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Abstract-This paper proposes a novel set of 16 features based on the statistics of geometrical attributes of 
connected regions in a sequence of binary images obtained from a texture image. Systematic comparison 
using all the Brodatz textures shows that the new set achieves a higher correct classification rate than the 
well-known Statistical Gray Level Dependence Matrix method, the recently proposed Statistical Feature 
Matrix, and Liu’s features. The deterioration in performance with the increase in the number of textures in 
the set is less with the new SGF features than with the other methods, indicating that SGF is capable of 
handling a larger texture population. The new method’s performance under additive noise is also shown to 
be the best of the four. 

Texture analvsis Feature extraction Statistical features Geometrical features 
Additive noise 

1. INTRODUCTION 

Texture plays an important role in image analysis and 
understanding. Its potential applications range from 
remote sensing, quality control, to medical diagnosis 
etc. As a front end in a typical classification system, 
texture feature extraction is of key significance to the 
overall system performance. Many papers have been 
published in this area, proposing a number of various 
approaches. 

Structural approaches(rm3’ are based on the theory 
of formal languages: a texture image is regarded as 
generated from a set of texture primitives using a set 
of placement rules. These approaches work well on 
“deterministic” textures but most natural textures, un- 
fortunately, are not of this type. 

From a statistical point of view, texture images are 
complicated pictorial patterns, on which, sets of statis- 
tics can be obtained to characterize these patterns. The 
most popularly used one is the Spatial Grey Level 
Dependence Matrix (SGLDM) method,‘435) which con- 
structs matrices by counting the number of occur- 
rences of pixel pairs of given gray levels at a given 
displacement. Statistics like contrast, energy, entropy 
and so forth are then applied to the matrices to obtain 
texture features. These statistics are largely heuristic, 
although Julesz’s conjectureC6) about the human eyes’ 
inability to discriminate-between textures differing only 
in third or higher order statistics is an indication of the 
appropriateness of the method. Other schemes include 
the Statistical Feature Matrix”) and the Texture Spec- 
trum.(8.g) 

A two-dimensional power spectrum of a texture 
image often reveals the periodicity and directionality 
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of the texture. For example, a coarse texture tends to 
generate low frequency components in its spectrum 
while a fine texture will have high frequency compo- 
nents. Stripes in one direction cause the power spec- 
trum to concentrate near the line through the origin 
and perpendicular to the direction. Fourier transform 
based methodsoO~“) usually perform well on textures 
showing strong periodicity, their performance signifi- 
cantly deteriorates, though, when the periodicity 
weakens. 

Stochastic models such as two-dimensional ARMA, 
Markov random fields etc. can also be used for texture 
feature extraction via parameter estimation.(‘2-15) These 
approaches consider textures as realizations of a ran- 
dom process. Structural and geometrical features ap- 
pearing in textures are largely ignored. Other difti- 
culties such as that in choosing an appropriate order 
for a model have also been reported. 

This paper proposes a novel set of sixteen texture 
features based on the statistics of geometrical pro- 
perties of connected regions in a sequence of binary 
images obtained from a texture image. The first step 
of the approach is to decompose a texture image into 
a stack of binary images. This decomposition has been 
proven to have the advantage of causing no informa- 
tion loss, and resulting in binary images that are easier 
to deal with geometrically. For each binary image, 
geometrical attributes such as the number of con- 
nected regions and their irregularity are statistically 
considered. Sixteen such statistical geometrical fea- 
tures are proposed in this paper. 

2. THE STATISTICAL GEOMETRICAL FEATURES 

An n, x nY digital image with n, grey levels can 
be modelled by a 2D function f(x. y). where (x, y)~ 
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(O,l,..., n,-1)x(0,1,..., n,--l}, and f(x,Y)~ 
(0, 1,. . , n, - l}. f(x, Y) is termed the intensity of the 
pixel at (x, y). 

When an image f(x,Y) is thresholded with a thresh- 
oldvaluecc,ccE{l,..., nl - l}, a corresponding binary 
image is obtained, that is 

1 
fb(% Y; x) = 

if f(x,y) 2 c( 

0 otherwise . 
(1) 

where fb(x,Y; a) denotes the binary image obtained 
with threshold a. 

For a given original image, there are n, - 1 potenti- 
ally different binary images, i.e. fb(x, y; l), fb(x, y; 2), , 
f&c, y; n, - 1). This set of binary images shall be termed 
a binary image stack. For images of a given size and 
of a given number of grey levels, the above defined 
mapping (of the space of images into the space of 
binary image stacks) is bijective (one-to-one and onto), 
which guarantees that no loss of information is en- 
tailed by this transform. This is true because 

VI- 1 
f(%Y) = 1 f&Y; a) 

I=1 

v(x,y)E{o,1)...) n,-l}{O,l,...) n,-1). (2) 

For each binary image, all l-valued pixels are grouped 
into a set of connected pixel groups termed connected 
regions. The same is done to all O-valued pixels. (Ap- 
pendix A presents formal definition and an algorithm.) 
Let the number of connected regions of l-valued pixels 
in the binary image fb(x, y; LZ) be denoted by NOC,(a), 
and that of O-valued pixels in the same binary image 
by NOC,(a). Both NOC,(a) and NOC,(a) are func- 
tions of a, c(E{~,. ..,n, - 1). 

To each of the connected regions (of either l-valued 
pixels or O-valued pixels), a measure of irregularity 
(un-compactness) is applied, which is defined to be 

l+,/;;mlJ(xi-x)~+(yi-)i)~ 

irregularity = 
Y/TV 

- 1, 

(3) 

where 

cxi g4.i 
x _ lEZ ) - 

14 y=III’ 
(4) 

I is the set of indices to all pixels in the connected 
region concerned, 111 denotes the cardinality of the set 
I (the number of elements in I). (2, Y) Can be thought 
of as the centre of mass of the connected region under 
the assumption that all the pixels in the region are of 
equal weight. 

Alternatively, the usual measure of compactness 
(circularity) can be used, which is defined as 

4&i 

where 

compactness = ~ 
perimeter’ 

(5) 

perimeter = 1 [fbCxi - 13 Yi) Ofb(Xi, Yi) + .fbfxi + 12 Yi) 
ieZ 

0 fbtxi> Yi) + fbtxi, Yi - ‘1 O.fbCxi, Yi) 

+fbtXi2Yi + l)Ofb(XiiYi)lr (6) 

@ denotes the logic XOR operator, that is 

I 1 ifx#Y 
xoy= ^ 

[U x=y 

(Appendix B discusses the properties of the irregularity 
measure and the compactness measure in detail.) 

As stated, a digital image corresponds to n, - 1 
binary images, each of which, in turn, comprises a few 
connected regions (of l-valued pixels and of O-valued 
pixels). Let the irregularity of the ith connected region 
of l-valued pixels (O-valued pixels, respectively) of the 
binary image fb(x, y; a) be denoted by IRGL,(i,a) 
[IRGL,(i, a), respectively]. The average (weighted by 
size) of irregularity of the regions of l-valued pixels in 
the binary image fb(x, y; a) is defined to be 

IRGL,(a) = CiEzCNOPl(i, a).ZRGhk 41 
Ci,,NOPl(i, 4 ’ @I 

where NOP,(i,a) is the number of pixels in the ith 
connected region of l-valued pixels of the binary image 
fb(x, y; r). ZRGL,(cr) is similarly defined. 

By now, four functions of cI, i.e., NOCi(a), NOC,(a), 
ZRGL,(a), ZRGL,(x), have been obtained, each of which, 
is further characterized using the following four statis- 
tics 

max value = max s(a), (9) l<lr<?l-1 

(10) average value = & “;I s(a): 
1 a 

sample mean = x”llll &) y$; u. dx) (11) 
a 1 

sample S.D. = 
J 

(12) 
where g(z) is one of the four functions: NOC,(a), 
NO&(a), ZRGL,(a), ZRGZ&). 

The same procedures apply if the alternative com- 
pactness measure is to be used. In all, there are 16 
feature measures for a texture image, four obtained from 
NOCl(a), four from NO&(a), four from ZRGL,(x), and 
another four from ZRGL,(a). 

3. EXPERIMENTAL EVALUATION 

3.1. The database 

The set of all 112 texture pictures in the Brodatz’s 
photographic atlas of textures was organized into three 
groups. The first group comprises four sets with each 
having 28 pictures, that is, the first set includes pictures 
Dl through D28, the second set includes pictures D29 
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through D56, and so on. The second group consists of 
two sets, the first set contains pictures Dl through 
D56, the second set contains pictures D57 through 
D112. The third group is made up of the whole set, 
namely, pictures Dl through D112. The database was 
arranged to ensure a systematic comparison of algo- 
rithms. 

Each texture picture in the atlas was scanned by an 
HP flat bed scanner to produce a 256 x 256 x 8 digital 
image, from which, sixteen 64 x 64 x 8 sub-images 
were obtained using perfectly aligned 64 x 64 win- 
dows. Nine of them were then randomly chosen as 
samples. One sub-image for each texture is shown in 
Fig. Cl and C2 in appendix C. 

3.2. Three other techniques for comparison 

Three other methods along with the Statistical Geo- 
metrical Features (SGF) proposed in this paper were 
tested on the same aforementioned database under the 
same conditions for comparison. 

(1) The Spatial Grey Level Dependence Matrix 
(SGLDM) approach (4) is popularly used for extract- 
ing texture features. Five commonly used features as 
suggested in (5): energy, entropy, correlation, local 
homogeneity and inertia were computed in our experi- 
ments. 

(2) Liu’s features (11) are one of the many methods 
based on the Fourier Transform. Eight optimal fea- 
tures (as proposed by the authors) fl, f2, f5, fi7, fro, 
fZ1.fZ5, fz6 were used. 

(3) The recently proposed Statistical Feature Ma- 
trix (SFM) method (7) was claimed to have superior 
performance over SGLDM and Liu’s features and 
therefore was considered in our experiments. The ma- 
trices M,,, of size 4 x 4 and 8 x 8 were used. 

There are 255 binary images obtainable from an 
S-bit grey level digital image. To reduce computational 
costs, 63 binary images (evenly spaced thresholds, i.e. 
CI = 4, 8, 12,. ,252) were used in the experiments. 

3.3. Feature normalization 

All the features were standardized (normalized) by 
their sample means and S.D.‘s which amounts to say- 
ing that every component was normalized using the 
following equation 

f:=fi-q i=l2, , , ..,n, (13) 
0 

where 

p = ’ i fit (14) 
Izi=l 

(15) 

n is the number of samples. 
The k-nearest neighbour rule using the Euclidean 

distance and the “leave one out” estimate”@ were then 
adopted for feature evaluation (k = 3). The k-nearest 
neighbour rule is popularly used in cases where the 
underlying probability distribution is unknown, and 
the “leave one out” estimate is unbiased and generally 
desirable when the number of available samples for 
each class is relatively small. 

3.4. Classification results and discussions 

On the first group of the four sets Dl-D28, D299D56, 
D57-D84 and D85-D112, it is seen from Table 1 that 
SGF’s average correct classification rate is 92.1x, which 
is substantially higher than that of the other three 
techniques. A further look at the contingency tables 
(confusion matrices) as shown in Tables 2-5 gives 
more detailed information: 

On the first set Dl-D28, classification with SGF is 
accurate with the exception of misclassification on 
some rock/stone textures (D2, D5, D7, D23, D27 and 
D28) and tree bark textures (D12, D13). This is under- 
standable because these rock/stone/tree bark images 
are non-stationary and its texture properties vary con- 
siderably with the location of the window; see Figure 
Cl in appendix. SFM’s correct classification rate is a 
little higher than that of SGF on this set but it mis- 
classifies nine textures into 12 wrong classes as against 
SGF’s misclassifying eight textures into nine wrong 
classes. SGLDM’s performance is poorer than the 
previous two. Liu’s features can only correctly classify 
Dl, D4, D8, Dll and D21. 

On the second set D299D56, SGF correctly classi- 
fies the textures with the exception of some misclassifi- 
cation between two similar pebbles D30 and D31 one 
on D50, and some misclassification among D43, D44 
and D45 which is also understandable since D43, D44 
and D45 contain patterns much larger than the win- 
dow hence information obtainable within the window 
is inadequate. SFM’s performance is considerably worse. 
It misclassifies several textures that are considerably 

Table 1. Correct classification rates of various algorithms on the first group(four sets of 28 texture pictures) 

SGF 
SFM (4 x 4) 
SFM (8 x 8) 
SGLDM 
Liu’s features 

Dl-D28 D29-D56 D57-D84 D85-D112 Average 

90.8 92.6 93.5 91.5 92.1 
93.5 78.3 83.7 72.5 82.0 
93.1 80.8 81.7 70.1 81.4 
88.4 83.9 76.6 79.2 82.0 
62.3 57.4 38.8 42.4 50.2 

SGF: SGF with the irregularity measure. 
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Table 2. Contingency tables on the first set Dl-D28 

SGF: SGF with the irregularity measure. SFM: SFM M,,, of size 4 x 4 

different, e.g. D30/D46 and D33/D40/D42. SGLDM’s 
discriminating ability is also considerably lower than 
that of SGF. Liu’s features can only correctly classify 
D29, D37, D47 and D48. 

On the third set D57-D84, SGF’s discrimination 
ability is considerably better than the other three tech- 
niques in terms of correct classification rates and num- 
bers of textures misclassified. Misclassification with 
SGF happens on textures that contain very large pat- 
terns or appear severely non-stationary. The same is 
true on the fourth data set D85-D112. 

An alternative assessment of feature vectors is based 
on their within-class and inter-class distance distribu- 
tions. We wish that the within-class distances of a 
feature vector are small and the inter-class distances 

are large, thus giving a small overlapping area, ideally 
zero, since the smaller the area the less possibly pat- 
terns are to be misclassified although the ordering 
might not be strict. 

Figures l-4 show the distance distributions with the 
four techniques on the four data sets. It is seen from 
Fig. 1 that, on the first data set Dl-D28, the over- 
lapping area with SGF is the smallest, and that SFM 
gives the second smallest overlapping area (slightly 
larger than that with SGF), indicating that SGF and 
SFM should be the best two for’ this data set. Figures 
2-4 show that the overlapping areas with SGF are 
considerably smaller than that with the other tech- 
niques on the data sets D29-D56, D57-D84 and D85- 
D112, indicating that SGF’s performance should be 
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Table 3. Contingency tables on the second set D29-D56 
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SGF: SGF with the irregularity measure. SFM: SFM M,,, of size 4 x 4. 

substantially better than the other techniques on the 
data sets. 

3.5. Classification under additive noise 

Comparison of techniques was also done on larger Classification under additive noise was also con- 
data sets, viz. on the two sets Dl-D56 and D57-D112 sidered. Zero mean, uncorrelated, uniformly distri- 
of 56 textures as well as on the set of the whole data- buted noise was added to the testing images. From the 
base Dl-D112. Results are presented in Table 6 and results as shown in Tables 8-10, one naturally sees that 
Table 7. It is expected that the performance of all the performance of all the methods deteriorates as the 
techniques decreases as the size of the set increases. signal to noise ratio (SNR) decreases. On the first 
From Tables 1-3, one sees that the performance drop group of four sets of 28 textures, SGF’s performance 
of SGF is the smallest (6.5% drop from average 92.1% under 30dB SNR is substantially better than the 
on sets of size 28 to 85% for SGF, 9.2% drop for SFM others; under 20dB and 1OdB SNRs, SFM 8 x 8’s 
4 x 4, 9.0% drop for SFM 8 x 8, 17.4% for SGLDM, performance is comparable to that of SGF’s whilst the 
and 17.5% for Liu’s features) indicating that SGF can others are considerably worse, showing that under 
handle a larger texture population than the other severe noise, SFM 8 x 8 may perform as well as SGF. 
methods, which is indeed desirable since there are The same is true for the second and third group, 
thousands of natural textures. illustrating that SGF’s performance under additive 
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Table 4. Contingency tables on the third set D57-D84 

SGF SFM 

true class 

noise is good and SFM 8 x 8 is comparable to SGF 
under severe noise. 

3.6. Visual interpolations 

There is some correspondence between the SGF fea- 
tures and human perception of a texture. Eight features 
derived from NOC,(a), IRGL,(cc) reflect the attributes 
of the bright blobs in an image while another eight 
features derived from NO&(a), ZRGL,(a) are related to 
the properties of the dark blobs in the image. (Pixels 
of higher values are brighter.) As NOC, (CX) and NOC,(a) 
are based on the number of blobs they reveal the granu- 
larity of the texture whilst NOC,(5r) and NO&(a) de- 
scribe the roundness of the blobs and they therefore 
help determine whether the blobs look more like disks 
or rods. 

Table 11 lists the first SGF features from textures 
D15, D31 and DlOl. It is observed that the maximum 
value of NOC,(cr) sorts the textures into the ascending 
order D31, DlOl, D15, which basically agrees with 
human perception of the granularity (of the bright 
blobs). The maximum value of IRGLl(a) gives the 
order DlOl, D31, D15, which also agrees with the fact 
that the bright blobs in DlOl look more like disks and 
those in D15 look more like rods. 

The second eight SGF features from textures D09, 
D49 and D102 are listed in Table 12. It is observed, 
similarly, that the ascending order D102, D49, D09, 
sorted by the maximum value of NOC,(x) is largely 
consistent with human perception of the granularity 
(of the dark blobs). The order D102, D09, D49, sorted 
by the maximum value of IRGL,(a) is also consistent 
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Table 5. Contingency tables on the fourth set D85-D112 

SFM 

Table 6. Correct classification rates of various algorithms on further characterize the functions. They have less ob- 
the second group (two set of 56 texture pictures) vious visual interpretations. 

Dl-D56 D56-D112 Average 

SGF 90.2 87.3 88.8 
SFM (4 x 4) 82.9 73.8 78.4 
SFM (8 x 8) 83.7 71.4 77.6 
SGLDM 79.9 67.7 73.8 
Liu’s features 50.8 31.9 41.4 

SGF: SGF with the irregularity measure. 

with the fact that the dark blobs in D102 are more like 
disks and those in D49 are more like-rods. 

The other statistics, namely, the averages, means, 
and standard deviations of the functions are to help 

3.7. Computation time and storage requirements 

While the storage requirement of all the four tech- 
niques is in the order of tens of kilobytes, that is a small 
fraction of the amount accommodated by modern 
computers, computation time is a factor in choosing a 
technique. Table 13 lists the computation time re- 
quired by the four methods to extract features from a 
64 x 64 image. (The data is based upon the codes in 
C + f running on a 25 MHz 486.) The results suggest 
that SGF requires less computation time than Liu’s 
features but more than SDLDM and SFM. In view of 
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Fig. 1. Within-class (bold lines) and inter-class (tine lines) distance distributions on the first set Dl-D28. 
SGF: SGF with the irregularity measure. SFM: SFM M,,, of size 4 x 4. 

normalised distance 

SGF 

-0.0 0.1 0.1 0.3 0.1 0.5 0.6 0.1 0.. 0.9 

normalised distance 

SGLDM 

0 
0.0 0.1 0.1 0.3 0.4 0.5 0.6 0.7 0.s 0.9 

normalised distance 

Liu’s features 

Fig. 2. Within-class (bold lines) and inter-class (fine lines) distance distributions on the second set D299D56. 
SGF: SGF with the irregularity measure. SFM: SFM M,,, of size 4 x 4. 
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Fig. 3. Within-class (bold lines) and inter-class (tine lines) distance distributions on the third set D57-D84. 
SGF: SGF with the irregularity measure. SFM: SFM M,,, of size 4 x 4. 
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Fig. 4. Within-class (bold lines) and inter-class (fine lines) distance distributions on the fourth set D85-D112. 
SGF: SGF with the irregularity measure. SFM: SFM M,,, of size 4 x 4. 
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Table 7. Correct classification rates of 
various algorithms on the third group (one 

set of 112 texture pictures) 

Dl-D112 

SGF 85.6 
SFM (4 x 4) 72.8 
SFM (8 x 8) 72.4 
SGLDM 64.6 
Liu’s features 32.7 

SGF: SGF with the irregularity measure. 

f 
r c9 6 

Fig. 5. A disk with a crack. 

Table 8. Correct classification rates of various algorithms under additive noise on the first group (four sets 
of 28 texture pictures) 

Dl-D28 D29-D56 D57-D84 D85-D112 Average 

SGF 91.1 91.1 92.0 90.8 91.3 
SFM (4 x 4) 93.1 78.3 82.4 72.1 81.5 

S/N = 30(db) SFM (8 x 8) 92.6 80.8 82.4 71.0 81.7 
SGLDM 86.3 80.4 76.1 74.6 79.4 
Liu’s features 61.8 54.7 37.9 39.5 48.5 

SGF 84.4 60.3 
SFM (4 x 4) 76.6 60.0 

S/N = 20 (db) SFM (8 x 8) 88.8 72.1 
SGLDM 57.1 45.5 
Liu’s features 55.8 39.9 

SGF 24.6 8.3 
SFM (4 x 4) 20.5 16.1 

S/‘N=(lOdb) SFM (8 x 8) 24.1 23.0 
SGLDM 11.8 12.3 
Liu’s features 11.8 10.3 

SGF: SGF with the irregularity measure. 

17.2 
64.5 
75.0 
55.1 
32.8 

22.1 
14.3 
17.4 

8.7 
10.9 

83.7 76.4 
56.3 64.4 
58.3 73.6 
39.1 49.2 
38.4 41.6 

35.9 22.7 
10.9 15.5 
17.0 20.4 
15.4 12.1 
8.4 10.3 

Table 9. Correct classification rates of various algorithms under additive noise 
on the second group (two sets of 56 texture pictures) 

SGF 89.1 
SFM (4 x 4) 82.3 

S/N = 30 (db) SFM (8 x 8) 83.5 
SGLDM 75.8 
Liu’s features 49.0 

SGF 66.9 
SFM (4 x 4) 60.5 

S/N = 20 (db) SFM (8 x 8) 74.8 
SGLDM 42.2 
Liu’s features 33.3 

SGF 14.4 
SFM (4 x 4) 16.4 

S/N = lO(db) SFM (8 x 8) 20.5 
SGLDM 7.5 
Liu’s features 5.7 

SGF: SGF with the irregularity measure. 

86.6 87.9 
73.5 77.9 
72.0 77.8 
63.8 69.8 
31.3 40.2 

69.0 68.0 
53.5 57.0 
61.3 68.1 
37.5 39.9 
26.3 29.8 

20.8 17.6 
5.7 11.1 

11.0 15.8 
8.9 8.2 
3.9 4.8 
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Table 10. Correct classification rates of various algorithms 
under additive noise on the third group (one set of 112 texture 

pictures) 

Dl-D112 

SGF 84.0 
SFM (4 x 4) 71.4 

S/N = 30 (db) SFM (8 x 8) 72.3 
SGLDM 58.6 
Liu’s features 31.3 

SGF 57.4 
SFM (4 x 4) 51.7 

S/N = 20 (db) SFM (8 x 8) 56.9 
SGLDM 28.7 
Liu’s features 20.9 

SGF 
SFM (4 x 4) 

13.6 
9.1 

13.6 
5.5 
3.1 

S/N = 10 (db) SFM (8 x 8) 
SGLDM 
Liu’s features 

SGF: SGF with the irregularity measure. 

Table 13. Computation time of various 
algorithms 

Time(s) 

SGF 1.5 
SFM (4 x 4) 0.5 
SFM (8 x 8) 1.0 
SGLDM 0.3 
Liu’s features 2.5 

SGF: SGF with the irregularity measure. 

the Statistical Feature Matrix method and Liu’s fea- 
tures-shows that the correct classification rate achieved 
by SGF proposed in the paper is substantially higher 
than that by the other three approaches, and that the 
reduction in performance with the increase in the num- 
ber of textures in the set is slower with SGF than with 
the other three, indicating that SGF can handle a 

Table 11. SGF features from D15, D31 and DlOl 

av 

NGb) lRGL,(a) 

max mean S.D. av max mean S.D. 

D15 51.6 136.0 33.6 9.2 0.78 1.76 31.4 12.5 
D31 10.2 25.0 29.1 11.7 0.56 1.03 27.2 13.0 
DlOl 56.3 93.0 27.7 12.6 0.24 0.99 25.4 15.7 

Av, Average; S.D., standard deviation 

Table 12. SGF features from D09, D49 and D102 

Texture av 

NOCl(4 lRGL,(a) 

max mean S.D. av max mean S.D. 

DO9 59.6 240.0 20.9 6.50 0.38 1.06 32.3 13.4 
D49 13.9 112.0 12.0 9.51 1.56 5.18 17.6 11.2 
D102 62.3 101.0 30.6 12.7 0.26 0.57 32.5 17.9 

Av, Average; S.D., standard deviation 

its superior performance (with respect to correct classi- larger texture population. SGF’s performance under 
fication rates), SGF’s computational costs may well be additive noise also compares favourably with the other 
warranted. three methods. 
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APPENDIX A CONNECTIVITY 

Dejnition 1. For a given coordinate pair (x, y), the 4-neigh- 
bourhood is defined to be the set N,(x, y) = {(x + l,y), 
(x - 1, y), (x, Y + lb (x, Y - l)}. 

Definition 2. A pixel p1 at (x,,y,) is said to be a 4-neighbour 
of pz at (x,,Y,) if and only if (x,,~,)~N,(x,,y,). 

Definition 3. Two pixels p and p’ are 4-connected if and only 
if p is a 4-neighbour of p’ and both the grey level 1 of p and 
the grey level I’ satisfy some condition. e.g. they should be 
equal. 

Definition 4. A 4-connecting path between p1 and p. is a 
sequence of pixels (pi);, 1 such that pi and pi+ 1 for 15 i I n - 1 
are 4-connected. 

Definition 5. A 4-connected region is a set of pixels such that 
there is at least one 4-connecting path for each pair of pixels 
in this set. 

A recursive algorithm for traversing a 4-connected region 
of gl-valued (gl = 0 or gl = 1) pixels around (x. y) is given as 
follows: 

getConnectedRegion(int x, int y) r 
if (imageArray[x] [y] != gl) return; 
imageArray[x] [y] = 1 - gl; 
addPixel (x. y); 
getConnectedRegion (x + 1, y); 
get ConnectedRegion (x - 1, y); 
getConnectedRegion (x, y + ); 
getConnectedRegion (x, y - 1); 
return; 

where imageArray [] [] is a two dimensional image array, 
addPixel(int, int) is a function to store the pixels in a con- 
nected region for analysis. 

To obtain all the connected regions from a binary image, 
one simply need to sequentially apply the above algorithm to 
every pixel of the image. It is easy to see that the computa- 
tional complexity for obtaining all the connected regions in 
an image is o(n) where n is the number of pixels in the image. 
In fact, no more than 6 x n times accesses to f(x, y) (an 
element of a two-dimensional array), arithmetic comparisons, 
and function calls are needed. 

APPENDIX B. SHAPE MEASURES 

Given a connected region A in the plane, the extent of its 
irregularity can be measured by the ratio of its maximum 
radius to the square root of its area, where the maximum 
radius is defined to be 

x= lxdx, j= lydy. (B2) 
A A 

where sup is supremum (the least upper bound). 
Equation (3) (in main text) is for measuring the irregularity 

of a connected region in a digital image, where the factor & 
and two additive 1s are introduced to make the measure 
approximate to zero when the region is a disk (the most 
compact and hence least irregular region in the usual sense). 
This can be seen as 

(1) If there is only one pixel in the region, equation (3) 
becomes 

1+&o l=. irregularity = ~ - 
1 

(2) As the space e of the sampling grid [at spacing (E, E)] 
approaches 0 the irregularity of a disk becomes 

i 

1 +&ntxJ(xi-a)~+(Y,-j)* 

irregularity = lim -1 
e-0 

fi 1 

(B4) 

=o 

(111 approaches infinity as E approaches 0.) 
An alternative shape measure of a connected region in the 

plane is the ratio of the square root of its area to its perimeter, 
termed compactness or circularity. (The reciprocal of this 
measure constitutes a regularity measure that has the same 
properties to be discussed later.) Equation 5 (in main text) is 
given for measuring the compactness of a region in a digital 
image. 

It is observed that the two measures, when applied to 
digital images, have their respective advantages and dis- 
advantages as follows 

(1) The irregularity measure is invariant to rotation while 
the compactness measure is not. 

Proof. For a connected region A in the plane, a spatial 
sampling process using a grid of spacing (E, E) gives rise to a 
corresponding region A, in a digital image. With moderate 
conditions upon A that are satisfied by most natural images, 
it is easy to see that as E -to the following independent of the 
rotation of A. (The area of a pixel is Ed, the height and width 
is E.) 
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Table Bl. Correct classification rates of SGF with the irregularity measure and that of 
SGF with the compactness measure on the first group (four sets of 28 texture pictures) 

549 

DlLD28 D29-D56 D577D84 D85-D112 Average 

SGF (irregularity) 90.8 92.6 93.5 91.5 92.: 
SGF (compactness) 91.3 89.7 92.9 92.4 91.6 

(la) The area of A, by counting the pixels in it approaches 
the area of A; 

(lb) the centre of mass of A, by using equation (4) ap- 
proaches the centre of mass of A; 

(lc) the maximum radius of A, in equation (3) approaches 
the maximum radius of A. 

Therefore the irregularity measure defined by equation (3) 
is independent of rotation. 

The perimeter as measured using equation (7) for regions 
ofsome shape, however, is dependent on the angle ofrotation. 
In fact, as E + 0, the measured perimeter approaches 4 for a 
unit square with sides parallel to the axes whilst the measured 
perimeter approaches 4$ for a unit square with diagonals 
parallel to the axes (rotated 45 degrees). As the measured 
area of A, approaches that of A as stated in (la), the compact- 
ness measures gives a result fi times larger for the original 
unit square than for the rotated square-a significant differ- 
ence. 0 

(2) The irregularity measure of a square is (@/2) - 1 = 
0.25 while that of a disk is 0 as expected since a square is more 
irregular than a disk in the usual sense. However, the com- 
pactness measure of a square parallel to the axes is 1 while 
that of a disk is (,/%/2) = 0.89, suggesting a square is more 
compact than a disk which is not usually acceptable. 

(3) The compactness measure is more sensitive to a narrow 
crack in a region. The fact is demonstrated by considering a 
disk with a narrow crack as illustrated in Fig. 5. As 6 tends 
to 0, the irregularity measure of the region converges to that 
of the same disk without the crack while the compactness 

measure converges to (2/5)J;f = 0.71-a value significantly 
different from the compactness measure of the same disk 
without the crack which is (G/2) = 0.89. This suggests that 

Table B2. Correct classification rates of SGF with the ir- 
regularity measure and that of SGF with the compactness 
measure on the second group (two sets of 56 texture pictures) 

SGF (irregularity) 
SGF (compactness) 

Dl-D56 D56-D112 Average 

90.2 87.3 88.8 
90.1 87.9 89.0 

Table B3. Correct classification rates 
of SGF with the irregularity measure and 
that of SGF with the compactness measure 
on the third group (one set of 112 texture 

pictures) 

DlpD112 

SGF (irregularity) 85.6 
SGF (compactness) 85.2 

the irregularity measure tends to ignore narrow cracks whilst 
the compactness measure will register them-a potential 
advantage of the compactness measure. 

Experimental results as shown in Tables BlLB3 are basic- 
ally consistent with the theoretical analysis: the irregularity 
measure and the compactness measure give approximately 
the same performance as each has its own merits and short- 
comings. 
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APPENDIX C. THE TEXTURE DATABASE 

DO01 DO02 DO03 DO04 DO05 DO06 DO07 

DO08 DO09 DO10 DO11 DO12 DO13 DO14 

DO15 DO16 DO17 riO18 DO19 DO20 DO21 

DO22 DO23 DO24 DO25 DO26 DO27 DO28 

DO29 DO30 DO31 DO32 DO33 DO34 DO35 

DO36 DO37 DO38 DO39 DO40 DO41 DO42 

DO43 DO44 DO45 DO46 DO47 DO48 DO49 

DO50 DO51 DO52 DO53 DO54 DO55 DO56 

Fig. Cl. Textures Dl-D56. 
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DO57 DO58 DO59 DO60 DO61 DO62 DO63 

-___- _.. ..-... _ .-.. -.._ ..__- _ 
DO64 DO65 DO66 DO67 DO68 DO69 DO70 

DO71 DO72 DO73 DO74 DO75 DO76 DO77 

DO78 DO79 DO80 DO81 DO82 DO83 DO84 

DO65 DO86 DO87 Do88 DO89 DO90 DO91 

DO92 DO93 DO94 DO95 DO96 DO97 DO98 

DO99 DloO DlOl DlO2 D103 DlO4 D105 

D106 D107 DlOB D109 DllO Dlll Dll2 

Fig. C2. Textures D57-D112. 
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