Improved Kalman Filter Initialisation using Neurofuzzy Estimation

Roberts, J.M., Mills, D.J., Charnley, D. and Harris, C.J. (1995) Improved Kalman Filter Initialisation using Neurofuzzy Estimation s.n.


Full text not available from this repository.


It is traditional to initialise Kalman filters and extended Kalman filters with estimates of the states calculated directly from the observed (raw) noisy inputs but unfortunately their performance is extremely sensitive to state initialisation accuracy. Good initial state estimates ensure fast convergence whereas poor estimates may give rise to slow convergence or even filter divergence. Divergence is generally due to excessive observation noise and leads to error magnitudes that quickly become unbounded. When a filter diverges, it must be re-initialised but because the observations are extremely poor, re-initialised states will have poor estimates. This paper proposes that if neurofuzzy estimators produce more accurate state estimates than those calculated from the observed noisy inputs (using the known state model), then neurofuzzy estimates can be used to initialise the states of Kalman and extended Kalman filters. Filters whose states have been initialised with neurofuzzy estimates should give improved performance by way of faster convergence when the filter is initialised, and when a filter is re-started after divergence.

Item Type: Monograph (Project Report)
Additional Information: 1995/6 Research Journal Address: Department of Electronics and Computer Science
Organisations: Southampton Wireless Group
ePrint ID: 250102
Date :
Date Event
Date Deposited: 04 May 1999
Last Modified: 18 Apr 2017 00:24
Further Information:Google Scholar

Actions (login required)

View Item View Item