A Perspective and Critique of Adaptive Neurofuzzy Systems used in Modelling and Control Applications
A Perspective and Critique of Adaptive Neurofuzzy Systems used in Modelling and Control Applications
This paper outlines some of the theoretical and practical developments being made in neurofuzzy systems. As the name suggests, neurofuzzy networks were developed by fusing the ideas that originated in the fields of neural and fuzzy systems. A neurofuzzy network attempts to combine the transparent, linguistic, symbolic representation associated with fuzzy logic with the architecture and learning rules commonly used in neural networks. These hybrid structures have both a qualitative and a quantitative interpretation and can overcome some of the difficulties associated with solely neural algorithms which can usually be regarded as black box mappings, and with fuzzy systems where few modelling and learning theories existed. Both B-spline and Gaussian Radial Basis Function networks can be regarded as neurofuzzy systems and soft inductive learning algorithms can be used to extract unknown, qualitative information about the relationships contained in the training data. In a similar manner, qualitative rules or information about the network's structure can be used to initialise the system. These areas, coupled with the extensive work being carried out on theoretically analysing their modelling, convergence and stability properties means that this research topic is highly applicable in intelligent modelling and control problems. Apart from outlining this work, the paper also discusses a wide variety of open research questions and suggests areas where new efforts may be fruitfully applied.
197--220
Brown, M.
52cf4f52-6839-4658-8cc5-ec51da626049
Harris, C.J.
c4fd3763-7b3f-4db1-9ca3-5501080f797a
1995
Brown, M.
52cf4f52-6839-4658-8cc5-ec51da626049
Harris, C.J.
c4fd3763-7b3f-4db1-9ca3-5501080f797a
Brown, M. and Harris, C.J.
(1995)
A Perspective and Critique of Adaptive Neurofuzzy Systems used in Modelling and Control Applications.
International Journal of Neural Systems, 6 (2), .
Abstract
This paper outlines some of the theoretical and practical developments being made in neurofuzzy systems. As the name suggests, neurofuzzy networks were developed by fusing the ideas that originated in the fields of neural and fuzzy systems. A neurofuzzy network attempts to combine the transparent, linguistic, symbolic representation associated with fuzzy logic with the architecture and learning rules commonly used in neural networks. These hybrid structures have both a qualitative and a quantitative interpretation and can overcome some of the difficulties associated with solely neural algorithms which can usually be regarded as black box mappings, and with fuzzy systems where few modelling and learning theories existed. Both B-spline and Gaussian Radial Basis Function networks can be regarded as neurofuzzy systems and soft inductive learning algorithms can be used to extract unknown, qualitative information about the relationships contained in the training data. In a similar manner, qualitative rules or information about the network's structure can be used to initialise the system. These areas, coupled with the extensive work being carried out on theoretically analysing their modelling, convergence and stability properties means that this research topic is highly applicable in intelligent modelling and control problems. Apart from outlining this work, the paper also discusses a wide variety of open research questions and suggests areas where new efforts may be fruitfully applied.
This record has no associated files available for download.
More information
Published date: 1995
Organisations:
Southampton Wireless Group
Identifiers
Local EPrints ID: 250257
URI: http://eprints.soton.ac.uk/id/eprint/250257
PURE UUID: a241ced6-4405-46ee-bcde-fafaa027c4dd
Catalogue record
Date deposited: 04 May 1999
Last modified: 10 Dec 2021 20:07
Export record
Contributors
Author:
M. Brown
Author:
C.J. Harris
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics