
223

Comparative aspects of neural network algorithms for
on-line modelling of dynamic processes

P E An, BSc, MSc, PhD, M Brown, BSc, PhD and C J Harris, BSc, MA, PhD
Department of Aeronautics and Astronautics, University of Southampton
S Chen, BSc, PhD
Department of Electrical Engineering, University of Edinburgh

This paper reviews the model structures and learning rules of four commonly used artijkial neural networks: the cerebellar model
articulation controller (CMAC), B-splines, radial basis functions (RBF) and multi-layered perceptron (M L P) networks. Their dynamic
modelling abilities are compared using a two-dimensional non-linear noisy time series. The network performances are evaluated based
on their network surface plots, phaseltime history plots, learning curves, prediction error autocorrelation functions and finally their
short-range prediction error variances. The modelling results suggest that all four networks were able to capture the underlying
dynamics of the time series. Also, spec@ prior knowledge about the time series was incorporated into the B-splines model, and is used
to highlight an important trade-off between the model Jlexibility and high-dimensional modelling ability in the B-splines and CMAC
networks. In general, when the network model is well conditioned and linear with respect to its adaptable parameters, simpler on-line
learning rules often provide adequate convergence properties. Alternatively, when the model is highly non-linear, complicated learning
rules which utilize high-order gradient information are generally required at the expense of increased computational complexity.

1 INTRODUCTION

In traditional modelling and control applications, a
linear adaptive model* has often been used to model an
unknown process or to form an inverse mapping of the
controlled process. Being characterized by its transient
convergence behaviour and steady-state mismatch, the
modelling performance relies greatly on the character-
istic of the process, and is optimal when the process is
linear and time invariant. However, when the process
is highly non-linear, its behaviour in different operating
regions can vary significantly. This means that a well-
learned linear model in some region might have a
catastrophic effect in other untrained regions unless
adequate relearning has taken place. Because the model
is linear, the relearning procedure often destroys the
previously stored knowledge about the process. In order
to ensure stable transition, the drift of the process’s
operating region must be slow compared with the
model adaptation, which imposes a stringent condition
on the process dynamics.

Unlike the linear model, artificial neural networkst
can generally approximate any continuous multi-
dimensional non-linear function (1, 2), and have been
widely explored in the area of modelling and control
applications (3-8). While the learning capabilities of
these networks can vary significantly depending on the
non-linearity incorporated in their model structures,
these networks share an important characteristic: they
internally transform$ every training input into a higher
dimensional space so that the desired output can be
made approximately linear to the transformed input.

This paper was presented at an Ordinary Meeting held in London on 16 March
1993. The MS was received on 23 March 1993 and was accepted for publication
on 25 August 1993.
* With respect to the process input.
t This usage should be understood as algorithms which approximate mathe-
matical functions, rather than as biological models which account for electro-
chemical activities among neurons.

This transformation can either be fixed or adaptive.

I01393 @ IMechE 1993

There are many ways to describe the non-linearities
defined in these networks. One useful way of describing
them is based on the type of generalization by which the
network transforms the input. In general, neural net-
works can be classified as either globally generalizing or
locally generalizing. The generalization is considered
local if only few adaptable parameters can potentially
affect the network output for each input. Examples are
lattice associative networks (LANs), such as the cerebel-
lar model articulation controller (CMAC) and B-splines
(9, 10). On the other hand, the generalization is con-
sidered global if each adaptable parameter can poten-
tially affect the network output at every point in the
input space. Examples are multi-layered perceptron
(MLP) and radial basis functions (RBF) networks

Another useful way of describing the non-linearity is
based on the relationship of the network output to its
adaptable parameters. This relationship is linear in the
lattice associative network, and linear optimization
techniques can readily be applied. However, the same
relationship in the MLP network is highly non-linear
and the cost function is highly irregular, containing
plateaus and local sub-optimal solutions.

With this specific description of non-linearities, the
RBF network can be considered as an intermediate
model which lies between the MLP and lattice associa-
tive networks. While the RBF network has global
support (similar to the MLP), the energy of the Gauss-
ian basis function is mostly local, similar to the LAN.
Also, the inner structure of the model can be either
fixed, similar to the LAN, or can be made adaptive, as
with the MLP network. Based on these descriptions, a
wide variety of existing neural networks can be rep-
resented by the MLP, RBF and associative networks.

In this paper, the model structures and learning rules
of the CMAC, B-splines, RBF and the MLP are
described. The modelling abilities of these networks are
evaluated using a two-dimensional non-linear time

(11-13).

Proc Instn Mech Engrs Vol 207

224 P E AN, M BROWN, S CHEN AND C J HARRIS

series. This time series has sufficiently rich dynamic
properties such that useful insights can be gained about
the low-dimensional modelling abilities of these net-
works. The evaluation measures for the time series
modelling are based on their network surfaces' recon-
structions, phase/time history plots, error autocorrela-
tion functions and variance characteristics, and also
their learning curves. These measures can generally
provide an accurate indication of the dynamic model-
ling performance. The rest of this paper is organized as
follows. In Section 2, the model structures and the
learning rules of the LANs are reviewed. Sections 3 and
4 present the model structures and learning rules for the
RBF and MLP networks. Section 5 describes the time
series experiment and the four network model condi-
tions. Section 6 discusses the time series modelling
results and, finally, Section 7 presents comments on the
general modelling abilities of these networks.

2 LATTICE ASSOCIATIVE NETWORK (LAN)

The output of a LAN is formed of a linear combination
of overlapping basis functions which are evenly distrib-
uted in an n-dimensional sub-space of R". Each of the
basis functions is defined on a hyper-rectangular region
which is a compact region in R", and this is known as
its receptive jield. Therefore the output of each basis
function is non-zero only when the input lies in its
receptive field. This feature endows the LANs with an
ability to generalize locally: similar inputs are mapped
onto nearby hyper-rectangular receptive fields, which
produce similar outputs, while dissimilar inputs are
mapped onto distant hyper-rectangles, and this pro-
duces independent outputs. A general associative
memory network in which the input is non-linearly
transformed is shown in Fig. 1. Notice that the function
approximation is only valid for a bounded input space
because of the finite number of localized basis functions,
although the function may be assumed to remain con-
stant outside the bounded input space.

2.1 Model structure

The network output at time t , j{x(t)}, is computed by
first transforming the input vector, x(t) (E R"), into a
higher dimensional space (RP), which is generated by the

Basis Desired
output

L'
Normalized input

Fig. 1
space functions

An associative memory network

Part I: Journal of Systems and Control Engineering

outputs of the p basis functions. The inner product of
the transformed input vector, $ { x (t)) (containing the
outputs of the individual basis functions), with a p -
dimensional adjustable weight vector, w(t - l), is then
calculated, so the network output is given by

9{x(t)} = d W t) l * w(t - 1) (1)

Because of the compact receptive fields, c#{x(t)} has only
a few non-zero components, and if a simple algorithm is
available for determining which basis functions are non-
zero the computational cost of forming the output can
be significantly reduced. The implicit dependency of
and w on time will be subsequently dropped in order to
simplify the notation. Each &(x) (the kth element of 4)
is uniquely determined by the type of basis function
used in the LAN, in particular the width and the centre
of the receptive field relative to x. In general, the n-
dimensional multi-variate basis function (bk(x) is defined
by its n univariate basis functions and the operator
which combines univariate basis functions to produce a
single value. Two common composition operators that
have also been used in fuzzy systems to represent con-
junctions (14) are the minimum operator and the
product operator. The minimum operator sets &(x) to
be the minimum univariate function value, that is

the ith element of x and + k , i (X i) is the ith univariate
basis function corresponding to the kth multi-variate
basis function, and both are defined on the ith input
axis. The product operator computes q5k(x) by simply
multiplying together n univariate function values, that is

4dX) = min{6k, l(xl), 4 k , Z (x 2) , . . . ? 4 k , n (x n) } ? where x i is

n

k (x) = 4 k . l(xl) * 4 k , 2 (X Z) *. . . * 4 k , n (x n) = n $ k , i (X i)
i = 1

The individual univariate basis functions generate the
n-dimensional multi-variate basis functions, therefore
only the former need to be described. The ith input axis
is partitioned into S i neighbouring, non-overlapping
intervals by a set of (Si + 1) knots, Ai. The first and last
knots are termed exterior knots as they are positioned
at the minimum and maximum values of xi respectively.
The remaining S i - 1 values are called interior knots,
and these represent the position of the end of one inter-
val and the beginning of the next. Each univariate basis
function is non-zero only over a small number of adja-
cent intervals, therefore the position of the knots defines
the size of the univariate receptive fields. With respect
to the quantized input space, each univariate basis func-
tion has a receptive field which is pi intervals wide.

The quantization of each input axis generates an n-
dimensional lattice on which the multi-variate basis
functions are defined. Each (n - 1) dimensional hyper-
plane which divides the input space passes through one
of the univariate knots and is parallel to the remaining
(n - 1) axes, therefore the lattice is generated by the
knot matrix A(= (A, I, . . . I,)} which contains the
knot vectors for each input axis. The multi-variate basis
functions are also defined on receptive fields of size
p { = (el p , . . . p,) } relative to the lattice. This is illus-
trated in Fig. 2 for a two-dimensional input space with
p 1 = 4, p 2 = 3. It is important to notice that the knots
do not always specify the centres of the basis functions
as generally, when pi is odd, they occur midway
between two knots.

0 IMechE 1993

COMPARATIVE ASPECTS OF NEURAL NETWORK ALGORITHMS FOR ON-LINE MODELLING OF DYNAMIC PROCESSES 225

4

I '

I '

I '

A2.0
4 , o A l , 3 A1.6

Fig. 2 A two-dimensional input lattice with univariate knots.
The grid points are formed at the intersection of the
hyperplanes, and the dot represents the centre of the
shaded receptive field

A

A2.0
4 , o A l , 3 A1.6

Fig. 2 A two-dimensional input lattice with univariate knots.
The grid points are formed at the intersection of the
hyperplanes, and the dot represents the centre of the
shaded receptive field

In general, the knot density is chosen to be uniform
in order to preserve a uniform resolution of the network
response in R". If any prior knowledge is available, the
knot density can be arranged so that more knots are
placed in some part of the input space where the func-
tion varies significantly, and fewer knots in other area
where the function is approximately constant. p is an
important parameter vector (fixed prior to learning)
which significantly affects the approximation capability
and the rate of convergence of the network. When p is
chosen too large, the network is slow to learn a function
containing high spatial Fourier components. On the
other hand, when p is chosen too small, the network is
unable to generalize between neighbouring training
samples.

The evenly distributed set of the basis functions can
be geometrically decomposed into K sets of overlays. An
overlay is defined as a union of basis functions with
non-overlapping hyper-rectangular receptive fields
which exactly covers the input lattice. These overlays
have different partitioning of the receptive fields so that
the same input maps to different basins of the basis
functions in different overlays. An example of the
overlay structure for a two-dimensional input is given in
Fig. 3. This overlay arrangement thus forces the input
to lie in one and only one active receptive field and, in
turn, K non-zero basis functions in the entire network.
Notice that the number of available basis functions in
each overlay varies, depending on a displacement
matrix, D, which defines the partitioning configuration.
The displacement matrix contains the offset values di ,
and is defined as

A 2 3 7 Overlay 4

/ /

/
Xi

Fig. 3 CMAC overlay structure: p = K = 4

When di , j is k, the partitioning in the jth overlay starts
on the kth interior knot along the ith axis. Thus, A
determines not only the actual size of the receptive
fields, but also the physical offset distance among the
overlays. Notice that the displacement matrix for
the first overlay has zero offset values, indicating that
the partitioning starts on the individual axes. Based on
the lattice defined by A and the basis function distribu-
tion defined by D, the number of basis functions p can
be calculated from

2.1.1 CMAC
The CMAC network was originally proposed (15) as a
model of the neurophysiological functioning of the
mammalian cerebellum. This network has a unique
method for defining receptive fields as they are n-
dimensional hypercubes of width p , and this is the same
as the number of overlays in the network K. Therefore
the number of active receptive fields does not explicitly
depend on n, and is equal to the receptive field width.
While this relationship forces the basis functions to be
sparsely distributed on the lattice, the numerical com-
putation for any training input is linearly dependent on
the input dimension, which is an important character-
istic of this network.

The displacement matrix D associated with the
CMAC has the size p x n, and is defined as in equation
(4). Based on this matrix, the centres of the basis func-
tions are defined on the diagonal and sub-diagonals on
the lattice. An example of the overlay structure is shown
in Fig. 3, where n is 2 and p is 4. Given that the knot
density is uniform in each axis, the diagonal placement
provides a uniform projection of receptive fields onto
each axis: the displaced input by one interval parallel to
any input axis always shares p - 1 receptive fields with

Proc Instn Mech Engrs Vol 207 0 IMechE 1993

226 P E AN, M BROWN, S CHEN AND C J HARRIS

the undisplaced one.

(4)

The total number of receptive fields which lies in the
input lattice is given in equation (5), which can be
further simplified if the receptive field width is much
smaller than the number of intervals on each axis, that
is 0 4 p < S :

S + k " S" k z p - 1

k = O

Thus for a larger p, there will be fewer receptive fields
available in the network. This also forces the placement
to be less uniform within the hypercube of side p. A less
uniform placement is likely to deteriorate the approx-
imation capability if the basis functions are input
dependent. While a theoretical analysis for an optimal
placement scheme with an arbitrary p is not available,
alternative schemes of improving the uniformity of the
receptive field placement have been proposed (16, 17).

A traditional univariate basis function is a binary
function which gives rise to piecewise constant approx-
imation of the desired output. The multi-variate basis
function can be formed using either the minimum oper-
ator or the product operator (Fig. 4a). Higher order
piecewise polynomial univariate basis functions which
generate a smoother network output have also been
investigated (16, 18, 19). These univariate basis functions
have a maximum value at the centre of the receptive
field which diminishes as the input moves towards the
edge of the receptive field. For these multi-variate basis
functions the operator can be either the minimum
operator or the product operator. Based on the binary
basis function, the modelling capability of the multi-
dimensional CMAC network for a certain class of train-
ing functions has been investigated (20).

(a) Binary

(b) Second-order B-splines

2.1.2 B-splines
B-splines were originally proposed for use in geometri-
cal modelling and in graphical applications. Unlike the
CMAC network, the orders (or smoothness) of the B-
splines (or basis functions) and the knots' locations can
be chosen arbitrarily along each input axis, which
allows the network to incorporate useful prior knowl-
edge about the training function. In addition, there are
as many overlays as there are grid points on the lattice.
This means that the number of active receptive fields is
exponentially dependent on n (or K is p"). The displace-
ment matrix of size (p" x n) is given as in equation (6),
and p can be determined as in equation (3). A set of
overlays for K = 4 and n = 2 is shown in Fig. 5.

0 0
0 1

0 ...
0 . . .

(j .:. (j p L 1
1 0
1 1

0 . . .
0 . . .

p - 1 . . . p - 1 p - 1

Also, unlike the CMAC network, the order of the B-
splines plays a unique role in determining the widths of
the basis functions. A simple and stable recurrence
relationship is commonly used to define the univariate
B-spline functions {g5i,p,j(xi)} (21), and is given as

1 if x i E I j - l
0 otherwise 4i , l , j (x i) = (7)

where I j is the j th interval (2 i , j , , l i , j+ l) with the last
interval being closed at both ends. The multi-variate

(c) Gaussian

(d) Sigmoid

Fig. 4 Various basis function types

Part I: Journal of Systems and Control Engineering @ IMechE 1993

COMPARATIVE ASPECTS OF NEURAL NETWORK ALGORITHMS FOR ON-LINE MODELLING OF DYNAMIC PROCESSES 227

1.00-

0.75 -

h

0.50-

0.25 -

0 +

: Overlay 4

Overlay 3

0.75 - 0.75 -

XI
Fig. 5 B-splines overlay structure: p = 2, K = 4

1.00 -

h

0.50-

0.25-

0.7

B-splines are then formed using the product operator.
This basis function structure has two important proper-
ties. First, the basis functions are normalized so that the
sum of p" multi-variate basis function values is indepen-
dent of the location of the training input. This ensures
that the network is not biased toward any region in R".
Second, as the order (or width) of the B-splines
increases, the basis functions become smoother and
neighbouring basis functions have a larger area of
overlap on their receptive fields (see Fig. 6). For
example, a first-order B-spline is a binary function,
while a second-order B-spline is a piecewise linear func-

1.00 -

'\ m\ \, \\

A more flexible set of B-splines (dilated B-splines)
which allows the width and the order of the B-splines to
be decoupled has also been investigated (19). The
dilated B-splines can be interpreted as a union of
coarsely resolved (large physical interval) low-order B-
splines networks, each defined in the input space with
an appropriate relative offset. When the training func-
tion is strongly correlated in some sub-dimensional
input space, several variants of the B-splines networks
with adaptable model structures have been proposed
(22,23). These networks are constructed from a union of
sub-models, each defined in a sub-dimensional input
space. Iterative refinement procedures are then used to
develop more complex sub-models when the inputs are
found to be correlated in a higher dimensional space.
While these networks maintain adequate modelling
capabilities using a minimum number of adaptable
parameters, the refinement procedure is often restricted
to be carried out ofl-line.

2.2 Instantaneous gradient descent learning
The weight adjustment procedure for the LAN utilizes
on-line optimization techniques, such as the least-mean-
square (LMS) and the normalized LMS (NLMS)
method. Both methods utilize an instantaneous gradient
estimate to adjust the weight vector (24, 25). In general
when these methods are used, the weight vector will
converge to an optimal or near an optimal solution
(w *) t if the cost performance surface in the weight space
(w p) has only one global minimum.

From equation (l), these networks share an identical
structure when the model output is linear with respect
to its weight vector. The cost performance surface of
these networks is therefore quadratic, which partially
justifies the use of these methods. It is also required that
the set of transformed input vectors be minimally corre-
lated, which in turn depends on the training inputs and

tion (Fig. 4b). t This optimal solution is often referred to as Wiener-Hopf solution.

n
0.75 1

I

0.50 - 1
0.251 I I

0-
0 1 2 3 4 5

Input knots

Piecewise constant basis splines

Input knots

Piecewise linear basis splines

@ IMechE 1993 Proc Instn Mech Engrs Vol207

228 P E AN, M BROWN, S CHEN AND C J HARRIS

the basis function shapes. The cost performance index is
typically based on an instantaneous mean square
output error [E ~ { x (~) }] , and is given as follows:

where c{x (t) } = y{x (t) } - j { x (t) } , y {x (t) } is the desired
output and j { x (t) } is the network output for an input
x(t). The instantaneous gradient estimate is given by

J { x (t) } = 3 & 2 (X (t)) (8)

aJ{xt t) } = - E { X (t) } 4 { X (t) }
aw(t - 1) (9)

The LMS method then adjusts the weight vector in
the direction of the transformed input vector

where p is the learning rate. Because the transformed
input vector is sparse, the computational complexity in
each adjustment cycle is O(K). Assuming that the desired
model is linear {or y is a linear combination of $,(x)}
and the sequence of the transformed input vectors is
statistically independent, the LMS method ensures that
the weight vector converges to w* in the mean if the
following condition is satisfied:

Aw(t - 1) = w(t) - w(t - 1) = /%{~(t))4{~(t) } (10)

(11)
2

Omax
0 < p < -

where umax is defined as the largest eigenvalue of the
ensemble-averaged transformed input correlation
matrix R.
R = E { 4 (4 4 T (X) I (12)

In practice, the entire set of training samples is not
available. Thus, R and in turn its eigenvalues cannot be
determined prior to learning. On the other hand, if the
training inputs are stationary and sufficiently rich, good
performance can usually be achieved with a small learn-
ing rate.

It can be seen that the LMS method adjusts w
according to the magnitude of the transformed input
vector equation (lo), which is often undesirable. The
NLMS method provides an improved weight adjust-
ment technique which eliminates this dependency con-
dition when setting B. The weight vector is then
updated as follows:

where I/ . 11 is the common Euclidean norm. It should be
noticed that the normalization factor in equation (13)
for the binary CMAC is constant, which further sim-
plifies the numerical computation. Both the NLMS and
LMS learning rules are very similar in that three obser-
vations can be made. First, if the instantaneous mean
square error is normalized by 11 4(x) [I 2 in equation (8),
the LMS method then becomes equivalent to the
NLMS method. Second, if a new learning rate, defined
as /?/I\ 4 1 1 2 , is made to vary according to the magnitude
of the transformed input vector, the NLMS method is
then reduced to the standard LMS method. Finally, the
expression in equation (13) is also equivalent to the
LMS method if 9 and 4(x) are each normalized by
II 4(x) I / in equations (8) and (9) (26).

It is well known that the sum of the p eigenvalues of
any matrix is identical to the trace of the matrix. It can
easily be seen that the sum for the normalized input

correlation matrix R is always equal to 1. Thus, the
largest eigenvalue of R must be less than or equal to 1.
Based on the condition, equation (1 l), the modified con-
vergence condition is now given as in equation (14) for
the NLMS method. In addition to the established con-
vergence properties using these learning rules, the rate
of convergence is another important element which
determines the effectiveness of the learning process. The
convergence rate is primarily limited to the smallest
positive eigenvalue of R, and is generally slow if the
inputs are highly correlated (or R is ill-conditioned) (14,
24, 25).

o < p < 2 (14)
Both the LMS and the NLMS methods inherit an

important convergence characteristic: their weight
updates follow a ‘minimum disturbance principle’ (26).
Geometrically each training sample forms a R P -
hyperplane in the weight space, and the normal of
the hyperplane is parallel to the associated transformed
input vector. Given a sequence of training samples,
the weights move along the normal of one hyperplane
defined by one transformed input vector towards
another one defined by a different transformed input
vector, resulting in minimum changes in the weight
magnitude approaching the hyperplanes (Fig. 7a). These
methods are often referred to as orthogonal projection
algorithms because the weight change is parallel to the
normal of the hyperplane. Using the NLMS method
and setting p to 1, the weight vector will drop onto the
hyperplane in one step. If 0 d p < 1, the weight vector
will approach the hyperplane incrementally; if
1 d p 6 2, the weight vector will move past the hyper-
plane. A geometrical interpretation of slow convergence
due to highly correlated inputs is depicted in Fig. 7b. If
the desired model is linear and the set of training
samples are noiseless and sufficiently exciting, the
weight vector will eventually converge toward w*.
However, when the desired model is noisy or nonlinear,
the weight vector will converge to a capture zone
around w*, of size depending on the modelling error
and measurement noise (27,28).

Given that the weight vector converges to a zone
near w*, the minimum mean square output error might
still be large when the modelling error and measure-
ment noise are present. The misadjustment can often be
reduced using a stochastic approximation technique in
which the learning rate for wi is made to vary as in
equation (15) based on the frequency of its update. This
allows the network to be plastic during the transient
stage, but robust enough to filter out the measurement
noise and the modelling error in the steady-state condi-
tion. However, this technique requires that the training
data be stationary unless the learning rate is continually
reset to a large value. The convergence properties of the
binary CMAC network for various training rules have
been established (29).

m

1 P i = m
i = O

2 p ; < m
i = O

During the transient learning, if the training inputs
are separately distributed and most w;s are unin-

@ IMechE 1993 Part I : Journal of Systems and Control Engineering

COMPARATIVE ASPECTS OF NEURAL NETWORK ALGORITHMS FOR ON-LINE MODELLING OF DYNAMIC PROCESSES 229

w2
(a) \:'ell-conditioned case (b) Ill-conditioned case

Fig. 7 Weight convergence trajectories based on NLMS learning rule with B = 1

itialized, the network response can sometimes be weak
even for a large K. A heuristic scheme which increases
the strength of the network response has been proposed
for the CMAC network (30). In this scheme, a vector of
size p is required to register the update status for each
w i . Using this information, the normalization factor is
then redefined as the number of active wi(lz) which has
been updated. The network response can thus be
increased depending on lz, which is generally less than K .
In a similar manner, this scheme can be generalized to
the B-splines network.

3 RADIAL BASIS FUNCTIONS

The radial basis function network was originally
employed as a numerical interpolation technique in a
multi-dimensional space (31), and was later adopted as
a one-hidden-layer feedforward network (32). An excel-
lent review on this topic is given in (12). While the RBF
network exhibits an associative memory characteristic
similar to the LAN, they are different in their centre
placements, the shape of their receptive fields and basis
functions.

3.1 Model structure
The topology of the RBF network can be summarized
as no - n, - n,, where no is the network input dimen-
sion, n1 is the number of basis functions (or hidden
nodes) and n2 is the network output dimension. Each
node in the hidden layer of an RBF network has a radi-
ally symmetric response around a node parameter
vector called its centre. Similar to the LAN, the output
node of the RBF network is formed from a linear com-
bination of these basis functions.

Given a network input vector x = [xl . . . x,,,,]~, the
outputs of hidden nodes are specified by

where I / . 11 denotes the Euclidean norm, pj are positive
scalars known as the widths of the basis functions
(notice that these are defined differently from those in
the LAN), cj = [c ~ , ~ . . cj,JT are the RBF centres and
f(.) is a non-linear function from R' to R, which is
@ IMechE 1993

referred to as the non-linearity of hidden nodes. The
output nodes are defined by

ni

ji =f;,&) = C wi,j6j, 1 < i < n2 (17)
j = 1

where wi , j are the weights connecting the ith output
node to the jth hidden node. The overall response of the
RBF network realizes a mappingf; : Rn0 + Rn2.

There are a variety of choices for the node non-
linearity f (.). Typical examples are the Gaussian func-
tion (Fig. 4c)

and the thin-plate-spline function

f(z) = 2 , log(z) (19)
An alternative 'Gaussian bar' basis function which

responds to a more localized input region than the
sigmoid function, but responds to a less localized region
than the Gaussian function, has recently been proposed
(33). The multi-dimensional basis function is formed
using a weighted summation operator, and can gener-
ally provide better approximation than the Gaussian
function when the training set is small and the inputs
are highly redundant.

The widths of the basis functions can be treated as
free parameters, and each width can be assigned to a
different value. Alternatively, all the widths can be fixed
to a same value p, although some choices off(.) such as
equation (19) do not require such a parameter.

In general, there are many ways to distribute the
hidden node centres in Rn0. Traditionally, one centre is
placed at every training sample provided that the data
set contains a small number of noiseless training exam-
ples. Interpolation can thus be carried out using stan-
dard least-square techniques.* When the data set is
large and the training data are noisy, the number of
basis functions is often chosen to be less than the size of
the data set and the centres are placed at selected train-
ing inputs in order to minimize the overfitting due to
noise. Other methods, such as distributing the centres

* Or singular valued decomposition techniques when the training data are
inconsistent.

Proc Instn Mech Engrs Vol 207

230 P E AN, M BROWN, S CHEN AND C J HARRIS

on a lattice (34) or at random locations in Rn0, have also
been adopted. When the initial centre placement is not
optimal, the centre placement can be adapted using
on-line gradient descent or K-means clustering algo-
rithms (12,35).

The RBF network is a general function approx-
imator, and its performance does not depend critically
on the choice of f (.) . Moreover, even when all the
widths are fixed to a same value, the RBF network with
a sufficient number of hidden nodes is still capable of
uniformly approximating any continuous function.
Theoretical investigation on the approximation capabil-
ities of the RBF network can be found in (2,36).

3.2 Recursive learning
By adopting ideas from non-linear system identification
(37-7-39), the following recursive prediction error (RPE)
algorithm is a general non-linear learning method
which can readily be applied to the RBF network (40,
41). For the general single-output case with p adaptable
parameters, the RPE algorithm takes the form

4 t) = Y (t) - 9(t)

0(t) = 0(t - 1) + P(t)$(t)E(t) (20)
where O(t) is a p-dimensional parameter vector and $(t)
is the gradient vector of j (t) with respect to O(t). P(t) can
be interpreted as the time-average inverse-input corre-
lation matrix, and A is the forgetting factor. The RPE
algorithm has a similar form to the recursive least-
squares (RLS) algorithm and degenerates into the latter
when the network model is linear. The computational
complexity of the RPE algorithm is O(p2). The multi-
output version of the RPE algorithm can be found in
(42). The total number of adaptable parameters in the
RBF network is

p = (n, + l)n , + n, n, (21)
If the size of 0 is large, on-line numerical computation

can still be achieved by using a local learning version of
the RPE algorithm which is known as the parallel RPE
(PRPE) algorithm (40, 41). In this distributed learning
procedure, each node performs its own RPE algorithm
simultaneously. For the generic ith node in the kth
layer, local learning is achieved using

Ok,i(t) = Ok.i(t - l) + Pk,i(t)$k,i(t)E(t) (22)
where 8 k . i is the parameter vector of the ith node in the
kth layer. The computational complexity of the PRPE
Part I : Journal of Systems and Control Engineering

algorithm for the RBF network is O(p'), where p'
(p' < p2) is

p' = (n, + q2n, + .:a2 (23)
The PRPE algorithm for training the RBF network

has the same form as equation (22) with k = 1, 2 and
1 < i < n, . Specifically, for the single-output node

d2,, = w = [w, . . . w , , y (24)

Notice that the learning rule is identical to the RLS
algorithm when the network model is linear. For the ith
hidden node, 1 < i < n,

O1.i = C P i c i . 1 . . ci,noIT (26)

and, if the non-linearity is chosen to be equation (18),

1 < j < n o (29)

In order to avoid pi becoming too small or too large,
the widths are generally constrained to be pmin < pi <
pmax during learning.

An alternative learning scheme can also be employed
by which the RBF centres are adjusted using a recursive
clustering algorithm and the weight vector w is adjusted
using the RLS algorithm (35, 42). Instead of adjusting
the centres using the output error, this clustering algo-
rithm first finds a centre that is nearest to the network
input vector x(t) and then moves the centre closer to
x(t). The algorithm can be described as follows. Let

(30)

(3 1)

di(t) = [I x(t) - Ci(t - 1) / /

dk(t) = min{d,(t), .. . 2 d n ~ (~) }

1 < i < n ,
and

then

Ck(t) = c k (t - 1) + a{X(t) - Ck(t - I)},

ci(t) = c,(t - 1) 1 < i < n , and i # k (32)
where the learning rate c1 lies in the interval (0, 1) and is
slowly decreasing. This learning rule for adjusting
centres has its root in the K-means clustering method
(43), and is similar to the Kohonen's projection scheme
(44). Since the distances di(t) are needed in computing
the network response in equation (17), this clustering
algorithm thus requires a minimal computational over-
head. The recursive clustering algorithm and the RLS
algorithm are linear learning rules, which can often lead
to faster convergence. On the other hand, parameter
adaptation based only on the output error requires
non-linear optimization, and often leads to sub-optimal
modelling performances. Nevertheless, it is important to
notice that the clustering technique is effective only if
the density of the training data is correlated with the

@ IMechE 1993

COMPARATIVE ASPECTS OF NEURAL NETWORK ALGORITHMS FOR ON-LINE MODELLING OF DYNAMIC PROCESSES 23 1

steepness of the training function: more samples are
gathered where the function varies significantly, and
fewer samples are gathered where the function is
smooth.

Besides the adaptable centres, the basis function
widths can also be adjusted based on gradient methods
or nearest-neighbour heuristics (35). In addition to the
network output error, a higher order network derivative
can also be incorporated in the cost function to adjust
the parameters so that the approximation is constrained
to be smooth (12,45).

4 MULTI-LAYERED PERCEPTRON

In a MLP, all the nodes in one layer are fully connected
to the nodes in its adjacent layers, but there is no con-
nection between the nodes within the same layer and no
bridging layer connections. By partitioning the input
space using a set of hyperplanes, the MLP is particu-
larly well suited to high-dimensional classification tasks
(4).

4.1 Model structure
The topological structure of the MLP is depicted in Fig.
8. Inputs to the network are passed to each node in the
first layer. The outputs of the first-layer nodes then
become inputs to the second layer and so on. The last
layer acts as the network output layer and all the pre-
ceding layers are called hidden layers. The architecture
of an MLP can be summarized as no - n1 - . - n,,
where no is the network input dimension, 1 is the
number of layers and ni(l Q i < I) is the numbers of
nodes in the ith layer.

The input-output relationship of the ith node in the
kth layer is defined by

w k , i , j x k - l , j + pk,i
j = 1

(33)

where wk,i*j are the node connection weights, pksi is the
node threshold, f (.) is the node activation function and
x , , ~ denote the network inputs. Based on this relation-
ship, each hidden node partitions the input space with
its hyperplane along which its activation function has a

Hidden
layer

I

Fig. 8 Multi-layered perceptron network with one hidden
layer

@ IMechE 1993

constant output value. Two typical activation functions
are the sigmoid function (10) (Fig. 4d) and the hyper-
bolic tangent function (34).

1 - exp(- 2x)
1 + exp(-2x)

f(x) = tanh(x) =

(34)

(35)

For the purpose of system modelling, the output
nodes usually do not contain a threshold parameter and
the associated activation functions are linear, that is

nr- i

j = 1
x1,i = 1 W , * i , j X l - l * j 1 < i < n, (36)

The overall response of the network realizes a mapping
f,: R"O -+ R"'.

The MLP is a general function approximator, and a
one-hidden-layer network is sufficient to represent any
arbitrary continuous function provided that there are a
sufficient number of hidden nodes in the network. For
many practical problems, networks with two or more
hidden layers may be more efficient in terms of the total
hidden nodes required. The theoretical modelling capa-
bilities of the MLP have extensively been investigated,
for example (1,47,48).

4.2 Recursive learning
Recursive learning algorithms for the MLP are gener-
ally based on gradient-type techniques (13, 40, 41). For
notational simplicity, the single-output case (n, = 1) is
again described. However, the method is readily applic-
able to the general multi-output case. Introducing the
network input vector at sample t as

x(t) = C X ~ , l(t) . . . > xo.n&t)IT (37)
and collecting all the weights and thresholds of the
MLP into a p-dimensional vector 8, where

1 - 2

p = -2 (ni + l)ni+l + n l - l n ,
i = O

Then the overall network output can concisely be
written as

9(t, e) = XI, l(t) =fm{x(t), e> (39)
The well-known backpropagation (BP) algorithm (13)

can be considered as a special case of equation (20) by
replacing P(t) with the identity matrix and by using a
smoothed version of $(t). The BP algorithm thus takes
the form

4 t) = Y(t) - 9(d

e(t) = e(t - 1) + $(t)
= P$(t - 1) + aW)&(t)

(40)
where B and u are the momentum and adaptive gain
respectively. It is straightforward to rewrite equation
(40) into the usual form of the BP algorithm given in
(13). The computational complexity of the BP algorithm
is O(p), where p is defined in equation (38). Alternatively,
the PRPE algorithm can be used. Let $k,i be the gra-
dient of j (t) with respect to & , where 6k.i is defined as

(41) T
ek,i = b k . i wk , i , l * ' ' W k , i , n k - i l

Proc Instn Mech Engrs Vol 207

232 P E AN, M BROWN, S CHEN AND C J HARRIS

The PRPE algorithm for this node has the same form
as in equation (22). The computational complexity of
the PRPE algorithm for the MLP is O(p'), where p' is

1-2

p' = c (ni + 1)2ni+l +
i = O

Although the PRPE algorithm is more complex than
the BP algorithm (p < p'), the former method generally
provides much better convergence properties. The gra-
dients $k,i for an no - n, - n2 - (n3 = 1) MLP are
given in the Appendix.

5 TWO-DIMENSIONAL NON-LINEAR
TIME SERIES MODELLING

A simulated non-linear time series was employed to test
the comparative modelling capabilities of the previously
described networks. The time series is described by the
following second-order non-linear difference equation:

y(t) = C0.8 - 0.5 exp{ -y2(t - l)}]y(t - 1)

-[0.3 + 0.9 exp{ -y2(t - l)}]y(t - 2)

+ 0.1 sin{ny(t - 1)) + e(t) (43)
where e(t) is an additive Gaussian white noise sequence
with zero mean and variance 0.01. If the function which
defines the system non-linearity of the time series equa-
tion (43) is denoted as A(.), the difference equation can
be expressed concisely as

Y W =f,{y(t - 11, Y O - 2)) + 4) (44)
A three-dimensional plot off,(.) is given in Fig. 9. Note
that f , (.) is smooth and is linear with respect to the

In order to train the four network models, 1000 iter-
ated noisy time series samples were generated from an
initial condition y(- 1) = y(0) = 0, and were used as an
identification set. A two-dimensional phase plot of the
identification set is shown in Fig. 10a, in which y(t) is
plotted against y(t - 1). In order to test the fitness of
these network models, another 1000 iterated noiseless
time series samples {ykt) } were generated from an
initial condition yd(- 1) = yd(0) = 0.1, and were used as
a validation set. Figure 10b shows a two-dimensional
phase plot of the validation set. Note that the time

Y(t - 2).

2.0

1.5

1 .o

0.5

h k

x o
-0.5

-1 .0

-1.5

-2.0 -1 .0 0 1.0 2.0

c [-1 .5, 1.51
Y O - 2)

Fig. 9 Deterministic time series surface. Input region: [- 1.5,
1.51 x [- 1.5, 1.51. Surface height range: [- 1.872,
1.8721

series sequence was bounded within the input region
[- 1.5, 1.51 x [- 1.5, 1.51. This forms a necessary input
domain on which the LAN can be employed to model
the time series dynamics.

It can be seen from the phase plot that the underlying
dynamics of the simulated system, equation (43), has a
stable limit cycle and an unstable origin. Any slight per-
turbation near the origin will result in the iterated series
diverging toward the limit cycle in a form of spiral
arms. Based on this characteristic, the gathered training
samples are thus very sparse near the origin, which can
be used to test the abilities of these networks to gener-
alize.

Figure 11 shows the first 60 time history samples in
the validation set. Similar to an amplitude modulation
process, the time history has a fast cycle which repeats
every five samples, and a slow cycle which repeats
roughly every 30 samples. The fast cycle can also be
observed in the spiral arms shown in the phase plot of
the validation set.

5.1 Modelling evaluation
The four networks are trained on the identification set
consisting of iterated noisy time series samples. The

1 5

1 0

0 5

0

-0.5

-1 .0

-1.5
-1.5 - 1 0 -0.5 0 0.5 1.0 1 5

y(r - 1) Y O - 1)

(a) Noisy identification set x (0) = [O, 01 (b) Noiseless validation set x (0) = IO. 1, 0.11

Fig. 10 Non-linear time series phase plots

Part 1: Journal of Systems and Control Engineering 0 IMechE 1993

COMPARATIVE ASPECTS OF NEURAL NETWORK ALGORITHMS FOR ON-LINE MODELLING OF DYNAMIC PROCESSES 233

1.5 1

-1 .5
0 10 20 30 40 50 60

Sample number

A noiseless time history plot: x(0) = [O.l, 0.11 Fig. 11

network input vector at sample t is given by
x(t) = [y(t - 1) y(t - 2)IT, and the corresponding
desired output is y(t). The fitted network models are
then subject to the following performance measures
which can be used to evaluate the transient convergence
properties as well as the steady-state modelling abilities.

Surface plot
If the network model is adequate, the network must be
able to reconstruct fs(.) accurately within the input
region of interest. Surface plots are thus generated over
the region [- 1.5, 1.51 x [- 1.5, 1.51.

Normalized prediction error autocorrelation
A normalized autocorrelation function of prediction
errors E(t + 1 It) can be used to evaluate the approx-
imation ability (or one-step ahead prediction ability)
over the identification set, and is computed as follows:

~ ‘ 0 0 0
f = 1 + k {E(t)E(t - k)} C(k) = z:=”y0 {E(t)E(t)} (45)

where k is the time lag and e(t) is the one-step-ahead
prediction error at sample t over the identification set.
Note that the normalization procedure allows the auto-
correlation analysis to be independent of the magnitude
of the prediction errors. In general, correlations between
time-shifted prediction errors are considered insignifi-
cant if they lie within the confidence limits of _+1.96/
,/(N), where N is the number of training samples in the
identification set (49). The limits in this case are k6.2
per cent. It should be emphasized that the one-step pre-
diction errors being uncorrelated is only a necessary
condition for an adequate network model. Sufficient
conditions to guarantee the adequateness of the model
require more complex tests (49).

Phase plot
While the error autocorrelation function can generally
determine the one-step-ahead modelling abilities of
these networks, the dynamics modelling of the process
requires additional measures. For example, it is impor-
@ IMechE 1993

tant that the network is able to reconstruct the
dynamics of the origin and the limit cycle. Let j?(.) be
the fitted network model. J”,(.) is then used to generate
the network outputs iteratively as in (46). Notice that
no time series observation is involved when the network
outputs are being generated. A phase plot of j(t) against
j(t - 1) is used to evaluate graphically the dynamics
of the fitted network models. The initial condition is
j (- 1) = j (0) = 0.1.

9(t) =f”,{jYt - I), f i t - 2)) (46)

Time history plot
In addition to the phase plots, the time history plots are
also used to evaluate graphically the dynamic modelling
abilities of these networks. Both the network and the
deterministic time series are given the same initial con-
dition of j (- 1) = 1.0, j (-2) = 0.5, and are iterated 60
times independently of each other. In general, the pre-
diction error increases with the number of iterations
when the network model is not exact. The time history
plot can thus be used to determine the prediction
horizon under which the network can accurately model
the time series dynamics.

k-step-ahead prediction error variance
This provides a numerical evaluation of the multi-step-
ahead modelling performance. The k-step-ahead predic-
tion is computed as follows:

(47)
where k 2 l and, if k - j G 0 , j (t + k - j (t) = y (t + k
- j) are time series observations. The k-step-ahead pre-

diction error is defined as

j(t + k I t) =j?{j(t + k - 1 I t), j(t + k - 2 I t)}

~ (t + k I t) = Y(t + k) - j(t + k I t) (48)
The prediction horizon is chosen to be 1 < k < 20. The
prediction accuracy is determined by the variance of
e(t + klt) over the validation set. Apart from a few
initial transient points, the samples in the validation set
all lie on the limit cycle. The variance over the limit
cycle is thus evaluated based on the prediction errors
using the last 900 samples in the validation set.

(49)

Instantaneous learning curve
While the above measures focus on the steady-state
modelling abilities, this measure evaluates the transient
convergence properties of the learning procedures. All
four networks require some forms of gradient estimate
procedures in adjusting the network parameters. The
convergence rate thus depends on the gradient estimate
and the structure of the network model. A root-mean-
square (RMS) of the one-step-ahead prediction errors
over the validation set is thus computed after each
training sample has been presented to the network. The
RMS error generally decreases at a rate depending on
the gradient noise magnitude and the sequence of the
training samples. A biased training sequence is likely to
deteriorate the gradient formation. The ordering of the

Proc Instn Mech Engrs Val 207

234 P E AN, M BROWN, S CHEN AND C J HARRIS

samples in the identification set is thus randomized so
that the instantaneous learning curve is less sensitive to
the training sequence.

5.2 Modelling based on CMAC
A CMAC network with piecewise linear univariate basis
functions and the product operator was used to model
the time series. The bounded input space of interest was
chosen to be [-1.5, 1.51 x [-1.5, 1.51. Any sample
lying outside this region was considered an outlier, and
was excluded from training. Based on this consider-
ation, there were a total of six outliers in the training
set. S and p were both chosen to be 17. By equation (5),
there were a total of 65 adaptable weights in the
network. A use of such large field widths was based on
the assumed prior knowledge that the function is
smooth. The large p results in a small set of adaptable
parameters, which improves the noise-filtering per-
formance. Because the centre placement is modular
(that is, the centre placement in any overlay is
unchanged when the overlay is displaced p units paral-
lel to any axis), the chosen displacement matrix can be
described as

where % represents the modulus operator, as the
overlay displacements are calculated using modulo p
arithmetic.

In every training instance, the network output was
normalized by a sum of p active basis function outputs,
A stochastic NLMS (SANLMS) learning rule was used
to adjust the weights, where the learning rate was
defined as in equation (51). The initial learning rate (b0)
was chosen to be 1, the decaying rate constant (&) was
chosen to be 30 and i is defined as the number of times
that the parameter has been updated throughout train-
ing. The training was carried out incrementally in that
only one sample was used at a time in adjusting the
network weights. One thousand noisy samples were
used in each cycle, and altogether 20 training cycles
were carried out.

After training, 60 weights were actually used in the
identification process. The surface plot &.) is shown in
Fig. 12. The error autocorrelation and the phase plot
are shown in Fig. 13a and Fig. 14a respectively. The
time history plot is given in Fig. 15a. The k-step-ahead
prediction error variance is shown in Fig. 16, and finally
the instantaneous learning curve is shown in Fig. 17a.

5.3 Modelling based on B-splines
Similar to the CMAC, only those samples within [- 1.5,
1.51 x [- 1.5, 1.51 were used in the identification
process. Sy(r-2) was chosen to be 1 and Sy(r-l) was
chosen to be 6. The univariate basis functions were
Part 1: Journal of Systems and Control Engineering

c [-1.5, 1.51
Y O - 2)

Fig. 12 CMAC surface reconstruction. Input region: [- 1.5,
1.51 x [- 1.5, 1.51. Surface height range: [- 1.272,
1.2711

chosen to be piecewise linear along y(t - 2) and
piecewise quadratic along y(t - 1). This choice was
based on the assumed knowledge about the smoothness
of f,(.) and the linear relationship of f,(.) with the
y(t - 2) axis. It must be stressed clearly that the model-
ling performance will, of course, be degraded in the
absence of such knowledge, as shown in (50) using the
same time series. This particular model merely serves as
an example to demonstrate the flexibility of the B-
splines over the CMAC to incorporate prior knowledge.
By equation (3), there were a total of 16 weights in the
network. The displacement matrix was defined as in
equation (6). The learning rule was again based on
equation (51), in which Do was chosen to be 1 and Bd
was chosen to be 50. Again, 20 training cycles were
carried out.

After training, all 16 weights in the network were
used in the identification process. The surface plot A(.)
is shown in Fig, 18. The error autocorrelation function
and the phase plot are shown in Fig. 13b and Fig. 14b
respectively. The time history plot is given in Fig. 15b.
The k-step-ahead prediction error variance is shown in
Fig. 16, and finally the instantaneous learning curve is
shown in Fig. 17b.

5.4 Modelling based on RBF
A RBF network with ten hidden nodes and the Gauss-
ian non-linearity, equation (18), was chosen to model
the time series. By equation (21), there were a total of 40
adaptable parameters in the network. Initial weights
were set to wk0) = 0.0, initial centres q(0) were random-
ly chosen from the region [- 1.0, 1.01 x [- 1.0, 1.01 and
initial widths were set to p,(O) = 2.0. The PRPE algo-
rithm was employed to fit this 2-10-1 RBF network.
The forgetting factor was computed using the rule,
equation (52), and initial matrices Pk,,(0) = 10.OIk,i
where Ik,j are identity matrices of appropriate dimen-
sions. Four training cycles were carried out. During
learning, the widths were constrained to be O.oooOO1 d
p&) d 1000000.0.

A(t) = /lo q t - 1) + 1 - /lo

I, = 0.99 and A(0) = 0.95 (52)
@ IMechE 1993

COMPARATIVE ASPECTS OF NEURAL NETWORK ALGORITHMS FOR ON-LINE MODELLING OF DYNAMIC PROCESSES 235

Lag
(a)CMAC

0 4 8 12 16 20

Lag
(c) RBF

D

Lag
(b) B-splines

Lag
(d) MLP

Fig. 13 Normalized error autocorrelations (lag from 0 to 20)

No further improvement in modelling was found after
four training cycles. The surface plot f,(.) is shown in
Fig. 19. The error autocorrelation function and the
phase plot are shown in Fig. 13c and Fig. 14c respec-
tively. The time history plot is given in Fig. 15c and the
k-step-ahead prediction error variance is shown in Fig.
16. The instantaneous learning curve is shown in Fig.
17c. The centre placement is shown in Fig. 20, and
finally the distribution of weights/widths is depicted in
Fig. 21.

5.5 Modelling based on MLP
A two-layer perceptron was employed to model the
time series. The structure of the network was defined by
2-16-1 and the activation function of hidden nodes was
chosen to be equation (34). By equation (38), there were
a total of 64 adaptable parameters in the network.
Initial weights and thresholds were randomly set to
values between -0.1 to 0.1. The PRPE algorithm was
employed as the learning algorithm. The forgetting

@ IMechE 1993

factor was computed according to equation (52), and
the matrices Pk,i were initially set to 10.OIk,i. Again, four
training cycles were carried out.

After training, the network reached steady-state mod-
elling condition. The surface plot A(.) is shown in Fig.
22. The error autocorrelation function and the phase
plot are shown in Fig. 13d and Fig. 14d respectively.
The time history plot is given in Fig. 15d and the
k-step-ahead prediction error variance is shown in Fig.
16. The instantaneous learning curve is shown in Fig.
17d, and finally the hyperplane placement in the input
space is shown in Fig. 23.

6 DISCUSSION

The modelling results in the previous section suggest
that all four networks are able to capture the essential
time series dynamics accurately. The network surfaces
were found to be similar within the limit cycle region,
but were different near the outline of the region [- 1.5,
1.51 x [- 1.5, 1.51. As the training data were sparse, the

Proc Instn Mech Engrs Vol 207

236

1.5

1 .o

0.5

- = a
h

-0.5

-1.0

-1 .5

P E AN, M BROWN, S CHEN AND C J HARRIS

- 1 . 5 - 1 . 0 - 0 . 5 0 0.5 1.0 1.5

y (t - 1)
(a)CMAC

1.5

I .a

0.5

h

2 0
h

-0.5

-1.c

- 1.5
- i -1.0 - 0 5 0 0.5 1.0 1.5

Y (t - 1)
(b) B-splines

1.5

I .o

0.5

-
2 0
i-.

-0.5

-1.0

- I .5
-1.5 -1.0 -0.5 0 0.5 1.0 1.5

Y (t - 1)
(c) RBF

-1 .5 -1.0 -0.5 0 0.5 1.0 1.5

- 1)
(d) MLP

Fig. 14 Phase plots x(0) = CO.1, 0.11

extrapolation characteristics near the outline are thus
strongly determined by the shape and extent of their
basis functions. This implies that the reconstructed limit
cycle might go unstable for any network if the initial
conditions are set near the edge of [- 1.5, 1.51 x [- 1.5,
1.51. Their error autocorrelation functions are also very
similar, indicating that these networks have formed ade-
quate one-step-ahead models for the, time series. Their
time history plots and k-step-ahead prediction variances
indicate that these networks also have developed accu-
rate iterated dynamics over the limit cycle region. Note
that this was possible mainly because the initial condi-
tions were set near the limit cycle. Of all the networks
the RBF and MLP produced the smaller variances.
That is, these networks have developed better short-
range iterated dynamics over the limit cycle in the
average sense.

When the initial conditions were set near the origin,
the iterated dynamics was found to be quite different, as
can be seen in the phase plots. The fitness of the spiral
arm dynamics can be inferred graphically from its
diverging rate (for example number of points along each
arm) and its phase lag (or its orientation) with respect to

Part I : Journal of Systems and Control Engineering

the true spiral arm. Based on these characteristics, the
B-splines network generated the best spiral arm. The
spiral arms in the CMAC and MLP networks had
slightly faster divergences, implying that their recon-
structed origins were slightly less stable than the true
one. On the other hand, the origin in the RBF network
was found to be much stabler. This implies that the
RBF surface near the origin was much flatter than the
true one.

The B-splines network has incorporated the ‘y(t - 2)
linearity and smoothness’ prior knowledge about the
time series into its model. This results in fewer adapt-
able weights and, in turn, a better noise-filtering condi-
tion. It must be stressed again that the use of such prior
knowledge is merely used to demonstrate the flexibility
of the model structure in the B-splines over the CMAC.
Without such knowledge, the modelling performance of
the B-splines will be similar to that of the CMAC.

The CMAC network has also incorporated the
‘smoothness’ knowledge into its model by using the
globally extended receptive fields. However, the ‘y(t - 2)
linearity’ knowledge cannot be straightforwardly
incorporated into this model because the receptive fields

Q IMechE 1993

COMPARATIVE ASPECTS O F NEURAL NETWORK ALGORITHMS FOR ON-LINE MODELLING OF DYNAMIC PROCESSES 237

1 .o

0.5 -

9 + 6
2 0 -
0
E .- r; b

- 0 5 - -0.5

- 1 0 - - 1 . 0 ~

- 1 . 5 ~
0 10 20 30 40 50 60

Iterated sequence
(a)CMAC

1.5

1 .o

0.5

+4 6
2 0

i=
2

-0.5

-1.0

- 1 . 5
10 20 30 40 50 60

Iterated sequence
(b) 9-splines

-1.5 t
0 10 20 30 40 50 60

Iterated sequence
(c) RBF

-1.5
0 10 20 30 40 50 I

Iterated sequence
(d) MLP

Fig. 15 Comparison of the iterated time history between the noiseless time
series (solid) and each network output (dash) (r(0) = Cl.0, 0.51)

. - 10-2 7’

,0-41 + L-lL,
0 2 4 6 8 10 12 14 16 18 20

k-step-ahead

Fig. 16 k-step-ahead prediction error variances. (0 < k < 20).
(*) CMAC (0) B-splines (x) RBF (+) MLP

0 IMechE 1993

are only sparsely distributed. This thus brings up an
important compromise between the two LAN model
structures: while the CMAC can be employed for mod-
elling in a much higher dimensional space, the existing
placement scheme requires p to be the same in each
axis, which then restricts the flexibility of the CMAC
model.

Similar to the LAN, the RBF and MLP have also
incorporated the ‘smoothness’ knowledge about f’(.)
into their models in order to constrain the networks
from overfitting the noise. This was done by optimizing
the number of nodes in these networks on a trial and
error basis. However, because the RBF basis function
responses are restricted to be radially symmetrical,* the
‘y(t - 2) linearity’ knowledge cannot be incorporated.
Nevertheless, it is possible that other forms of prior
knowledge can be incorporated into the RBF model.

* Except the described Gaussian bar functions.

Proc Instn Mech Engrs Vol 207

P E AN, M BROWN, S CHEN AND C J HARRIS

10'

I 100

10-1

10-21 I
0 200 400 600 800 lo00

Sample number
(a)CMAC

10'

I i

10-2 I I
0 200 400 600 800 loo0

(b) B-splines
Sample number

10'
I

100

L I 1 , . ,. 1

10-1

10-2
0 200 400 600 800 lo00

Sample number
(c) RPF

10'

LO ' I I
0 200 400 600 800 loo0

Sample number
(d) MLP

Fig. 17 Instantaneous learning curves in the first training cycle

One example is to place the RBF centres near the time
series limit cycle.

With regard to the transient convergence character-
istics, their instantaneous learning curves indicate that
the one-step-ahead prediction errors were similar based
on their decaying rates and their RMS errors at the end
of the first training cycle. Among these curves, the one
generated by the B-splines had the least jittering effect.
This might be explained by the use of a relatively small
p for modelling. A summary of the network parameters
used in the time series modelling is given in Table 1.

c I-1.5, 1.51

Fig. 18 B-splines surface reconstruction. Input region :
[- 1.5, 1.51 x [- 1.5, 1.51. Surface height range:

y (t - 2)

[- 1.864, l.SSl]

Part I : Journal of Systems and Control Engineering

7 SUMMARY

The model structures and learning rules of the CMAC,
B-splines, RBF and the MLP networks have been
described. Their modelling abilities were compared
using a two-dimensional non-linear noisy time series.
The network performances were evaluated based on
their surface reconstructions, normalized error autocor-
relation characteristics, phase/time history plots, k-step-
ahead prediction error variances and finally their
instantaneous learning curves. The modelling results
suggest that all four networks were able to capture the
underlying dynamics of the iterated time series.

The LAN can generally achieve adequate con-
vergence properties with simpler learning rules because
their models are linear with respect to their adaptable
weights. Also, their computational complexities in every
training instance are on orders of O(K) where K is a
small number in most practice. Thus, they are well
suited to applications with real-time constraints. The
local generalization property also ensures that the
learning interference across the network is restricted to
be local. Between the two LAN models, the CMAC

Table 1

Network size rule knowledge cycles
Network Learning Prior Training

CMAC 65 SANLMS Smooth 20

4 RBF 40 PRPE
MLP 64 PRPE Smooth 4

B-splines 16 SANLMS Linear/smooth 20
Smooth

@ IMechE 1993

COMPARATIVE ASPECTS OF NEURAL NETWORK ALGORITHMS FOR ON-LINE MODELLING OF DYNAMIC PROCESSES 239

c [-1.5, 1.51
Y O - 2)

Fig. 19 RBF surface reconstruction. Input region: [- 1.5,
1.53 x [-1.5, 1.51. Surface height range: [-1.794,
1.4281

basis functions are sparsely distributed, resulting in a
smaller p compared with the B-splines. In addition, the
number of active weights in the CMAC is user defined,
and is not dependent on n. Thus, the CMAC can be
employed in applications of higher dimensionality rela-
tive to the B-splines. However, the existing placement
scheme in the CMAC requires that p be the same in
each axis, which thus restricts the flexibility of the
CMAC compared with the B-splines, as was demon-
strated in the time series example. Nevertheless, the
sizes p of both networks are still exponentially depen-
dent on n, which pose a computational constraint for
high-dimensional modelling.

Unlike the LAN, the RBF and MLP models can be
highly non-linear because their inner structures are gen-
erally adapted based on the commonly used output
error. The convergence properties of these models are
generally sensitive to the presentation order of the train-
ing data, and often result in undesired sub-optimal solu-
tions, as can be seen in the placement of the RBF
centres (Fig. 20). This means the adaptation based only
on a single criterion might not be desirable when other
effective criteria are available. For example, a better
RBF centre placement for the same time series was

0
0

- 3
-2.0 -1.0 0 1 .O 2.0 3.0

y(r - 1)

Fig. 20 RBF centre placement after four training cycles

0 IMechE 1993

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0

Weight

Fig. 21
cycles

RBF weight/width distribution after four training

Fig. 22 MLP surface reconstruction. Input region: [- 1.5,
1.51 x [- 1.5, 1.51. Surface height range: [- 1.513,
1.4821

/ / I -,<\
-2.0 ~

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

Y (t - 2)

Fig. 23 MLP hyperplane formation after four training cycles

Proc Instn Mech Engrs Vol 207

240 P E AN, M BROWN, S CHEN AND C J HARRIS

found when the thin-plate-spline non-linearity and the
centre clustering algorithm were used (41). Note that,
however, the sizes of these networks are generally not
dependent on n because their basis functions are glob-
ally spanned. Thus, these networks are often better
suited for fitting high-dimensional surfaces with sparse
training data. The convergence rates for these models
are generally slow because of the non-linear opti-
mization procedures and maximum learning inter-
ferences.* Nevertheless, the convergence rates for these
networks can be improved when a higher order gradient
information is utilized for adaptation.

Knowing that the model selection can be influenced
by the dimensionality of the problem domain, it is
possible that the actual number of relevant inputs is
unavailable. When the training inputs are strongly cor-
related or highly redundant, the modelling abilities are
generally degraded as the network is employed in a
much higher dimensional platform. In this situation, the
non-linear models of the RBFT and MLP with adapt-
able inner structures can generally provide more efi-
cient representations of the input-output relationship
than the LAN of fixed inner structurest.

Thus far, the modelling abilities are based on how
accurately these networks interpolate between neigh-
bouring training samples. In the untrained input region,
the extrapolative abilities of these networks are solely
determined by the shape and extent of their basis func-
tions, and are generally unreliable for evaluating the
modelling performance. Owing to the local definition of
basis functions, the LAN embodies a ‘do nothing’ phil-
osophy when an input is distant from the trained
region, as opposed to a ‘do something’ philosophy in
the MLP or a ‘do little’ philosophy in the Gaussian
RBF. Notice that the ‘do nothing’ and ‘do something’
philosophies can be traced back to their initial network
behaviours prior to learning. When these networks are
applied to closed-loop control problems, the ‘do
nothing’ philosophy is generally desirable based on the
similar argument made for the linear adaptive model
described in the introduction.

It has been found in various modelling and control
literatures that certain types of network architectures
are frequently chosen without having carefully justified
their appropriateness for use in specific applications of
interest. It is hoped that this paper can be used as an
unbiased guideline of choosing a network model with
appropriate non-linearity.

REFERENCES

Cybenko, G. Approximations by superpositions of a sigmoidal
function. Math. Control, Signals Syst., 1989,2(4), 303-314.
Park, J. and Sandberg, I. W. Universal approximation using
radial-basis-function networks. Neural Comp., 1991,3, 246-257.
Handelman, D., Lane, S., and Gelfand, J. Integration of
knowledge-based system and neural network techniques for
robotic control. IFAC Workshop on Artijicial intelligence in real-
time control, September, 1988, Swansea, UK.
Harris, C. J., Moore, C. G. and Brown, M. Intelligent control:

* To a lesser extent for the Gaussian basis function.
t Especially the Gaussian bar function described earlier and the tree-structured
basis function network (51), although the basis functions in the latter type are
not necessarily restricted to be radially symmetrical.
1 As mentioned earlier, variants of the LAN with adjustable inner structures
have been proposed (22.23) to tackle this problem.

Part I: Journal of Systems and Control Engineering

some aspects offuzzy logic and neural networks, 1993 (World Scien-
tific Press, London).

5 Hunt, K., Sbarbaro, D., Zbikowski, R. and Gawtbrop, P. J. Neural
networks for control systems-a survey. Autornatica, 1992, 28(6),

6 Miller, W. T., Glanz, F. H. and Kraft, L. G. Application of a
general learning algorithm to the control of robotic manipulators.
Int. J . Robotics Res., 1987,6(2), 84-98.

7 Miller, W. T., Sutton, R. S., and Werbos, P. J. (Eds) Neural net-
works for control 1991 (MIT Press, Cambridge, MA).

8 Tzirkel-Hancock, E. and Fallside, F. Stable control of nonlinear
systems using neural networks. Cambridge University Engineering
Department, F-INFENG, Technical Report 81,1991.

9 An, P. E., Brown, M., Harris, C. J., Lawrence, A. J. and Moore, C.
G. Comparative aspects of associative memory networks for mod-
elling. Accepted for European control conference, 1993, Groningen,
The Netherlands.

10 Miller, W. T., Glanz, F. H. and Kraft, L. G. CMAC: An associa-
tive neural network alternative to backpropagation. Proc. IEEE,

11 Lippman, R. P. An introduction to computing with neural nets.
IEEE ASSP Mag., April 1987.

12 Poggio, T., and Girosi, F. Networks for approximation and learn-
ing. Proc. I E E E , 1990,78(9), 1481-1497.

13 Rumelhart, D. E., Hinton, G. E. and Williams, R. J. Learning
internal representations by error propagation, In Parallel distrib-
uted processing: explorations in the microstructure of cognition
(Eds. D. E. Rumelhart and J. L. McClelland), 1986, pp. 318-362
(MIT Press, Cambridge, MA).

14 Brown, M., and Harris, C. J. Neurofuzzy adaptive modelling and
control, 1993 (in press) (Prentice Hall, Englewood Cliffs, NJ).

15 Albus, J. A new approach to manipulator control: the cerebellar
model articulation controller (CMAC). Trans. ASME, 1975, (63)9,

16 An, P. E., Miller, W. T. and Parks, P. C. Design improvements in
associative memories for cerebellar model articulation controllers
(CMAC). Proceedings of the International Conference on Artijicial
neural networks, Vol. 2, 1991, pp. 1207-1210 (North-Holland,
Helsinki).

17 Parks, P. C. and Militzer, J. Improved allocation of weights for
associative memory storage in learning control systems. Sympo-
sium on Design methods for control systems, Sept. 4-6 1991, Zurich
(Pergamon Press, Oxford)

18 Lane, S., Handelman, D. and Gelfand, J. Development of adaptive
B-splines using CMAC neural networks. IEEE/INNS Interna-
tional Joint Conference on Neural networks (IJCNN), Vol. l , July
1989, pp. 683-688, Washington, DC.

19 Lane, S. H., Handelman, D. A. and Gelfand, J. J. Theory and
development of higher order CMAC neural networks. I E E E Cont.
Sys. Mag., April 1992, 23-30.

20 Brown, M., Harris, C. J. and Parks, P. C. The interpolation capa-
bilities of the binary CMAC. Neural Networks, 1993, 6(3), 429-
440.

21 Cox, M. G. Algorithms for spline curves and surfaces. NPL
Report DITC 166190, 1990 (National Physical Laboratory,
Teddington).

22 Friedman, J. H. Multi-variate adaptive regression splines. Techni-
cal Report 102, 1988, Stanford University Laboratory for Compu-
tational Statistics.

23 Kavli, T. ASMOD-An algorithm for adaptive spline modelling of
observation data. Technical Report, 1992. (Centre for Industrial
Research, Box 124 Blindern, 0314 Oslo 3, Norway).

24 Haykin, S. Adaptive filter theory, 2nd edn, 1991 (Prentice-Hall,
Englewood Cliffs, NJ).

25 Widrow, B. and Stearns, S. D. Adaptive signal processing, 1985,
(Prentice-Hall, Englewood Cliffs, NJ).

26 Widrow, B. and Lehr, M. A. 30 years of adaptive neural networks:
perceptron, madaline and backpropagation. Proc. IEEE, 1990,
78(9), 1415-1441.

27 Kaczmarz, S. Angenaherte Auflosung von Systemen Linearer Glei-
chugen Bull. Int. Acad. Pol. Sci. Lett., Cl. Sci. Math. Nat . Series A.,
1937. 355-357 (a translated version appeared in Int. J . Control,

28 Parks, P. C. and Militzer, J. Convergence properties of associative
memory storage for learning control systems. Automat Rem.
Control, 1989,50(2), (part 2), 254-286.

29 Parks, P. C. and Militzer, J. A comparison of five algorithms for
the training of CMAC memories for learning control systems.
Automatica, 1992,28(5), 1027-1035.

1083-1112.

1990,78, 1561-1567.

220-227.

1993,57 1269-1271).

@ IMechE 1993

COMPARATIVE ASPECTS OF NEURAL NETWORK ALGORITHMS FOR ON-LINE MODELLING OF DYNAMIC PROCESSES 241

30 Tolle, H. and Emu, E. Neurocontrol: learning control systems
inspired by neuronal architectures and human problem solving. In
Lecture Notes in Control and Information Sciences, 1992, No. 172
(Springer, Berlin).

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Powell, M. J. D. Radial basis functions for multivariate inter-
polation: a review. In Algorithms for approximation (Eds. J. C.
Mason and M. G. Cox), 1987, pp. 143-167 (Oxford University
Press).
Broomhead, D. S. and Lowe, D. Multivariable functional inter-
polation and adaptive networks. Complex Syst., 1988,2, 321-355.
Hartman, E. and Keeler, J. D. Predicting the future: advantages of
semilocal units. Neural Comp., 1991,3,566-578.
Sanner, R. M. and Slotine, J. E. Gaussian networks for direct
adaptive control. I E E E Trans. Neural Networks, 1992, 3(6), 837-
867.
Moody, J. and Darken, C. J. Fast-learning in networks of locally-
tuned processing units. Neural Comp., 1989,1(2), 281-294.
Powell, M. J. D. Radial basis function approximation to poly-
nomials. Proceedings of the 12th Biennial Conference on Numeri-
cal analysis, 1987, pp. 223-241 Dundee (Oxford University, Press).
Chen, S. and Billings, S. A. Recursive prediction error estimator
for non-linear models. Int. J . Control, 1989, 49(2), 569-594.
Goodwin, G. C. and Payne, R. L. Dynamic system identification:
experiment design and data analysis, 1977 (Academic Press, New
York).
Ljung, L. and Soderstrom, T. Theory and practice of recursive iden-
tification, 1983 (MIT Press, Cambridge, MA).
Chen, S., Cowan, C. F. N., Billings, S. A. and Grant, P. M. Parallel
recursive prediction error algorithm for training layered neural
networks. Int. J . Control, 1990,51(6), 1215-1228.
Chen, S. and Billings, S. A. Neural networks for linear dynamic
system modelling and identification. Int. J . Control, Special Issue
on Intelligent Control, 1992,56(2), 319-346.
Chen, S., Billings, S. A. and Grant, P. M. Recursive hybrid algo-
rithm for non-linear system identification using radial basis func-
tion networks. Int. J . Control, 1992,55(5), 1051-1070.
Duda, R. Q. and Hart, P. E. Pattern classijication and scene
analysis, 1973 (John Wiley, New York).
Kohonen, T. Self-organization and associative memory, Springer
Series in Information Sciences, 2nd edn 1987 (Springer, Berlin).
Bishop, C. Improving the generalization properties of radial basis
function neural networks. Neural Comp. 1991,3,579-588.
Wright, W. A. Image labelling with a neural network. Proceedings
of the 5th Alvey Vision Conference, pp. 227-232 (Department of
Trade and Industry, London).
Funahashi, K. On the approximate realization of continuous map-
pings by neural networks. Neural Networks, 1989,2,183-192.
Hornik, K. Approximation capabilities of multilayer feedforward
networks. Neural Networks, 1991 4,251-257.
Billings, S. A. and Voon, W. S. Correlation based model validity
tests for non-linear models. Int. J . Control, 1986,44(1), 235-244.
Brown, M. and Harris, C. J. The 9-Spline neurocontroller. In
Parallel processing in a control systems environment (Eds. E. Rogers
and Y. Li) 1993, pp. 134-166 (Prentice-Hall, Englewood Cliffs,
NJ).
Sanger, T. A tree-structured adaptive network for function
approximation in high-dimensional spaces. IEEE Trans. Neural
Networks, 1991,2(2), 285-293.

APPENDIX
The overall response of an no - n1 - n2 - (n3 = 1)
MLP is

n2 n2

g = i = l 1 w 3 , 1 , i x 2 , i = i = x w 3 , 1 , i 4 (1 j= $wZ,i , jxl , j+f i2 , i 1

The activation function 4(.) is assumed to be equa-
tion (34) and its derivative is

~- - Qt(x)(l - +(x)}
ax

For the output node, the gradient vector is

with

For the ith node in the second layer, where 1 9 i 9 n 2 ,

the gradient vector is

with

and

For the ith node in the first layer, where 1 9 i < n,, the
gradient vector is

with

and

i + P2.i

@ IMechE 1993 Proc lnstn Mech Engrs Vol 207

