The University of Southampton
University of Southampton Institutional Repository

Extending the feature set for automatic face recognition

Extending the feature set for automatic face recognition
Extending the feature set for automatic face recognition
Automatic face recognition has long been studied because it has a wide potential for application. Several systems have been developed to identify faces from small face populations via detailed face feature analysis, or by using neural nets, or through model based approaches. This study has aimed to provide satisfactory recognition within large populations of human faces and has concentrated on improving feature definition and extraction to establish an extended feature set to lead to a fully structured recognition system based on a single frontal view. An overall review on the development and the techniques of automatic face recognition is included, and performances of earlier systems are discussed. A novel profile description has been achieved from a frontal view of a face and is represented by a Walsh power spectrum which was selected from seven different descriptions due to its ability to distinguish the differences between profiles of different faces. A further feature has concerned the face contour which is extracted by iterative curve fitting and described by normalized Fourier descriptors. To accompany an extended set of geometric measurements, the eye region feature is described statistically by eye-centred moments. Hair texture has also been studied for the purpose of segmenting it from other parts of the face and to investigate the possibility of using it as a set of feature. These new features combine to form an extended feature vector to describe a face. The algorithms for feature extraction have been implemented on face images from different subjects and multiple views from the same person but without the face normal to the camera or without constant illumination. Features have been assessed in consequence on each feature set separately and on the composite feature vector. The results have continued to emphasize that though each description can be used to recognise a face there is a clear need for an extended feature set to cope with the requirements of recognizing faces within large populations.
University of Southampton
Jia, X.
d4c719a7-fb60-480f-82b5-bbdd0f4ee6ca
Jia, X.
d4c719a7-fb60-480f-82b5-bbdd0f4ee6ca
Nixon, M.
2b5b9804-5a81-462a-82e6-92ee5fa74e12

Jia, X. (1993) Extending the feature set for automatic face recognition. University of Southampton, : University of Southampton, Doctoral Thesis.

Record type: Thesis (Doctoral)

Abstract

Automatic face recognition has long been studied because it has a wide potential for application. Several systems have been developed to identify faces from small face populations via detailed face feature analysis, or by using neural nets, or through model based approaches. This study has aimed to provide satisfactory recognition within large populations of human faces and has concentrated on improving feature definition and extraction to establish an extended feature set to lead to a fully structured recognition system based on a single frontal view. An overall review on the development and the techniques of automatic face recognition is included, and performances of earlier systems are discussed. A novel profile description has been achieved from a frontal view of a face and is represented by a Walsh power spectrum which was selected from seven different descriptions due to its ability to distinguish the differences between profiles of different faces. A further feature has concerned the face contour which is extracted by iterative curve fitting and described by normalized Fourier descriptors. To accompany an extended set of geometric measurements, the eye region feature is described statistically by eye-centred moments. Hair texture has also been studied for the purpose of segmenting it from other parts of the face and to investigate the possibility of using it as a set of feature. These new features combine to form an extended feature vector to describe a face. The algorithms for feature extraction have been implemented on face images from different subjects and multiple views from the same person but without the face normal to the camera or without constant illumination. Features have been assessed in consequence on each feature set separately and on the composite feature vector. The results have continued to emphasize that though each description can be used to recognise a face there is a clear need for an extended feature set to cope with the requirements of recognizing faces within large populations.

This record has no associated files available for download.

More information

Published date: 1993
Organisations: University of Southampton, Southampton Wireless Group

Identifiers

Local EPrints ID: 250161
URI: http://eprints.soton.ac.uk/id/eprint/250161
PURE UUID: 747d41e4-4030-41e4-9fff-28930bb52df9
ORCID for M. Nixon: ORCID iD orcid.org/0000-0002-9174-5934

Catalogue record

Date deposited: 04 May 1999
Last modified: 11 Dec 2021 02:38

Export record

Contributors

Author: X. Jia
Thesis advisor: M. Nixon ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×