The University of Southampton
University of Southampton Institutional Repository

A Stability Analysis of the Modified NLMS Rules

A Stability Analysis of the Modified NLMS Rules
A Stability Analysis of the Modified NLMS Rules
This paper investigates the stability of two recently proposed modified NLMS learning rules that are based on calculating the smallest weight change which stores the current training pattern exactly. The Lp (p = 1, 2, infinity) norm used to measure the weight update produces different learning algorithms, and it is shown that both new learning rules (p = 1, infinity) can become unstable, as the parameter error increases without bound. This is in direct contrast to the standard (p = 2 norm) NLMS rule which is unconditionally stable (in the sense described in this paper - monotonically non-increasing weight error), and indeed the NLMS rule was originally derived to overcome such limitations. The conditions under which instability can occur are investigated both theoretically and in simulation and are shown to depend on the form of the input vector and only indirectly on the learning rate.
Brown, M.
52cf4f52-6839-4658-8cc5-ec51da626049
An, P.E.
5dc94657-d009-4d13-9a0f-6645a9d296d9
Harris, C.J.
c4fd3763-7b3f-4db1-9ca3-5501080f797a
Brown, M.
52cf4f52-6839-4658-8cc5-ec51da626049
An, P.E.
5dc94657-d009-4d13-9a0f-6645a9d296d9
Harris, C.J.
c4fd3763-7b3f-4db1-9ca3-5501080f797a

Brown, M., An, P.E. and Harris, C.J. (1995) A Stability Analysis of the Modified NLMS Rules. IEEE Trans. on Signal Processing.

Record type: Article

Abstract

This paper investigates the stability of two recently proposed modified NLMS learning rules that are based on calculating the smallest weight change which stores the current training pattern exactly. The Lp (p = 1, 2, infinity) norm used to measure the weight update produces different learning algorithms, and it is shown that both new learning rules (p = 1, infinity) can become unstable, as the parameter error increases without bound. This is in direct contrast to the standard (p = 2 norm) NLMS rule which is unconditionally stable (in the sense described in this paper - monotonically non-increasing weight error), and indeed the NLMS rule was originally derived to overcome such limitations. The conditions under which instability can occur are investigated both theoretically and in simulation and are shown to depend on the form of the input vector and only indirectly on the learning rate.

This record has no associated files available for download.

More information

Published date: 1995
Additional Information: submitted for publication
Organisations: Southampton Wireless Group

Identifiers

Local EPrints ID: 250283
URI: http://eprints.soton.ac.uk/id/eprint/250283
PURE UUID: 01846b74-f438-45f4-8df9-3c5d2530cfc0

Catalogue record

Date deposited: 04 May 1999
Last modified: 10 Dec 2021 20:07

Export record

Contributors

Author: M. Brown
Author: P.E. An
Author: C.J. Harris

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×