The University of Southampton
University of Southampton Institutional Repository

Novel techniques for image texture classification

Novel techniques for image texture classification
Novel techniques for image texture classification
Texture plays an increasingly important role in computer vision. It has found wide application in remote sensing, medical diagnosis, quality control, food inspection and so forth. This thesis investigates the problem of classifying texture in digital images, following the convention of splitting the problem into feature extraction and classification. Texture feature descriptions considered in this thesis include Liu's features, features from the Fourier transform using geometrical regions, the Statistical Gray-Level Dependency Matrix, and the Statistical Feature Matrix. Classification techniques that are considered in this thesis include the K-Nearest Neighbour Rule and the Error Back-Propagation method. Novel techniques developed during the author's Ph.D study include (1) a Generating Shrinking Algorithm that builds a three-layer feed-forward network to classify arbitrary patterns with guaranteed convergence and known generalisation behaviour, (2) a set of Statistical Geometrical Features for texture analysis based on the statistics of the geometrical properties of connected regions in a sequence of binary images obtained from a texture image, (3) a neural implementation of the K-Nearest Neighbour Rule that can complete a classification task within 2K clock cycles. Experimental evaluation using the entire Brodatz texture database shows that (1) the Statistical Geometrical Features give the best performance for all the considered classifiers, (2) the Generating Shrinking Algorithm offers better performance over the Error Back-Propagation method and the K-Nearest Neighbour Rule's performance is comparable to that of the Generating Shrinking Algorithm, (3) the combination of the Statistical Geometrical Features with the Generating-Shrinking Algorithm constitutes one of the best texture classification systems considered.
University of Southampton
Chen, Y.Q.
7b755062-df0a-4e9d-a7d5-f88f166e93af
Chen, Y.Q.
7b755062-df0a-4e9d-a7d5-f88f166e93af
Nixon, M.
2b5b9804-5a81-462a-82e6-92ee5fa74e12

Chen, Y.Q. (1995) Novel techniques for image texture classification. University of Southampton, : University of Southampton, Doctoral Thesis.

Record type: Thesis (Doctoral)

Abstract

Texture plays an increasingly important role in computer vision. It has found wide application in remote sensing, medical diagnosis, quality control, food inspection and so forth. This thesis investigates the problem of classifying texture in digital images, following the convention of splitting the problem into feature extraction and classification. Texture feature descriptions considered in this thesis include Liu's features, features from the Fourier transform using geometrical regions, the Statistical Gray-Level Dependency Matrix, and the Statistical Feature Matrix. Classification techniques that are considered in this thesis include the K-Nearest Neighbour Rule and the Error Back-Propagation method. Novel techniques developed during the author's Ph.D study include (1) a Generating Shrinking Algorithm that builds a three-layer feed-forward network to classify arbitrary patterns with guaranteed convergence and known generalisation behaviour, (2) a set of Statistical Geometrical Features for texture analysis based on the statistics of the geometrical properties of connected regions in a sequence of binary images obtained from a texture image, (3) a neural implementation of the K-Nearest Neighbour Rule that can complete a classification task within 2K clock cycles. Experimental evaluation using the entire Brodatz texture database shows that (1) the Statistical Geometrical Features give the best performance for all the considered classifiers, (2) the Generating Shrinking Algorithm offers better performance over the Error Back-Propagation method and the K-Nearest Neighbour Rule's performance is comparable to that of the Generating Shrinking Algorithm, (3) the combination of the Statistical Geometrical Features with the Generating-Shrinking Algorithm constitutes one of the best texture classification systems considered.

This record has no associated files available for download.

More information

Published date: 1995
Organisations: University of Southampton, Southampton Wireless Group

Identifiers

Local EPrints ID: 250162
URI: http://eprints.soton.ac.uk/id/eprint/250162
PURE UUID: 4e8a816d-d332-432a-812e-27bb6fd7296d
ORCID for M. Nixon: ORCID iD orcid.org/0000-0002-9174-5934

Catalogue record

Date deposited: 04 May 1999
Last modified: 11 Dec 2021 02:38

Export record

Contributors

Author: Y.Q. Chen
Thesis advisor: M. Nixon ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×