Neurofuzzy Adaptive Modelling and Construction of Nonlinear Dynamical Processes

Bossley, K.M., Brown, M. and Harris, C.J., (1995) Neurofuzzy Adaptive Modelling and Construction of Nonlinear Dynamical Processes Irwin, G.R., Warwick, K. and Hunt, K.J. (eds.) At Neural Network Applications in Control. , 253--292.


Full text not available from this repository.


The identification of nonlinear dynamical processes has become an important task in many different areas of research. The formulation of such models is inherently a very difficult task. Neurofuzzy modelling has recently been proposed to help tackle this idetification problem, where neural networks and fuzzy logic are combined, providing fuzzy systems to which thorough mathematical analysis can be applied. Fundamental to system identification is the principle of parsimony, where the best model is the one with simplest acceptable structure. This coupled with the curse of dimensionality has lead to the development of efficient off-line parsimonious neurofuzzy construction algorithms. This chapter discusses a range of neurofuzzy algorithms that automatically construct parsimonious models. In this discussion different construction algorithms and alternative (non-lattice based) neurofuzzy models are addressed.

Item Type: Conference or Workshop Item (Other)
Venue - Dates: Neural Network Applications in Control, 1995-01-01
Organisations: Southampton Wireless Group
ePrint ID: 250143
Date :
Date Event
Date Deposited: 04 May 1999
Last Modified: 18 Apr 2017 00:24
Further Information:Google Scholar

Actions (login required)

View Item View Item