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1 Introduction

The automatic derivation of the pronunciation of an English word from its spelling
is a difficult problem of some practical significance. Most often, pronunciation will
be specified as an idealised phonemic ‘baseform’ (which may or may not include
stress markers) so that we refer here to this process as text-phoneme conversion.

Interest in the conversion problem comes from two rather different points of view.
First, interactive computer systems featuring speech output generally have a require-
ment for textual input. It makes sense to translate this input to some intermediate
representation (e.g. phonemic) closer to the actual sounds to be synthesised. Second,
the conversion process is a key component of many models of human language pro-
cessing — particularly reading aloud. The earliest attempts at automated conversion
(Ainsworth, 1973) were made by speech scientists concerned with the technology of
synthesis. These avoided dictionary matching (because of limitations of computer
memory) and were based on a set of letter-to-phoneme rules, manually written by
expert phoneticians to capture the regularities which clearly exist in spelling-sound
correspondence. This formalism remains popular in both fields of endeavour. For
instance, present-day commercial text-to-speech (T'TS) systems achieve acceptable
performance by combining dictionary matching with the use of rules for the trans-
lation of words not present in the dictionary. Apart from this commonality in the
use of a rule-based formalism, and given that essentially the same process is under
study, it is perhaps surprising that the two fields of speech synthesis and psycholog-
ical modelling have not informed one another more than they have so far done.

In both areas, however, there is currently much interest in inductive learning of the
regularities of text-phoneme correspondence. If the automatic, conversion process
is also self-learning, then this should reduce the manual effort necessary to build a
TTS system. Further, since the human ability to read is acquired rather than innate,
a self-learning converter is better able to serve as a model of language processing.

Recently, connectionism has emerged as an influential paradigm in psychology, as
well as figuring prominently in speech technology, largely stemming from the discov-
ery of powerful self-learning algorithms such as error back-propagation (Rumelhart
et al, 1986). From the psychological perspective, the parallel distributed nature of
a connectionist model lends it a good deal more plausibility than a set of rules since,
unlike the latter, we can readily see how the former might be implemented in ‘brain-
ware’. Quite apart from any concern with TTS systems or the modelling of human
language processing, text-phoneme conversion has proved a popular application for
workers interested in neural computation for its own sake. Because the mapping
between text and phonemes is complex, the problem provides a good test for the
power of neural solutions, and has become something of a standard in this respect.

The literature on connectionist and self-learning approaches to text-phoneme con-
version is considerable but widely dispersed. In particular, as stated above, work in
the area of speech synthesis has not always been informed by relevant work in psy-



chological modelling, and vice versa. In this chapter, we present a critical, unifying
review of this literature which we believe to be the first such to appear. As well as
collecting the various pieces of work together so as to render them more accessible,
we also categorise approaches and highlight relations between them. This is done to
form a framework for the following two chapters, as well as in introduction to them.
Not all the approaches dealt with are obviously connectionist in inspiration; they are
included for completeness and because, in some cases, a rather obvious connectionist
implementation is possible — if not necessarily parsimonious or efficient.

The chapter is structured as follows. Section 2 outlines the traditional, rule-based
approach to text-phoneme conversion. Subsequently, a variety of automatic dis-
covery techniques is treated in section 3, namely generate-and-test rule induc-
tion, rule induction by clustering, decision-tree induction, Markov modelling, back-
propagation networks in general, synthesis-by-analogy (including memory-based rea-
soning) and syntactic neural networks. Where the techniques are not neural in in-
spiration or in origin (e.g. decision-tree induction and Markov modelling), prospects
for neural implementation are considered. Finally, section 4 summarises.

2 Principles of Rule-Based Translation

The synthesis of unrestricted-vocabulary speech from orthographic text is, in the
words of Klatt (1987, p.781), “a new technology with a rapidly changing set of
capabilities and potential applications.” Present-day TTS systems typically use a
large dictionary of pronunciations in conjunction with a set of letter-to-sound rules
to produce a phonemic transcription of the text (Allen, 1976; Allen et al, 1987).
The rules are invoked to transcribe words for which no dictionary match is found.

For English at least, the text-phoneme conversion process is far from trivial, reflect-
ing the many complex historical influences on the spelling system (Venezky, 1965;
Scragg, 1975). Indeed, Abercrombie (1981, p.209) describes English orthography as
“... one of the least successful applications of the Roman alphabet.” Some of its
well known vagaries are that letter combinations (ch, gh, ll, ea) frequently act as
a unit (a ‘grapheme’) signaling a single phoneme, a single letter occasionally corre-
sponds to more than one phoneme (as in (siz, /siks/)), pronunciation can depend
upon word class (e.g. convict, subject) and there can be non-contiguous “markings”
as with the final, mute e of (make, /meik/) (Wijk, 1966; Venezky, 1970).

Ever since the pioneering work of Ainsworth (1973), text-phoneme conversion for
speech synthesis has (in the absence of a dictionary-derived pronunciation) tradi-
tionally used a context-dependent rewrite rule formalism of the sort favoured in
generative phonology (e.g. Chomsky and Halle, 1968, p.14). Such rules can also be
straightforwardly cast in the IF... THEN form commonly employed in expert sys-
tems technology. The notion underlying the conversion process is that it is possible
to arrive at a translation for any “letter unit” (grapheme) — and thereby for a whole



word — provided enough contextual information is available. Rules are of the form:
[A]B[C| — D

which states that letter substring B with the left context A and right context C
rewrites to phoneme substring D. Influential rule sets in this tradition are those of
Elovitz et al (1976) and Hunnicutt (1976).

Because of the complexities of English spelling-to-sound correspondence, more than
one rule generally applies at each stage of transcription. The potential conflicts
which arise are resolved by maintaining the rules in a set of sub-lists, grouped by
(initial) letter and with each sub-list ordered by specificity. Typically, the most
specific rule is at the top and most general at the bottom. In the Elovitz et al rules,
transcription is a one-pass, left-to-right process. For the particular target letter
(i.e. the initial letter of the substring currently under consideration), the appropri-
ate sub-list is searched from top-to-bottom until a match is found. This rule is then
fired, the linear search terminated, and the next untranscribed letter taken as the
target. The last rule in each sub-list is a context-independent default for the target
letter, which is fired in the case that no other, more specific rule applies. Transcrip-
tion is rather more complex with the Hunnicutt rules which use three passes; also,
processing can be in either direction. First, affixes are stripped, then consonants
are converted, and finally vowels and affixes are transcribed. This procedure allows
converted (phonemic) strings which are highly dependable (i.e. for the consonants)
to be used as context in the more complex rules for vowel and affix transcription.
Again, rules are ordered to facilitate conflict resolution; however, the determination
of an appropriate ordering is often problematic (Carlson et al, 1990, p.275). Af-
ter conversion of letters to phonemes, lexical stress can be added using a similar
context-dependent formalism; see Church (1985) for a review.

In spite of obvious commonality between the computational process of TTS con-
version and the psychological process of reading aloud, there has been very little
interaction between techniques for the former and models of the latter. As we have
just seen in the case of speech synthesis, the standard approach utilises a pronounc-
ing dictionary for known words and a set of general-purpose, context-dependent
translation (CDT) rules which is invoked if the input word is not in the system’s
dictionary. In the case of reading aloud, the standard model also involves two routes
to pronunciation. So-called dual-route theory (e.g. Forster and Chambers, 1973;
Coltheart, 1978) posits a lexical route for the pronunciation of known words and a
parallel, simultaneously-activated route utilising abstract grapheme-phoneme con-
version (GPC) rules for the pronunciation of unknown, or ‘novel’, words (Figure 1).
Unlike the sequential application of dictionary matching followed by contingent rule-
based translation in a TTS system, the two routes are usually conceived as operating
essentially in parallel in the psychological model. Arguments for dual-route theory
are based on the ability to pronounce pseudowords, latency difference effects be-
tween regular and exception words, and apparent double dissociation between the
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Figure 1: Schematic of the dual-route model for the production of pronunciation
from print. After Humphreys and Evett (1985).

two routes in dyslexia (see Humphreys and Evett, 1985, for an extensive review and
discussion).

It follows from earlier discussion of the complexities of letter-sound correspondence
in English that the task of writing an adequate set of CDT rules is labour-intensive
and requires detailed, expert knowledge of the particular language. Once the rule
set reaches a certain size, it becomes difficult to modify in the light of errors, because
of the potential for interaction between rules. Problems such as this have led to the
production of rule compilers (Carlson and Granstrom, 1975; Hertz et al, 1985; Van
Leeuwen, 1989) which aim to give automatic assistance to rule developers for speech
synthesis systems. Clearly, the necessity for such devices reduces the psychological
plausibility of the rule-based approach greatly: it is difficult to imagine humans
employing the mechanisms embodied in rule compilers for language acquisition.
Recently, however, interesting advances have been made in applying self-learning —
or ‘automatic discovery’ — techniques to the problem of mapping text to phonemes.
Not only does this offer the promise that much of the labour in traditional rule
generation might be avoided, but the techniques are much more reasonable from a
psychological point of view as they are well suited to implementation in ‘brainware’.



In this approach, transcribed texts or entries in a machine-readable pronouncing
dictionary are treated as sources of training data from which the system learns
generalisations useful for the transcription of seen and unseen words alike.

3 Review of Self-Learning Systems

In this section, we review previous attempts to generate automatically systems ca-
pable of performing text-phoneme transcription.

3.1 Generate-and-test rule induction

Early work applying self-learning techniques to text-phoneme conversion (Oakey
and Cawthorne, 1981; Klatt and Shipman, 1982) retained the CDT rule formalism
and aimed to infer a rule set by a generate-and-test process. These attempts were
not inspired by connectionist ideas: they are included here for completeness.

Oakey and Cawthorne started from a context-independent base set (the default
rules) and worked through the dictionary, generating pronunciations for each word
and comparing this with the known, correct version. Any difference between gener-
ated and correct pronunciation was then used to create a new, special-purpose rule
to cater for the mispronunciation. This creation process requires an alignment of
text and phonemes, i.e. we need to know which letter(s) to associate with which
phoneme. Oakey and Cawthorne’s technique for this appears rather ad hoc, being
based on a “look-ahead” heuristic. Subsequently, any such special-purpose rules
which were sufficiently similar were generalised by combination to produce some-
what more general rules, which were themselves candidates for combination. Like
the alignment technique, the combination methodology looks fraught with problems.
Typical questions which arise during generate-and-test rule inferencing include: Are
the problematic rules too general or too specific? Should the left context, the right
context or both be adjusted? Should the target substring be increased or reduced
in length?

Klatt and Shipman (1982), for instance, attempted to avoid such problems by se-
lecting “only the most popular of each set of conflicting rules”; these were then
formed into a decision tree to facilitate rapid translation. Although they do not give
performance figures or make any subsequent report on their work, Klatt later states
(1987) that an error rate of 7% was obtained. The rules were inferred from 10,000
words obtained by randomly dividing a 20,000-word pronouncing dictionary in two,
and the system was tested on the unseen half of the dictionary. Such a high level of
performance is remarkable in view of the gross way of treating conflicting rules.

Oakey and Cawthorne tested their set of rules on the training data after deleting all
“basic” rules, i.e. the created rules which (by their very nature) were entirely spe-
cialised to the mispronunciations. Of course, if this had not been done, performance



on the training data would have been 100%. In this way, the generalisation power of
the technique was under test (although not exactly on ‘unseen’ words). On the La-
dybird Key Word texts (477 words) for beginning readers, scores of 84% phonemes
correct and 59% words correct were obtained. Corresponding figures for the Elovitz
et al rules, manually anglicised, were 91% and 84% respectively. Clearly, this is not
a very demanding data set. On the 1015 words in their pronouncing dictionary with
initial letter a, however, the relevant figures were 74% phonemes correct and 21%
words correct. This was actually superior to the respective figures of 64% and 16%
obtained with the modified Elovitz et al rules.

Van Coile (1990) describes a generate-and-test rule induction process which appears
to be a significant improvement over that of Oakey and Cawthorne. Rules are gen-
erated for one letter at a time. Starting with aligned data (see section 3.4 below),
the training set is searched for occurrences of that letter, and each occurrence fur-
nishes a pronunciation example. The left and right contexts are subject to an upper
limit of 3 letters each. The phoneme that most frequently occurs in the examples
is taken as the right-hand side of the (context-independent) default rule. Initially,
pronunciation examples handled correctly by the default are marked realised and
the remainder are marked not yet realised. The creation of new rules then proceeds
iteratively. All possible different letter contexts are generated for the not yet realised
examples. Next, one phoneme is associated with each generated context and the
rule (i.e. context plus phoneme) that most improves the performance of the current
rule set is added to the current set. The examples are now scanned again and either
marked realised or not yet realised. (Van Coile notes that it is possible for realised
examples to be re-marked not yet realised.)

The induction process is kept tractable by considering contexts of one fixed length,
C, at a time in conjunction with two other parameters, M and T. M is the max-
imum context length that occurs in the previously-determined rules and 7' is a
performance-increase threshold which must be exceeded for a newly-generated rule
to be added to the current set. After learning on a random selection of 7000 of
the 10,000 most common Dutch words, which generated an average of 14 rules per
letter, the method was evaluated on the remaining 3000 words. Performance “at the
grapheme level was better than 96%” which, ignoring stress, corresponds to roughly
82% correct at word level. Van Coile concedes that this is inferior to the performance
obtained from traditionally-developed rule sets (but see discussion above concerning
the difficulty of assessing rules alone) yet believes the inductive technique is “very
useful to obtain a good initial rule set for further manual development”.

A question worth posing is: why does Van Coile’s generate-and-test approach to
rule induction produce so much better results than Oakey and Cawthorne’s initial
attempt? It seems likely that the key factors are the use of a principled alignment
technique based on the Viterbi algorithm (see 3.4 below), together with the strategy
of processing one letter at a time across the whole training set, rather than processing
one word at a time. It is difficult to say in quantitative terms how much easier the
transcription task is for Dutch than for English.



Parse 1 Parse 2

Letters: (this) th—i—s
Phonemes: <01s> 0—1—s 0—I— 8

Figure 2: Contiguous symbol clusters in the letter (L) and phoneme (P) domains.
Contiguities, within domains and between them, are shown with connecting lines.
After (hypothetical) Parse 1, the letter cluster th is recognised as a common sub-
string, allowing the LP cluster (th)<3d> to be identified at Parse 2. After Wolff

(1984).

3.2 Rule induction by clustering

Wolff (1984) describes a method of inducing CDT rules based entirely on clustering.
While he calls his formalism “context-free” (p.12) the end result is a concatenation
of context-independent rules, which amount to context-dependent rules.

The method first searches the dictionary (in multiple passes) looking for common
clusters of contiguous symbols “using frequency and size of cluster as a guide to
which amongst the manifold alternatives are best”. Clustering occurs not only
within the separate domains of letters (denoted L) and of phonemes (denoted P),
but across domains also. This demands an extension of the concept of contiguity to
the cross-domain (LP) situation. Wolff’s solution is to parse the orthographic and
phonemic representations “in step”, and to consider as contiguous those elements
(i.e. single letters, single phonemes or clusters) which are identified in sequence.

Figure 2 illustrates this for the example word (this, /81s/), where all contiguities are
shown as connecting lines. Initially (Parse 1) then, letter ¢ is considered contiguous
not only with letter A in the L domain but with phoneme /3/ in the P domain
also. Imagine that after the first pass through the dictionary, the L cluster th is
identified. Then, at Parse 2, th is now considered to be contiguous both with ¢ and
/8/. Similarly, both letter ¢ and phoneme /1/ are considered to ‘follow’ /8/. In
this way, Wolff aims to build up LP clusters such as (th)<8>, which function as
context-independent rules or, in Wolff’s terminology, “basic” rules. Note how the
clustering technique involves an implicit alignment of text and phonemes, rather
than requiring an explicit, prior alignment.

Clearly, the set of “basic rules” (being context-independent) will in general be am-
biguous. For instance, both (th)<d> and (th)<6> are likely to exist and there is
no way of telling (without further analysis of the training data) which should be
used in translating a given occurrence of th. Wolff uses a method of disambiguation
which is a variant of the clustering process. Having first identified ambiguous rules,



contiguous pairs of such rules are clustered to produce new (context-dependent)
“complex” rules. This should continue iteratively until no ambiguity remains in the
rule set.

In the implementation reported, only one “rule” (cluster) is formed for each pass
through the dictionary — clearly a very inefficient scheme. Unfortunately too, due
to a software bug, Wolff was unable to run his program to completion. Nonetheless,
interesting results were obtained. With a dictionary of 800 (most-frequent) words,
the first LP cluster formed was (¢)<t>. Other early LP clusters to emerge were
(er)<eo> and (ng)<y>. Since a complete set of “basic” rules could not be obtained
automatically, the disambiguation process was tested on 252 hand-compiled “basic”
rules. “Complex” rules were automatically formed up to an (arbitrary) limit of 200
in number, and their inclusion shown to reduce the size of the ambiguity set. Given
the promise of this approach, it is a pity that a complete working system was never
achieved.

Although Wolff’s work was not obviously inspired by connectionism, clustering is a
fundamental property of many unsupervised neural schemes so that a connectionist
implementation should not be difficult.

3.3 Decision-tree induction

Segre et al (1983) describe a system using “two transcription rule sets which are
machine generated over a set of sample transcriptions”. The first operates on words
and produces stress assignments; the second subsequently maps a letter “cluster”
(with known stress value) onto its corresponding phoneme string. The approach of
assigning lexical stress first is an interesting departure from the usual procedure.
These authors base the rule-inference process on machine-learning techniques like
that of Quinlan (1979;1990), which generate decision trees based on sets of examples
and their classifications, in terms of an adequate set of features. Although they give
a step-by-step description of the inference algorithm as applied to the generation of
the stress rules, the learning of phonemic transcription rules is effectively ignored
(beyond saying it is “similar”). In particular, the way the letter clusters are formed
is not stated. Disappointingly, no performance data are given.

Lucassen and Mercer (1984), however, describe what was arguably the first self-
learning technique to be theoretically well-founded and to achieve a (quantified)
measure of success. Accordingly, it has materially influenced later approaches and
so we describe it in some detail here.

Lucassen and Mercer view the transcription process as a transformation from a
word’s spelling, s, to its phonemic baseform, 3, via a noisy channel. The term
“phonemic baseform” describes the (idealised) word pronunciation as might be found
in a pronouncing dictionary. It is used by Lucassen and Mercer in distinction to
“pronunciation” which, in their terminology, is the phoneme or phonemes corre-
sponding to a single letter. The current (target) letter has a context of letters to



left and right and of phonemes to the left; all these symbols together constitute the
channel context.

The features of the model determine a partition either of the set of letters, L, or of
the set of phonemes, P. The pronunciation 7w of the current letter is thus a string
which is an element of the power-set P*. The authors point out the similarity of this
formalism to a set of context-dependent rules (except that probabilities are involved
here).

Lucassen and Mercer aim then to construct a vector, h, of binary features for channel
contexts consisting of the current letter (Lg), the 4 letters to the left and the 4 letters
to the right of Lo (L_4, ..., Ls), and the 3 phonemes to the left of Ly (P_3,..., P_1).
Note the requirement for text and phonemes to be aligned since the 3 phonemes to
the left of Ly must be known. They assume that the best binary feature for one of
these symbols is that which maximises the mutual information between features and
pronunciations, and present a (sub-optimal) algorithm to construct this. Given the
best binary feature, another (presumed close to the next-best) can be computed and
included with the original to produce a two-element feature vector which effects a
4-way partition of the relevant set. This feature inclusion proceeds until a complete
partition is achieved. Altogether, for their lexical data, a 6-element vector is required
to give a complete partition of L, and an 8-element vector for P. The concatenation
of the feature vectors for L_4,..., Ly, P_3,...,P_1 corresponds to the 78-element
feature vector h for the entire channel context. At this stage, the automatically-
selected features are used to build a decision tree which determines the order in which
the bits of h should be examined, and how many bits should be examined, before
selecting a pronunciation. To each leaf of the resulting decision tree is attached a
probability distribution over the pronunciations, evaluated as the weighted sum of
a posteriort maximum likelihood estimates at each node on the path from root to
leaf.

After training on their lexicon, the system was tested on 194 words chosen at random
from IBM’s office-correspondence database having a vocabulary of 5000 words. Of
1396 phonemes, 1308 (or 94%) were correctly transcribed. Interestingly, 47 of the
88 errors (53%) were reported to be errors of vowel stress placement. The authors
do not state how many of the test words, if any, were absent from the training data.
It is unfortunate that testing was on such a small data set.

The decision-tree induction approach is not connectionist in origin or inspiration.
However, many workers have considered neural implementations of decision trees, or
the combination of the two approaches (e.g. Stromberg et al, 1991; Rahim, 1994).

3.4 Markov model techniques
Like many subsequent approaches, the Lucassen and Mercer methodology is depen-

dent on having available aligned (s, 3) word pairs, in order that the i-index of P; can
be related to Ly. Alignment was achieved by recognising that that their translation
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formalism was a kind of hidden Markov model (HMM), so that standard algorithms
could be exploited. In fact, they used for alignment a much a simplified model of
the spelling-to-baseform channel in which the channel ‘context’ consisted solely of
the current letter. The parameters of this model were optimised using the forward-
backward algorithm (Baum, 1972) and a dynamic-programming technique applied
to find the most probable alignment of letters with phonemes.

Thus, Lucassen and Mercer faced a ‘bootstrapping’ problem of alignment: to align
text and phonemes effectively, as a first step in inferring correspondences between
the two domains, one needs a set of correspondences (explicit or implicit) to start
with. Indeed, the requirement for an explicit correspondence set is central to later
alignment techniques, such as that of Lawrence and Kaye (1986) which has become
a standard. In principle, for a technique to be truly self-learning, any necessity for
a prior alignment phase (i.e. using explicit, pre-compiled correspondences) should
be avoided — a point which is taken up in the following chapter by Bullinaria.

The use by Lucassen and Mercer of the hidden Markov model techniques which were
then starting to dominate speech recognition has inspired a small number of more
recent attempts to employ an HMM formalism for text-phoneme conversion.

Van Coile (1990), whose rule-induction work is described above, has used a hidden
Markov phoneme model in conjunction with the Viterbi algorithm (Viterbi, 1967;
Forney, 1973) to align the orthographic and phonemic representations of words prior
to a rule-induction phase. When trained on the 10,000 most-frequent Dutch words
and using 1/72 (see below) as the initial output probability for all phonemic sym-
bols, 98.5% correct alignment of words results (relative to a manual alignment),
corresponding to better than 99% correct phoneme alignment.

Van Coile’s program supports 72 different output (phoneme) symbols. The use of
an equiprobable initial output distribution, while having the strong virtue of min-
imising the assumptions made, might be expected to lead to problems with training.
By contrast, initial transition probabilities appear to have been decided on the basis
of intuition. They are detailed in the paper. The need to decide on some specific
values for the initial probabilities is, of course, just another instance of the ‘boot-
strapping’ problem. This fact becomes plain when Van Coile also reports alignment
results using output probabilities based on “some very simple observations about the
correspondence between orthographic and phonetic representations in Dutch.” In
general, these output probabilities gave superior results to the equiprobable values
for smaller training sets, but the advantage disappeared as the size of the training
set increased.

Rather than using HMM techniques for prior alignment only, Parfitt and Sharman
(1991) extend the formalism to give a complete, bi-directional (text-phoneme and
phoneme-text) model. Thus, in the case of predicting pronunciation from spelling,
the orthography is seen as the observed sequence of output symbols emitted by the
model as it makes transitions between its hidden, phonemic states. In its present
form, each state corresponds to a single phoneme; thus, the Markov property dictates
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a simple bigram model. Parfitt and Sharman point out, however, that the formal-
ism is trivially expandable to higher-order n-grams. The problem then is to find the
(phonemic) state sequence which accounts for the observed (orthographic) output
with greatest probability; this problem is solved using the Viterbi algorithm. Once
obtained, initial estimates of the model’s parameters (phoneme-transition probabil-
ities and output probabilities) can be subsequently re-estimated using the forward-
backward algorithm. While the initial transition probabilities were simply estimated
by frequency counts using a (frequency-weighted) pronouncing dictionary, it is not
so simple to estimate the initial output probabilities. Two possibilities are to as-
sume equiprobability (as did Van Coile) or to make frequency counts of word pairs
after orthographic-phonemic alignment using an algorithm like that of Lawrence and
Kaye (1986). Parfitt and Sharman, however, adopt initially an intermediate position
of assuming that each phoneme in a word’s “phonetic” form has an equally-likely
chance of generating any of the letters in the orthographic form, although subse-
quently they do employ a dynamic-programming alignment algorithm as well.

The model was trained on a 50,000-word spoken English corpus, which had been
previously transcribed into both orthographic and phonemic form. Parfitt and Shar-
man do not specify the size of their training and test sets; the values which follow
come from a personal communication. A 41,169-word section was selected for train-
ing, and a disjoint 1290-word section extracted for testing. There were 8149 distinct
words in the training text, and 626 in the test text with an unknown number of
these not present in the training data. Transcription accuracy is approximately
53% phonemes correct for initial estimates based on unaligned word pairs and with
frequency counts normalised for a priori occurrence of phonemes. After 4 iterations
of Baum-Welch re-estimation, this improves to approximately 70% phonemes cor-
rect. Using the dynamic-programming alignment improves the initial (normalised)
estimates to 85% phonemes-correct.

While forward-backward re-estimation improved performance in the case of the
poorer initial estimates of the model’s parameters, for the better initial estimates
based on alignment, performance actually deteriorates (to around 76% after 4 iter-
ations).

Luk and Damper (1991;1994) describe an approach to text-phoneme translation
that they call stochastic transduction. The approach is based on formal language
theory and, in particular, the use of a stochastic ‘transduction’ grammar to model the
translation process. In this work, the terminal symbols of the transduction grammar
are text-phoneme correspondences and the translation of a word is modelled as
sentential derivation producing a string of such correspondences. It is self-learning
in that the terminals (correspondences) are inferred from training data, as are the
probabilities of the rewrite rules of the stochastic grammar. Because the work in
its current form embodies a regular grammar and the Markov assumption for the
rule probabilities, it is essentially a form of Markov (but not hidden) modelling.
However, these restrictions are not necessary so that the stochastic transduction
formalism is in principle considerably more general than HMM approaches.
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Luk and Damper (1994) have reported 100% alignment performance on 18,767 train-
ing words and 1667 unseen, test words from the Oxford Advanced Learners’ Dictio-
nary (Oxford University Press, 1989). The percentage of words correctly translated
is 72% for the training set and also 72% for the test set, for a version of the model in
which correspondences were inferred on the presumption that they should end just
after a vowel or after at most 2 consonants in the phoneme domain.

Again, the hidden Markov model formalism developed in a way that was entirely
divorced from notions of connectionism. Recently, however, a number of authors
has considered relations between the two (Bridle, 1990; Néadas, 1994). HMMs are
generative models based on statistical distributions, and can be trained by statis-
tical estimation procedures. On the other hand, neural networks are not usually
generative nor trained by statistical methods but by gradient descent, error min-
imisation. These differences, however, are not irreconcilable. By considering neural
models which can be trained on a maximum likelihood basis, connectionist imple-
mentations of HMMs can be realised.

3.5 Back-propagation networks

The best-known example of a self-learning text-to-phoneme system is probably
NETtalk, a back-propagation network described by Sejnowski and Rosenberg (1987).
This is described in some detail by Bullinaria in his following chapter, and so is only
briefly dealt with here. NETtalk was primarily an attempt to model aspects of
human learning. One of the most attractive characteristics of connectionist models
is surely that their distributed, parallel nature lends them a degree of psychological
plausibility. In what follows, we consider other work which has used multi-layer,
feedforward nets trained by (supervised) error back-propagation for text-phoneme
conversion.

McCulloch et al (1987) describe NETspeak (Figure 3), intended principally as a re-
implementation of NETtalk. However, this work additionally explored the impact
of different input and output codings, and examined the relative performance of sep-
arate networks for the transcription of common and uncommon words respectively.

Like NETtalk, NETspeak used a window of 7 characters which was stepped across
the input one character at a time. As does Klatt (1987), McCulloch et al cite
Lucassen and Mercer (1984) as having demonstrated that a 7-character window
contains sufficient context to produce a reasonable transcription while avoiding the
high computational expense of larger windows. However, Lucassen and Mercer
actually used a nine-letter window. Further, the view of Church (1985, p.246) is
relevant: “... stress dependencies cannot be determined locally. It is impossible to
determine the stress of a word by looking through a five or six character window.”

The input and output codings were thought to be important in that “an appropriate
coding can greatly assist learning whilst an inappropriate one can prevent it.” Each
input character was represented in NETtalk by a sparse (1-out-of-n) code of 29 bits
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Figure 3: The architecture of NETspeak. Redrawn from McCulloch et al (1987).

— one bit for each of the 26 letters and 3 additional bits for punctuation marks.
Thus, the number of input units, ¢, was 7 x 29 = 203. By contrast, NETspeak used
a more compact (2-out-of-n) 11-bit coding, giving ¢ = 77. The first 5 bits indicated
which of 5 rough, “phonological sets” the letter belonged to and the remaining 6 bits
identified the particular character. In place of NETtalk’s 21 “articulatory features”
to represent the (single) phoneme output (plus 5 stress and syllable boundary units),
NETspeak used o = 25 output features. Denoting the number of hidden units as
h, NETtalk used h = 120 for most experiments, whereas NETspeak used 77 hidden
units. The relative numbers of neurons are thus (203 + 120+ 26) = 349 for NETtalk
versus (774 77425) = 179 for NETspeak. Since, for a fully-connected MLP with one
hidden layer, the total number of interconnections is (i x h) + (h X 0), NETtalk had
27,480 adjustable weights (ignoring bias inputs to the neurons which are generally
treated as adjustable weights also) compared to NETspeak’s 7854.

NETspeak was trained on 15,080 of the 16,280 (previously-aligned) words in a pro-
nouncing dictionary. Given differences of detail between the networks (e.g. in train-
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ing material, in learning parameters and in evaluating the “best guess” output), a
direct comparison with NETtalk is difficult. However, NETspeak achieved 87.9%
“best guess” performance on these 15,080 words after some 3 passes through its
training set. Further, performance on new (unseen) words was only slightly worse
at 86% indicating a high degree of generalisation of the regularities of text-phoneme
correspondence. The authors do not explicitly state the size of this test set. Pre-
sumably, it consisted of the (16,280 — 15,080 = 1200) held-out words.

The net was subsequently trained on a frequency-weighted version of the dictionary.
The authors expected that the network would have more difficulty learning this
training set, because of the higher proportion of commoner (and presumably, there-
fore, irregularly-pronounced) words. This turned out not to be the case although
performance on common words was reported to improve while that for “very regular
words” deteriorated.

Further, McCulloch et al trained two separate networks on common and on un-
common words. In the former case, the training set was 13,021 non-unique words
representing in appropriate (frequency-weighted) proportions a randomly-chosen 958
of the 1058 most common words. The test set consisted of 911 words representing
the remaining 100 words in appropriate proportions. Relative figures in the latter
case were a 6169-word training set obtained by scaling up 727 less common words,
and a 531-word test set obtained by scaling up a disjoint 73 of the less common
words. The number of (non-blank) characters in the two training sets, and in the
two test sets, was the same. Results are reported to be “quite surprising” in that the
network trained on the less common words (presumed to be more regular in their
pronunciations) did not perform better than the network trained on the common
words.

Additional light is thrown on this matter by Ainsworth and Pell (1989), who trained
an MLP modelled on NETspeak on a 70,000-word dictionary divided into “regular”
and “irregular” words according to whether pronunciation was correctly predicted
by the Ainsworth (1973) rules or not. As one would expect, they found much better
performance on the regular words than on the irregular words (asymptotic to 95.9%
and 83.6% “best guess” phoneme scores on unseen words respectively). Thus, it
seems that McCulloch et al’s assumption that the more common words have less
regular pronunciations may be incorrect.

Unlike McCulloch et al whose concern was with the possible automatic creation
of TTS systems, Seidenberg and McClelland (1989) studied the ability of a back-
propagation network to simulate aspects of observed, human reading behaviour.
Their network consisted of 400 input (orthographic) units, 200 hidden units and
460 output (phonological) units. Thus, there were 172,000 adjustable feedforward
connections (excluding biases). There were also feedback connections (80,000) from
the hidden to the orthographic units, but these do not appear to be essential to
the operation of the model as implemented. Where NETtalk and NETspeak used
a window of consecutive characters to provide context, Seidenberg and McClelland
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used input and output coding schemes which involve triples of consecutive ‘features’.
A consequence of this is that any input word is encoded into a single input vector,
irrespective of its length.

The input units each code 10 possible first characters (letters plus word-boundary
marker), 10 possible second characters and 10 possible third characters, so that
each specifies 1000 possible character triples. An input string turns a unit on if it
contains a three-character substring which is one of the 1000 triples allocated to
that unit. The allocation is done entirely at random except that the word-boundary
marker cannot appear in the middle position. With this coding, the probability that
two different input words would activate exactly the same set of units is effectively
zero. Each of the output units represents a single triple of “phonetic features”.
To keep the number of units tractable (460), however, Seidenberg and McClelland
discarded every coding for which the first and third features referred to a different
phonetic dimension. This aspect of the coding scheme, and others, have been much
criticised in the literature (Pinker and Prince, 1988; Coltheart et al, 1993). In a
later chapter, Plaut et al take up the issue of input/output representation in this
sort of connectionist model.

This treatment of input and output strings — by allocating units to code the oc-
currence of particular sequences (triples) — has many important implications. It is
apparent that no prior alignment of text and phonemes is required since both input
and output strings are encoded as single vectors. However, while it is straightfor-
ward to determine the output coding for a particular phoneme string, as required
in training, the converse operation of converting an output coding to a phoneme
string is not possible. This makes it difficult if not impossible to determine whether
the net’s output is correct or not. In our view, this inability to recover a phoneme
sequence at the output is a virtually fatal flaw. It means that the model is inca-
pable of simulating, for instance, the very basic human ability to name (say) the
first phoneme of a printed word. How then did Seidenberg and McClelland overcome
this profound objection?

In their model, a phonological error score is computed for any input as the sum of
the squared differences between the obtained and desired output codings. By theo-
rising that this score would correlate with naming latency in reading experiments,
the predictions of the model could be checked against empirical observations. In
fact, Seidenberg and McClelland achieve an impressive degree of success in this.
They write (p. 540) that their “model simulates a broad range of empirical phenom-
ena concerning the pronunciation of words and nonwords”. This error score also
offered a possible way of deciding if the model’s output was ‘correct’. Seidenberg
and McClelland computed all the output codings corresponding to the correct (‘tar-
get’) phoneme sequence plus all sequences differing by just one phoneme from the
target. The output was then considered ‘correct’ if the sum of the squared differ-
ences corresponding to the target string was lower than that corresponding to any of
the out-by-one-phoneme strings. As Coltheart et al (1993) point out, however, this
procedure gives only a lower bound on the error rate of the model in pronouncing
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text strings.

Since psychological experimentation on reading traditionally favours the use of
monosyllabic words, Seidenberg and McClelland used 2897 such words to train
their net. Of this total, 2884 words were unique (e.g. the training set included
(wind, /wind/) and (wind, /waind/) as separate ‘words’). Training words were
presented a number of times proportional to the logarithm of their frequency of oc-
currence in English. After training (on 150,000 word presentations), and using the
somewhat suspect scoring method described above, only 77 (2.7%) of the words in
the training set produced outputs which were deemed incorrect. Generalisation to
unseen words was not tested systematically.

Before leaving the subject of back-propagation networks, it is worth pointing out a
fundamental deficiency. Such nets, at least in their simple, feedforward form, are
only suitable for mapping static input patterns to static output patterns. Because
of the absence of feedback and/or memory, they are ill-suited to processing dynamic
input sequences. Yet the input (and output) strings encountered in text-phoneme
translation are inherently sequential. This necessitates essentially ad hoc fixes like
the use of a sliding context window (in NETtalk and NETspeak) or the wholly-
inappropriate input/output coding employed by Seidenberg and McClelland. A
more principled way to proceed would be to employ dynamic, recurrent nets — as
also suggested in the following chapters.

3.6 Analogy-based methods

The use of letter-to-sound rules in conjunction with a dictionary of pronunciations to
some extent mirrors dual-route, psychological models of reading aloud (see above).
As stated above, arguments for dual-route theory are based on the ability to pro-
nounce pseudowords, latency difference effects between regular and exception words,
and apparent double dissociation between the two routes in dyslexia. However, it
has been variously argued that all these observations can be explained by a single
route. One pervasive idea in the literature is that pseudowords are pronounced by
analogy with lexical words that they resemble (Baron, 1977; Brooks, 1977; Glushko,
1979; 1981; Brown and Besner, 1987). Glushko, for instance, showed that “excep-
tion pseudowords” like tave take longer to read than “regular pseudowords” such
as taze. Here, taze is considered as a “regular pseudoword” since all its ortho-
graphic ‘neighbours’ (raze, gaze, maze etc.) have the regular vowel pronunciation
/e1/.) By contrast, tave is considered to be an “exception pseudoword” since it
has the exception word (have, /hav/) as an orthographic neighbour. Thus, in the
words of Glushko (1979), the “... assignment of phonology to non-words is open to
lexical influence” — a finding which is at variance with the notion of two separate,
independent routes to pronunciation. Instead of this:

“... it appears that words and pseudowords are pronounced using sim-
ilar kinds of orthographic and phonological knowledge: the pronuncia-
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tion of words that share orthographic features with them, and specific
spelling-to-sound rules for multiletter spelling patterns.”

Thus, in place of abstract GPC rules in the dual-route model we have specific pat-
terns of correspondence in the single-route, analogy model.

Pronunciation by analogy can be either explicit or implicit. The explicit form
(e.g. Baron, 1977) is a conscious strategy of recalling a similar word and modifying
its pronunciation, whereas in implicit analogy (e.g. Brooks, 1977) a pronunciation
is derived from generalised phonographic knowledge about existing words. Implicit
analogy has obvious commonalities with single-route, connectionist models (e.g. Se-
jnowski and Rosenberg, 1987; Seidenberg and McClelland, 1989). This commonality
is pointed up by Glushko’s arguments (1979, pp.686-687; 1981, pp.71-72) for the
term activation in place of analogy since, for him, the process is naturally uncon-
scious (i.e. implicit).

To test the computational feasibility of (explicit) analogy, Dedina and Nusbaum
(1991) produced a prototype TTS system called PRONOUNCE. According to these
authors “pronunciation-by-analogy may provide the same pronunciation ability as a
set of spelling-to-sound rules without requiring an explicit theory of rule induction . ..
and may be relatively simple to automate.” They identify the principal theoretical
issue as “the degree to which orthographic consistency in the spelling patterns of
words is related to phonographical consistency in pronouncing these words.”

The lexical database of PRONOUNCE consists of a 20,000-word dictionary in which
text and phonemes have been aligned. Dedina and Nusbaum acknowledge the crude
nature of their alignment procedure, saying it “was carried out by a simple Lisp
program that only uses knowledge about which phonemes are consonants and which
are vowels.” An incoming word is matched against orthographic entries in the lexicon
by a process of registering the spelling patterns relative to one another and evaluating
the number of contiguous, common letters for each registration index. Matched
substrings, together with their phonemic mappings as stored in the lexical database,
are used to build a pronunciation lattice which is then traversed to find a set of
possible pronunciations for the input word. Pronunciations are rank-ordered, first
by length of path through the lattice and, second, by the sum of the arc frequencies,
reflecting the number of matched substrings that produced that arc. (The system
has no knowledge of specific word frequencies.) When tested on the 70 pseudowords
employed by Glushko in his (1979) study, PRONOUNCE exhibited an error rate
of 9%; here, a ‘correct’ pronunciation is taken as one produced by any of Dedina
and Nusbaum’s 7 human subjects. By contrast, the well-known rule-based system
DECtalk had an error rate of 3%. The authors interpret their results as showing
“that pronunciation-by-analogy is computationally sufficient to generate reasonable
pronunciations for short novel strings”.

In explicit analogy, there is (apart from text-phoneme alignment) no prior training
or inferencing phase. An input word is merely matched — as described above —
with every orthographic entry in the lexicon and a pronunciation inferred from
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the matching substrings. This implies a good deal of computation to produce a
pronunciation.

Subsequently, Sullivan and Damper (1992; 1993) extended this work in various ways.
They employ an improved alignment procedure based on the Lawrence and Kaye
(1986) algorithm. By pre-computing mappings and their statistics for use in the
matching process, they have implemented a considerably more ‘implicit’ form of
synthesis-by-analogy than did Dedina and Nusbaum. This pre-computation from the
lexicon of possible mappings and their statistics amounts to a form of self-learning.
They have also examined different ways of numerically ranking the candidate pro-
nunciations. The analogy process is extended to the phonemic (in addition to the
orthographic) domain. This latter extension has necessitated a reversion to some
form of rules, in order that ‘plausible’ pronunciations for an unknown word can be
generated and matched against lexical entries. The “flexible” grapheme-to-phoneme
rules of Brown and Besner (1987) are used for this purpose, where “flexible” means
context-independent. Since the intention is to produce a set of plausible pronun-
ciations, there is no necessity to resolve conflicts to ensure that only a single rule
is fired. (Of course, the use of left and right contexts is an important strategy for
conflict resolution in traditional rule-based transcription.)

Stanfill (1987) describes MBRtalk, a self-learning text-phoneme conversion system
based on so-called memory-based reasoning (MBR). In our terms, however, this can
be viewed as an analogy-based technique. The basic principle of MBR is that “best-
match recall from memory” can be regarded as a “primary inference mechanism”.
For every letter of every word in the dictionary of aligned orthographic-phonemic
word pairs, a frame is created having 5 fields: the letter itself, the previous 4 letters,
the succeeding 4 letters, the (single) phoneme aligned to that letter, and the stress
assigned to it. Stanfill omits to say how many conflicting frames (having the same
letter, left-context and right-context fields but different phoneme and stress fields),
if any, ever arose. (Information on this point would give useful insight into the
inherent difficulty of the transcription task.)

The complete set of frames is stored in memory for use during transcription. As
with NETtalk and NETspeak, the assumption of a single-letter to single-phoneme
alignment requires that a special character (“~”) be used to denote a null phoneme,
and that dipthongs etc. be treated as single phonemes. In the case of a (possibly
novel) input word, there will one frame for each letter of the word but the phoneme
and stress fields of these frames will be empty; it is the task of MBRtalk to fill them.
This is done by comparing each frame of the test word with every frame in memory
and retrieving the best-matching frame. The relevant contents of the retrieved
memory frames are then transferred to the test frames to give a pronunciation.

This strategy of finding the best match to a lexically-specified pronunciation stored
in memory leads us to contend that MBRtalk is using a form of synthesis-by-analogy.
The frames are effectively ‘analogy segments’, i.e. fixed (9-character) substrings
which, when matched, provide a single phoneme in the output pronunciation. Un-
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like PRONOUNCE, however, there is a significant pre-training phase consisting of
extracting and storing in memory frames derived from the lexical database. Also,
the simple mechanism of stepping the 9-character window through the input word
a character at a time and concatenating output phonemes corresponding to the
central letter (in the manner of NETtalk and NETspeak) avoids any need for a
pronunciation lattice.

Clearly, the efficacy of MBRtalk depends critically upon having good similarity
metrics. Dissimilarity between two frames is computed by assigning a (heuristically-
chosen) penalty for each field in which they conflict. With a 1024-frame (approxi-
mately 200-word) test set, Stanfill found a best accuracy of 88% frames correct with
a 132,072-frame (about 25,000-word) training dictionary. This result was obtained
with a penalty function which depended solely on the contents of the conflicting
fields of the frames of the test word. Obviously, it would be more principled to score
penalties according to the (conflicting) contents of fields for both test and training
data. Indeed, the necessity to use (non-optimal) heuristics for scoring similarity
seems currently to be a major weakness of synthesis-by-analogy.

In subsequent work, Stanfill (1988) presents a rule-induction methodology within
the framework of the MBR paradigm. The system, called JOHNNY , starts with
“some knowledge of phonetic rules plus a phonetic lexicon”. Unusually, there is no
orthographic lexicon (or, at least, it is initially empty). As shown in Figure 4, the
basic operations are rule application, “recognition”, memorisation and induction.
All of these are implemented using MBR.

There are 104 rewrite rules, using a 3-letter window as their left-hand side (LHS).
The left and right contexts are a maximum of one character, which can be “don’t
care”. An input word is broken into a series of such 3-letter windows which are each
matched against the LHSs of the rule set in memory. Mismatches are penalised such
that the best matches will be the most specific rules which are applicable. The input
word is assumed to be present in the phonetic vocabulary. The rules are ambiguous
in that this process produces a number of plausible pronunciations.

“Recognition” scores these candidate pronunciations against the phonetic vocabu-
lary, again using MBR. Testing with a text of 1024 dictionary-derived pronunci-
ations of words spontaneously uttered by a child in the first grade, the error rate
at this stage (rules plus recognition) was 10%. For 8192 words randomly selected
from a dictionary, however, the error rate was lower at 7%. The implication is that
randomly-selected dictionary entries are more regular in their pronunciation than
spontaneous utterances — at least, those of a child in first grade.

Having obtained this pronunciation, JOHNNY assumes it is correct and commits
it to its ‘learned’ memory, using exactly the same 9-character frame representation
and structure as MBRtalk. (Stanfill uses the terminology frame and record inter-
changeably in his 1987 paper; in the 1988 paper, he uses record exclusively but we
prefer to retain frame.) This memorisation is seen as a process of acquiring spelling-
pronunciation pairings in unsupervised fashion. While the unsupervised nature of
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Figure 4: Schematic of JOHNNY , a memory-based model of the process of “learning
to read”. After Stanfill (1988).

the learning is one of the system’s most intriguing aspects, it seems likely that the
success of the learning is critically dependent upon the 104 initial rules and on using
as input only those words present in the “phonetic vocabulary”.

Stanfill is not explicit on the mechanism of rule induction. It appears, however,
that the rules and what we have called the ‘learned’ memory are merely used in
parallel to produce candidate pronunciations, as depicted in Fig. 4. This impression
is strengthened by the fact that rules and learned memory have different structures,
i.e. a 3-character window and 9-character frame respectively. It is not clear why it
is necessary to memorise a “sufficient number of words” before using the ‘learned’
memory to supplement the rules in this way.

When the rules are supplemented in this way, the error rates on the above test
materials (after 2 passes) fall from 10% to approximately 7% for the ‘first grade’
words, and from 7% to approximately 3% for the randomly-selected dictionary
words. JOHNNY also displays an impressive lack of sensitivity to the initial rule
set — as demonstrated by, for example, deleting all multi-letter rules and showing
that the system is still capable of learned improvement. Finally, and not unexpect-
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edly, JOHNNY is capable of further improvement when the learning is supervised
(i.e. the system is told when it makes a mistake, and might also be given the correct
pronunciation) rather than unsupervised.

Recently, Van den Bosch and Daelemans (1993) have described a very similar ap-
proach to memory-based reasoning that they describe as “a link between straightfor-
ward lexical lookup and similarity-based reasoning”. The method takes a pronounc-
ing dictionary as the training set but “solves the problem of lacking generalisation
power and efficiency by compressing it into a text-to-speech lookup table”. Applied
to Dutch, they say: “The most surprising result of our research is that the sim-
plest method (based on tables and defaults) yields the best generalisation results,
suggesting that previous knowledge-based approaches were overkill”.

3.7 Syntactic neural networks

Statistical translation models rely on associating ‘units’ in one language, or domain,
with ‘units’ in another. Lucas and Damper (1992) describe a text-phoneme conver-
sion model based such statistical ideas and having a direct connectionist implemen-
tation in terms of so-called syntactic neural networks. They attempt to translate
between commonly-occurring substrings in the two domains. The assumption is
that common substrings represent potentially useful abstractions, as in the case of
th.

The training process consists of three passes through the dictionary of orthographic-
phonemic word pairs. First, the m most probable substrings (n-grams) in each
domain are enumerated. The starting point is the alphabets of atomic symbols,
Yo and X,, where the subscripts denote orthography and phonemics respectively.
These atomic symbols are thought of as the terminals of a simple grammar for the
generation of the observed words. Each word encountered (e.g. the) is ‘exploded’
into its constituent substrings (i.e. t, h, e, th, he and the). The cumulative count for
each such substring is then incremented before considering the next word. Thus, a
set (initially empty) of ‘non-terminal’ n-grams is built up, to form new alphabets N,
and N, such that A, = Yo U N,, an alphabet of orthographic symbols, and likewise
an alphabet of phonemic symbols A,.

At termination of the first pass, substrings are sorted into frequency order and
the first m (which include the atomic symbols) of each taken as the translation
alphabets, i.e. |A,| = |A4,| = m. The corresponding inferred grammar is trivial in
the sense that each non-terminal can only rewrite to a single string of two ‘lower-
order’ symbols (i.e. productions are of the form (th) — (¢)(h)).

Following this initial pass, the second phase of learning calculates the bigram statis-
tics of the symbols in A, and A, in their respective domains. For the example case
of the, this is effectively considered to be the four distinct words (¢)(h)(e), (th)(e),
(t)(he) and (the) in evaluating the bigram statistics. These are importantly different
to ‘ordinary’ bigram statistics, since many of the (non-terminal) symbols correspond
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to several atomic characters. In effect, we have an adaptive n-gram description of
strings in each domain — in that the value of n varies so as to give the most com-
pact representation for any given size of alphabet. The bigram statistics give the
within-domain transition probabilities of going from one symbol to another.

Until this point, the orthographic and phonemic domains have been considered
separately. At the third pass, however, words are first considered as orthographic-
phonemic pairs. This phase estimates the cross-domain (translation) probabilities
P(o — plo), i.e. given o € A,, the probability that o rewrites to a particular p € A,.
This is done as follows. The possible segmentations of each word pair in the dictio-
nary with respect to the alphabets A, and A, are identified, and used to build a pro-
nunciation lattice. This is depicted in Figure 5 for the example word (zoom, /zuim/).
(Note the treatment of the vowel lengthening symbol /i/ as an atomic symbol al-
though it only ever occurs in conjunction with a vowel. The system was left to
infer this for itself.) Although not shown in the figure, transition probabilities are
attached to each arc. A possible alignment then corresponds to a pair of paths
between word start and end, one in the orthographic domain and the other in the
phonemic domain, and having an equal number of arcs. The set of such possible
alignments, {4;}, is enumerated using a path algebra. For the example word, these
are:

A o ((2/2/) (o, Juf) (o, /1)) (m, /m[) 1.6 x 10°% )
Ay = ((z /2/) (00, /u/) (m, /m/) 8.9 x 1077 )
Az : ((z /z/) (00, /ui/) (m, /m/) 1.7 x 107 )

where the numbers represent the product of all arc (transition) probabilities on the
respective o and p paths.

At the end of the pass, these figures are used to compute mapping probabilities for
all the (o — p) correspondences seen. This is done by, for a particular ¢ and j, simply
counting the number of occurrences of o; — p; correspondences in the training data,
and normalising by the total number of correspondences involving o;.

Although associations are (in principle) allowed between o and p substrings in any
position within a word, the method enumerates contiguous paths only. Thus, non-
contiguous markings (as with the final e of (make, /meik/) indicating the dipthongi-
sation of the medial vowel) cannot be dealt with at all directly. In effect, the system
has to learn that ke sometimes functions as an orthographic unit which associates
with phoneme /k/ following /e1/. A related point is that there is no simple way to
allow symbols in the source domain (letters here) to rewrite to null in the target
domain.

As the enumeration of possible alignments is an intrinsic part of the learning process,
the necessity for aligned training data is avoided. To this extent, the learning is
unsupervised in that no target output is specified for each input symbol.

There are many ways the described model and its estimated probabilities could
be used in a translation system. For instance, given a test word, its (orthographic)
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Figure 5: Pronunciation lattice for the word (zoom, /zuim/), given the non-
terminals inferred by the system. A possible alignment corresponds to a pair of
paths between word start and end, one in the orthographic domain and the other

in the phonemic domain, and having an equal number of arcs. After Lucas and
Damper (1992).

segmentations could be determined and the translation (sequence of phoneme units)
selected having the highest joint probability of the o path and associated rewrites for
the arcs on that path. Another possibility would be to consider the p path probability
additionally. However this is done, treating the probabilities as weights in a neural
network allows a connectionist implementation to be conceived, as detailed in Lucas
and Damper (1992). A similar connectionist model has recently been reported by
Smith (1993) who employs an argument based on eye movements during reading
to support the idea of sub-word units corresponding to Lucas and Damper’s non-
terminal n-grams.

While the performance obtained is not especially impressive (performance asymp-
totic to about 67% phonemes correct on largely monosyllabic words as test and
training set increase in size), the authors point to “the system’s immaturity” and
describe their methods as “theoretically interesting from the point of view of ...
text-phonetics correspondence in general”.

4 Summary

A critical review of self-learning approaches to text-phoneme conversion has been
presented. To our knowledge, this is the first such review to appear. Work on this
topic has been approached from two different perspectives: the automatic production
of TTS (and possibly speech-to-text) systems, reducing the amount of manual work
which must be done in implementing a new language as well as giving a potential
means of improving existing rule-based systems, and the modelling of human reading
processes — especially the acquisition of the skill of reading aloud. The chapter is

24



intended to provide a framework and introduction for the following contributions
which focus on connectionist models of reading.

The standard approach to text-phoneme conversion (in the absence of a dictio-
nary containing all words ever encountered) in TTS systems uses a set of context-
dependent translation rules. The operation of such rules has been described, and
automatic-discovery techniques for inferring CDT rule-sets reviewed. However, the
main focus of this chapter is on self-learning, connectionist approaches. The rule-
based approaches are included for completeness and as a basis of comparison.

Most commonly, connectionist models use the popular error back-propagation learn-
ing — as in NETtalk, NETspeak and the work of Seidenberg and McClelland. While
the later model codes inputs and outputs in terms of a fixed set of features for any
given word, NETtalk and NETspeak employ a sliding window which passes over the
input character-by-character. Accordingly, they confront a ‘bootstrapping’ problem
in that they require text pre-aligned with corresponding phonemes for training. This
implies prior knowledge of the correspondence between text and phonemes that we
are actually trying to infer. Hence, interest centres on connectionist models which
do not require pre-alignment, such as that of Bullinaria to be described shortly in
this volume. Another problem is that, at least in their simple feedforward form,
back-propagation networks are really only suitable for processing static patterns.
The use of dynamic, recurrent nets appears highly appropriate, yet has not so far
(to my knowledge) been reported in the literature.

Hidden Markov models have been popular in speech recognition and there has been
some interest in exploiting the trainable nature of HMMs in text-phoneme con-
version. Connectionist implementations of HMMSs have also been described in the
literature.

Recently synthesis-by-analogy has received renewed attention as a computational
T'TS model and as a single-route alternative to dual-route theory. In its explicit form,
an unknown word is compared with lexical entries and a pronunciation assembled
from matching segments. In its implicit form, generalised knowledge concerning
text-phoneme correspondences is pre-compiled and used in translation. Implicit
analogy is close in spirit to connectionist approaches. Of course, much depends
upon how matching is performed in the explicit case, and knowledge captured in
the implicit case. Because of this, a number of approaches can be classified within the
analogy framework. Examples are Stanfill’s MBRtalk (founded on memory-based
reasoning) and Van den Bosch and Daelemans’ compressed table lookup method.

Ideas of statistical association and translation between features (letter or phoneme
units) in the two different domains have been used by Lucas and Damper, and by
Smith, to produce connectionist models of reading aloud that avoid the need for
pre-alignment. As yet, these perform relatively poorly but they do represent an
interesting direction for future research.
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