedto assessverificationandidentificationperformancefor eachof the
network architectures.The resultsclearly indicatethat the choiceof true andfalsespeaker utterances
usedin the training sethasa crucial effect on the successof the classifier. The overall superiorityof
performancereportedin generalfor RBF networks over MLPs would appearto be dueto the reduced
sensitivity of theformerto apoortrainingsetwhencomparedto theperformanceof anMLP for thesame
trainingset.Whenbothnetworksarepresentedwith their ‘best’ trainingsets,however, theRBF network
still significantlyout-performstheMLP.

Keywords – speaker recognition,text-dependentrecognition,multilayer perceptrons,back-propagation,
radialbasisfunctions.

1. Introduction

For many yearsnow, therehasbeena growing interestin theuseof voiceasa meansof recognisingor confirminga
person’s identity. The reasonfor this is thata person’s voice is considereda biometricidentifier, asarefingerprints,
retinal patternsandDNA. It is a characteristicthat is supposedto be intrinsic anduniqueto a personand,assuch,
shouldnot bereproducibleby anyoneelse.Furthermore,it benefitsfrom thefactthatthepersonto beidentifieddoes
not have to carry a cardor a key that canbe duplicatedor stolen. Also a biometric identifier doesnot have to be
rememberedlike thepersonalidentificationnumber(PIN) for anautomatictellermachine(ATM) card.

In text-dependentspeaker recognition,it is assumedthat thespeaker is cooperative,andwishesto berecognised.
This is mostoftenthecasein securityapplicationswherea personmayidentify themselvesusingtheir voiceto gain
restrictedaccessto premisesor sensitive information. Somecommonexamplesof securityapplicationsarevoice-
activatedlocks,accessto restrictedcomputerdataandvoiceverificationfor telephone-bankingandATM transactions.
This contrastssharplywith text-independentspeaker recognitionwhere thereare no constraintson the speaker’s
vocabulary. Sincetext-dependentspeaker recognitionmodelsthespeaker for thenominatedtext (e.g.their password)
only, it has,in general,lower error ratesthantext-independentspeaker recognitionwhich mustmodelthe speaker’s
characteristicsfor a varietyof speechsounds[1, 4].

Although text-dependentspeaker recognitionwould appearto be a straightforwardtask,it hasyet to be realised
on a practicaleverydaylevel. The main reasonfor this is that the primepurposeof speechis to convey a message.



Therefore,it is themessagethatis themostimportant(albeitnot theonly) informationin aspeechsignal.Thespeech
signalnot only carriesthe intendedmessageof the speaker, but alsoimplicit informationconcerningtheir identity,
the languagethey arespeakingandtheir accent,aswell astheir emotionalandphysicalstate. As theseaspectsare
secondaryto the messagebeing conveyed, it is difficult to extract them from the speechwaveform: the message
andthe speaker’s characteristicsarenon-linearlyandinter-dependentlyencodedin the speechwaveform. As yet it
is impossibleto extract the characteristicsthat determinea person’s voice from their speechwaveform with total
reliability.

Text-dependentspeaker recognitioncanbedividedinto two categories:verificationandidentification.In speaker
verification,theobjectis to confirma person’s identity usingtheir voice. This would bethecasewhensomeoneuses
a cardor accesscodethat they aloneshouldpossess,andthey areasked to confirmtheir identity by usinga special
password. It is a trueor falsescenariobecausethereareonly two possibleoutcomes:eitherit is thesupposedspeaker
or animpostor. In speaker identification,thetaskis to identify thespeaker asoneof a groupof N possiblespeakers,
in which casethereare N possibleoutcomes.As N increases,the likelihoodof makinga falseidentificationalso
increases.For this reason,speaker identificationfor a large populationis generallyconsideredto be moredifficult
thanverification. If thereis also the possibility that the speaker comesfrom outsidethe group, thereare (N

�
1)

possibleoutcomes,furtherincreasingthechancesof a falseidentification.
Recently, anincreasingnumberof researchershasbeenexaminingtheapplicabilityof artificial neuralnetworksto

both text-independentandtext-dependentspeaker recognition[2]. Early work wasbasedlargely on the multilayer
perceptron(MLP) architectureand variantsthereof. More recently, however, attentionhas turned to the use of
radial basisfunction (RBF) networks [13]. The switch to the RBF approachhasbeendrivenby reportsof superior
performancein recognitionoverMLP networks[14, 5, 11]. In moststudies,a singleMLP or RBF network wasused
to representa speaker. In this paper, we suggestthat it is useful to obtaina rangeof MLP andRBF networks for
eachspeaker, andto assesstheway they vary in performance.Thevariationis determinedby thechoiceof trueand
falsespeaker utterancesusedin thetrainingset.We confirmthatRBF networksaremorerobustin dealingwith poor
trainingsetsthanareMLPs. Wefurthershow thatif bothnetworksaregiventheir ‘best’ trainingset,theRBFnetwork
still out-performstheMLP.

2. Neural Networks for Speaker Recognition

Two different neuralnetwork architectureswere applied to the text-dependentspeaker recognitionproblem: the
multilayerperceptronandtheradialbasisfunctionneuralnetwork. Botharedescribedin detail in [10].

TheMLP architectureusingback-propagationlearning[3] is oneof themostpopularneuralnetworks. It consists
of at leastthreelayersof neurons:an input layer, oneor morehiddenlayersandan output layer. The hiddenand
outputlayershaveanon-linearactivationfunction.Back-propagationis asupervisedlearningalgorithmthatusestwo
passesthroughthe network to calculatethe changein network weights. In the forward pass,the weightsarefixed
andthe input vectoris propagatedthroughthenetwork to produceanoutput. An outputerror is calculatedfrom the
differencebetweenactualoutputand the desiredoutput. This is thenpropagatedbackwardsthroughthe network,
makingchangesto theweightsasrequired.

The RBF neuralnetwork [13] hasboth a supervisedandunsupervisedcomponentto its learning. It consistsof
threelayersof neurons– input, hiddenand output. The hiddenlayer neuronsrepresenta seriesof centres in the
input dataspace.Eachof thesecentreshasanactivationfunction,typically Gaussian.Theactivationdependson the
distancebetweenthe presentedinput vectorandthe centre. The further the vector is from the centre,the lower is
theactivationandviceversa. Thegenerationof thecentresandtheir widths is doneusinganunsupervisedk-means
clusteringalgorithm.Thecentresandwidthscreatedby thisalgorithmthenform theweightsandbiasesof thehidden
layer, whichremainunchangedoncetheclusteringhasbeendone.Theoutputlayer(whichhasnon-linearactivations)
is trainedby back-propagation.

3. Speaker Data

The speaker databasewas formedby 20 malespeakerswith a common(Eastof Scotland)accentsayingthe word
“Allenwood” 20 times. Theutteranceswererecordedover two sessionsin orderto incorporatesometime variance.
Thespeechwasrecordedwith a 16-bit A/D cardat a samplingrateof 16kHz, with a high-orderlow-passfilter with
8kHz cut-off frequency to preventaliasing.Therecordingsweremadein ambientbackgroundnoiseconditionstypical
of a quietcomputerlaboratory. Eachutterancewasend-pointdetectedby hand.



For presentationto the neuralnetworks, a seriesof linear predictioncoefficientswasgeneratedfor eachof the
400utterancesusingtheautocorrelationmethod[12]. Theframelengthwas20ms(320samples)usinga Hamming
window, overlappingby 50%.Theorderof thelinearpredictorwas12. Cepstralcoefficientswerethengeneratedfrom
the linear predictorcoefficients[6]. The speechwaspresentedto the networks asa sequenceof 4 cepstralvectors,
eachof length12. The presentationof 4 cepstralvectorsat eachinstantallowed the networks to incorporatesome
short-termtemporalspeechinformationaswell asstaticinformation.

4. Experiments

The purposeof the experimentswastwofold. The first aspectwasto verify that RBF networks did in fact provide
consistentlybetterresultsthananMLP network for text-dependentspeaker recognition.Thesecondpurposewasto
investigatetheeffectof training-setvariationon theperformanceof thetwo networks.

Eachspeaker hadtheir own MLP andRBF network. Eachnetwork had2 outputnodes,oneindicatingthe like-
lihood that the input vectorbelongsto the true speaker andthe otherthe likelihoodthat it belongsto an impostor–
althoughonly the first of thesewasactuallyusedin testing. Target valuesduring training were [+1, � 1] for a true
speaker frameand[ � 1,+1] for animpostorframe.

To investigatetheeffectof training-setvariation,10trainingsetswerecreatedfor eachspeaker, totalling200train-
ing sets. Eachtraining setconsistedof 6 true speaker utterancesand19 falsespeaker utterances(onefrom eachof
thepossibleimpostors).Theseutteranceswerechosenrandomlyfor eachtrainingset. For theverificationtests,this
meantthat therewere14 true speaker testutterancesfor eachnetwork, and280 true speaker testutterancesfor the
20 networks in total. Therewere361 impostortestutterancesper network and,hence,361 � 20 � 7220impostor
testutterancesin total. For theidentificationtests,therewere14 truespeaker testutterancespernetwork and,hence,
280truespeaker testsin total.

The numberof training patterns,NT , usedto train eachnetwork wastypically 1250(dependinguponutterance
length). In thecaseof theMLP, therewasa singlehiddenlayerof 64 nodesanda tanhactivationfunctionwasused.
In line with usualpractice,thenumberof hiddennodes,learningrate,momentumetc.weresetempirically. TheRBF
network used0 � 25NT hiddennodes.Thenearest-neighbourwidth heuristicused2 nearestneighbours.

The scorefor a test utterancefor a given network was obtainedas follows. Eachframe of the utterancewas
presentedto the network andits output(i.e. for the first oneof the two outputnodesmentionedabove) found. The
averageoutputvalueacrossall framesof the utterancewasthencomputed,andtaken to be the score. No usewas
madein this studyof any measureof dispersion,suchasthestandarddeviation,of thescores.

5. Results

Theidentificationandverificationerrorsfor eachof thetwo systemswerecalculatedfor bothrandomly-selectedand
best-performingtrainingsets.In thefirst case,a network for eachof the20 speakerswasrandomlypickedfrom the
10 created.Theseselectednetworksthenformeda groupfor onesetof verificationandidentificationtests.This was
done100 timesso thataveragevaluescouldbecalculated.In thesecondtest,thebest-performingnetwork for each
speakerwasselectedby handin orderto giveanideaof thepotentialperformancefor eachsystem.

For the verification test,a thresholdof 0 was taken. Any scoreabove 0 wasdeemedto correspondto the true
speaker andany below to an impostor. This thresholdvalueis arbitraryandcouldbealteredif deemednecessary, in
orderto tradethenumbersof falseacceptancesandrejectionssoasto improveoverallperformance.A falseacceptance
occurredwhenan impostorwasrecognisedasthe truespeaker anda falserejectionoccurredwhenthe truespeaker
was recognisedasan impostor. As statedin the previous section,the numberof impostortestsfor eachnetwork
was361andtruespeaker tests14. An averagevalueof the falseacceptancesandrejectionswasthencalculatedfor
the20 networks.

The identificationtestwasdoneby comparingthe outputsof all 20 networks for a particularutterancefor the
280 speaker identificationtestsin total. The network with the highestoutputwasconsideredto belongto the true
speaker. No minimumdifferencebetweennetwork outputswasimposed.

The resultsfor the randomly-chosentraining setsandthe best-performingtraining setsfor both RBF andMLP
networks areshown in Tables1 and2, in which FA indicatesthe falseacceptancerateandFR indicatesthe false
rejectionrate. Theseclearly show that the RBF networks are considerablybetterthan the MLPs for both typical
(i.e. trainedon randomly-selectedsets)and best-performingoperation. We note in passingthat the identification



Verification Identification

FR(%) FA (%) TotalError(%) Error(%)

MLP 5.89 0.37 0.57 2.06
RBF 5.01 0.11 0.28 1.02

Table1: Verificationandidentificationresultsfor randomly-selectedtrainingsets.

Verification Identification

FR(%) FA (%) TotalError(%) Error(%)

MLP 1.42 0.06 0.11 0.0
RBF 0.71 0.0 0.03 0.0

Table2: Verificationandidentificationresultsfor best-performingtrainingsets.

performanceis apparentlybetterthantheverificationperformancein Table2. However, thenumberof testsis different
in thetwo cases,makingthesignificanceof this observationuncertain.

Thesuperiorityof theRBFnetworksoverMLPsis furtherborneoutby theresultspresentedin Figures1–4.These
show, for eachtrainingset,thetotal numberof errors,valuesof theseparationmetricd � (seebelow) andthenumber
of falserejectionsandfalseacceptances,respectively. In eachcase,graph(a) representstheresultsfor theMLP and
graph(b) theresultsfor theRBF networks. Eachtrainingsetis referencedby the index of the x-axis. Every decade
representstheresultsof a singlespeaker’s trainingsets.

In Figure1, thetotalareaunder(a) is clearlylessthanthatunder(b), indicatingthatthetotalnumberof errorsfor
theRBF network is lessthanthatof theMLP. TheRBF network hadin factonly 219errorscomparedto 426for the
MLP. Thegraphsalsoshow thatif theRBFnetwork hadtroubleseparatingthespeakersthentheMLP wasin general
markedly worse.This confirmsthecommonly-heldviewpoint thatRBF networksexhibit bettergeneralperformance
thanMLPs for speaker recognition.

In previous work [8, 9], the d � sensitivity index of classicalsignaldetectiontheory[7] wasmodifiedto yield a
measureof separabilitybetweenimpostorandtrue speaker distributionsin speaker recognition. It is definedasthe
differencebetweenthemeansof thetwo distributions,normalisedby thegeometricmeanof theirstandarddeviations.
A d � of approximately6 wasfoundto representgoodseparationin this application,with highervaluesrepresenting
betterdiscrimination.Figure2 shows thed � valuesof the truespeaker distribution againstthe impostordistribution,
for the two networks. The averagevalue for the RBF networks is 7.92 comparedto 6.54 for the MLPs. So the
RBF systemcreateda greatergapbetweenthe true andfalsespeaker distributions. Thereis alsoa high correlation
coefficient of 0.82 betweenthe d � valuesfor the RBF andMLP networks. This indicatesthat the successof both
networks is highly dependenton training setsandthat, in general,a goodtraining setfor the RBF systemis alsoa
goodtrainingsetfor theMLPs andviceversa.

Figure3 shows that the areaunderthe curve for the MLP is only slightly larger thanthat for the RBF network,
indicatinga similar level of falserejections.The MLP had162 falserejectionswhile the RBF systemhad142. So
theRBFnetwork did notsucceedin makingsignificantdifferencesto thenumberof truespeakerswho wererejected.
However, Figure4 shows that theRBF network significantlyreducesthenumberof falseacceptances,with only 77
comparedto 264 for the multilayer perceptron.(Theseremarksshouldbe interpretedin light of the ratherarbitrary
thresholdscoreof 0, i.e. therewasno attemptto tradefalseacceptancesandfalserejectionsto producelower total
errors.)

6. Discussion

Althoughothershave foundthatRBF networksgenerallygive betterresultsthanMLPs for speaker recognition,they
maynot beusingtheRBF network to thebestof its ability. In general,the RBF network is moreresilientagainsta
badtrainingsetthananMLP and,hence,providesbetterresults.However, an RBF systemcanprovide evenbetter
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Figure1: Total numberof errorsfor (a)MLP and(b) RBF network versustrainingsetindex. Thereare10 training
setsfor eachof the20 speakers.
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Figure2: Separationof trueandimpostorspeakerdistributionsin termsof d � measurefor (a)MLPsand(b) RBF
networks.

resultswith a suitabletrainingset.Thebestmeansof selectinga suitabletrainingsetfor speaker recognitionremains
anunresolvedissue:however, theresultsof our experimentsindicatethat thedifferencein performancebetweenthe
RBF andtheMLP networksmay in itself form thebasisof a measureof thesuitability of a trainingset. For a good
training set,a significantimprovementwould be expectedfor an RBF network relative to an MLP, whereasa poor
trainingsetwill not show muchimprovement.
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Figure3: Falserejectionsproducedby (a)MLPs and(b) RBF networks.
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