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ABSTRACT

The separationof speechfrom two si-
multaneoustalkersis a problemof some
practicalandtheoreticalimportance.We
describea prototype separationsystem
basedon harmonicselectionusingcomb
filters. Hermes’ subharmonicspectrum
method is used to produce a number
of (weighted)pitch estimates,with pitch
tracksfor the two talkers then found by
constraineddynamicprogramming.The
systemhas successfullyseparatedcom-
positemale/female/hVd/ tokensbut per-
formanceis currentlyrathervariable.

INTRODUCTION

The separationof a target speechsignal
from contaminating,competingsignalsis
a problem of somesignificance,having
applicationsto improvedspeechrecogni-
tion and signal-processinghearingaids.
An especiallyinterestinginstanceof the
problemariseswhenthe(single)contam-
inating sourceis the speechof another
talker. Not only is this a commonsitua-
tion in practice,but separationis likely to
bemaximallydifficult sincethetargetand
contaminatingsignalswill shareobvious
similarities.

Early approachesto this problem[1]
weremonaural,estimatingthefundamen-
tal frequency (or ‘pitch’) of eachtalker
( f 1

0 and f 2
0 respectively), then selecting

componentsof the frequency spectrum
and assigningthem to a talker accord-
ing to their harmonicrelation to the es-
timatedpitch(es). This harmonic selec-
tion methodassumesthatthespeechof at

leastoneof thetwo talkersis voiced,and
requires f 1

0 and f 2
0 to be well spacedso

thatit is obviouswhich talker is which.
Harmonic selection can be viewed

as implementingone of the perceptual
grouping principles advancedby Breg-
man [2], whereby human listeners are
ableto aggregateauditoryfeaturesarising
from distinctsoundsourcesto effect sep-
aration. Other putative groupingprinci-
plesarebasedon onsetand/oroffsetsyn-
chrony of features,acommonrateof am-
plitudemodulation,andcuessuggestinga
commonspatialorigin.

Clearly, any implementationof har-
monic selection is critically dependent
upon a robust pitch detectionalgorithm
(PDA) but most PDAs assumea sin-
gle voice only [3,4]. More recentwork
on talker separation[5,6,7] has, there-
fore, focussedon improvedPDAs. How-
ever, given that a common spatial ori-
gin is likely to be importantto grouping,
andtherebyseparation,attentionhasalso
been paid to binaural techniques[7,8].
DenbighandZhao[7] statethat the ma-
jor advantageof their binauraltechnique
is the ability to recover from talker-
allocationerrorswhen f 1

0 and f 2
0 tracks

cross.
We describeherethe implementation

of a prototypemonauralseparationsys-
tem which hasbeensuccessfullyapplied
to the two-talker problem. In the next
section, we detail the speechdata em-
ployedin thisstudy. Wethendescribethe
use of Hermes’ subharmonicspectrum
(SHS) pitch detectionalgorithm [9] to
obtain several weightedestimatesof f0,
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Figure1. Subharmonicspectrumof typical frameof compositetoken shown herefor log2 f = 5
to 10, i.e.32 to 1024Hz. Actual fundamentalfrequenciesfor thetwo talkersareshown arrowed.

without considerationof talker identityat
thisstage.A dynamic-programming(DP)
trackingalgorithmis thendescribed.This
is usedto correctpitch errorsandto allo-
cateoptimal f0 tracksto eachof the two
talkers.Resultsof separationusingcomb
filters arethendetailed.

SPEECH DATA

The speechdatausedin this studywere
a subsetof those recordedby Deterd-
ing [10], consistingof /hVd/ tokensspo-
ken by 3 male and 3 femaleadultsand
sampledat 10kHz. A small numberof
compositetokens was then formed by
adding(arbitrarily selected)pairsof male
and female tokens. Male/femalepairs
were chosento minimise problems of
crossingpitch tracks– sincethe present,
prototypeimplementationis monaural.

Processingwas basedon frames of
512 sampleswith 50% overlap. Each
framewasmultiplied by a Hanningwin-
dow, paddedwith a further 512 zeros,
and a 1024-point FFT taken. The re-
sultingfrequency resolutionis, therefore,
9.77Hz.

SHS ALGORITHM

Hermes’ SHS algorithm [9] is an im-
proved version of the harmonic com-
pressionPDAs of Schroeder[11] and
Noll [12]. Theserely on compressing
the frequency scaleof a spectralrepre-
sentationby integer (harmonic) factors

andthentaking either the productor the
sum of the compressedrepresentations,
e.g.Noll’ s harmonicsumspectrumis de-
finedas:

S � f ���
K

k � 1

�
F � k f � � 2

whereF � f � is the Fourier spectrumand
thereare � K � 1� compressions.Thefun-
damentalf0 thenappearsasa peakin the
productor sumspectrum,asthereis con-
sistentreinforcementof the fundamental
by thecompressedharmonics.

The problemwith thesealgorithmsis
that there is a loss of data when used
with sampledsignals,sincecertainof the
samplepoints in the compressedspectra
fall betweenthosein theoriginal (k � 1)
spectrum.This severely limits the value
of K whichcanbeemployed(to about5).
The SHS algorithm avoids this problem
by substitutingharmoniccompressionon
alinearfrequency scaleby harmonicshift
on a logarithmic scale. Also, the am-
plitude spectrum(rather than the power
spectrum)is used,with decreasingweight
givento themorecompressedspectra:

S � log2 f ���
K

k � 1

� � k � � F � log2 f � log2 k � �

wherehere � � k ��� 0 � 84k � 1 andK � 9.
Sincethe linear-to-log frequency con-

versionresultsin logarithmically-spaced
samplepoints,thespectrumis resampled



by cubicsplineinterpolationat 48 points
per octave after conversion. There is
also a broadeningof spectralpeaksat
lower frequencies;accordingly, peaksare
thinned to a constantwidth of 3 sam-
ples in the log frequency domain. Fig-
ure 1 shows a typical subharmonicspec-
trumwith theactual f 1

0 and f 2
0 markedby

arrows.
Since even the best PDA will make

frameerrors,we do not attemptto iden-
tify f 1

0 and f 2
0 uniquely at this stage.

Rather, the SHS algorithm producessix
weightedestimatesof possiblefundamen-
tal for laterDP pitch trackingasfollows.
The 3 largestpeaksof the SHS are se-
lected and weighted1, 2 and 3 respec-
tively. The largest peak (weighted 1)
is then assumedto correspondto f0 for
the dominant talker. This estimateof
f0 and its harmonicsare then used to
subtract correspondingpeaks from the
thinnedFourierspectrum,andtheSHSal-
gorithmre-runto produce3 new f0 esti-
mates,againweighted1,2,3.As a conse-
quenceof theuseof alog frequency scale,
the resolutionof the f0 estimatesis non-
linear(being48log2 f ).

No distinctionis madebetweenvoiced
andunvoicedspeech,both being treated
identically.

DP PITCH TRACKING

By maintainingmultiplecandidatef0 val-
ues, improved pitch estimatescan be
obtainedby dynamic-programming(DP)
tracking. We use the methoddescribed
by Ney [13] whichperformsaDPoptimi-
sationconstrainedby a (weighted)‘mea-
surement’costanda ‘smoothness’cost.

The input to the DP algorithm is an
n � m time-frequency matrix, wheren is
the numberof possible f0 valuesand m
is the numberof framesin the compos-
ite token. Becausef0 is assumedto lie
between32 and512Hz, values � 32 are
consideredto be0 while values� 512are
consideredto be512Hz. Hence,thereare

Figure2. Time-frequency matrix for typical
compositetoken and the pitch tracks (solid
lines) for the two talkers found by dynamic
programming.

n � 48� log2 512 � log2 32� = 192 ‘fre-
quency indices’, accordingto the loga-
rithmic resolutionof the PDA. The cells
of the matrix contain the measurement
cost, and are initialised to a high value,
Wini . The weightsof the 6 f0 estimates
(W �! 1 " 2 " 3# ) from the SHS algorithm
arethenenteredin theappropriatecells.

The smoothnesscost, D, was imple-
mented as the absolute difference be-
tweenfrequency indicesfor consecutive
frames, so penalisingdeparturefrom a
constantpitchvalue.Thetotalcostis then
thelinearcombinationW �%$ D.

With Wini and $ set empirically
(at 100 and0.2 respectively), the DP al-
gorithmwasappliedto thematrix to find
theoptimalpitch trackfor oneof thetalk-
ers.Thevaluesin cellson this trackwere
thenreplacedby Wini and the algorithm
re-runto find the optimal pitch track for
thesecondspeaker. This is shown in Fig-
ure2 for a typical compositetoken.

It is difficult to validatethepitchtracks
found. However, useof a commercially-
availablespeechanalyser(KayCSL)gave
excellentagreementfor onespeaker and
reasonableagreementfor theother.



SEPARATION ALGORITHM

First, the Fourier spectrumis differenti-
ated to find all its maxima, which are
listed. The separationalgorithm then
takes the larger of f 1

0 and f 2
0 , and uses

this to calculatetentative valuesfor the
harmonic frequencies. Theseare then
matchedto the list of maxima; if there
is no peakat the exact harmonicvalue,
the pointseither sidearechecked to see
if they aremaxima.

Each harmonic peak thus found be-
comesthe centreof onetooth of a comb
filter. Eachtooth is 5 FFT points wide,
andhasa Hanningwindow shape.Mul-
tiplication of theFourierspectrumby the
combfilter responsethenyields a frame
of separateddata correspondingto the
higher f0. Peaksallocatedto this speaker
arethendeletedfrom the list of maxima,
andtheprocessrepeatedfor thelower f0.

When this has been done for all
frames,separatedtokensareproducedby
overlap-addre-synthesis.

CONCLUSIONS

As judgedby informal listening,thepro-
totypeseparationsystemworksextremely
well for someof the compositetokens
but less well for others. Separationis
betterfor femalethan for male talkers–
themaleseparatedtokensbeingmoreaf-
fectedby cross-talk.Given therelatively
small databaseused,this may simply re-
flect lower pitch variationamongthe fe-
maletalkerswhich resultsin moreaccu-
ratepitch tracking.
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