@ Pergamon

Pattern Recognition, Vol. 28, No. 4, pp. 537-552, 1995
Elsevier Science Ltd

Copyright ©® 1995 Pattern Recognition Society
Printed in Great Britain. All rights reserved
0031-3203/95 $9.50 + .00

0031-3203(94)00116-2

STATISTICAL GEOMETRICAL FEATURES FOR
TEXTURE CLASSIFICATION

YAN QIU CHEN,* MARK S. NIXON and DAVID W. THOMAS
Department of Electronics and Computer Science, University of Southampton, U.K.

(Received 9 February 1994; in revised form 24 August 1994; received for publication 1 September 1994)

Abstract—This paper proposes a novel set of 16 features based on the statistics of geometrical attributes of
connected regions in a sequence of binary images obtained from a texture image. Systematic comparison
using all the Brodatz textures shows that the new set achieves a higher correct classification rate than the
well-known Statistical Gray Level Dependence Matrix method, the recently proposed Statistical Feature
Matrix, and Liu’s features. The deterioration in performance with the increase in the number of textures in
the set is less with the new SGF features than with the other methods, indicating that SGF is capable of
handling a larger texture population. The new method’s performance under additive noise is also shown to

be the best of the four.
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1. INTRODUCTION

Texture plays an important role in image analysis and
understanding. Its potential applications range from
remote sensing, quality control, to medical diagnosis
etc. As a front end in a typical classification system,
texture feature extraction is of key significance to the
overall system performance. Many papers have been
published in this area, proposing a number of various
approaches.

Structural approaches' ™ are based on the theory
of formal languages: a texture image is regarded as
generated from a set of texture primitives using a set
of placement rules. These approaches work well on
“deterministic” textures but most natural textures, un-
fortunately, are not of this type.

From a statistical point of view, texture images are
complicated pictorial patterns, on which, sets of statis-
tics can be obtained to characterize these patterns. The
most popularly used one is the Spatial Grey Level
Dependence Matrix (SGLDM) method,**> which con-
structs matrices by counting the number of occur-
rences of pixel pairs of given gray levels at a given
displacement. Statistics like contrast, energy, entropy
and so forth are then applied to the matrices to obtain
texture features. These statistics are largely heuristic,
although Julesz’s conjecture® about the human eyes’
inability to discriminate between textures differing only
in third or higher order statistics is an indication of the
appropriateness of the method. Other schemes include
the Statistical Feature Matrix” and the Texture Spec-
trum.®-?

A two-dimensional power spectrum of a texture
image often reveals the periodicity and directionality

* Author to whom all correspondence should be addressed.

Statistical features

Geometrical features

of the texture. For example, a coarse texture tends to
generate low frequency components in its spectrum
while a fine texture will have high frequency compo-
nents. Stripes in one direction cause the power spec-
trum to concentrate near the line through the origin
and perpendicular to the direction. Fourier transform
based methods %11 ysually perform well on textures
showing strong periodicity, their performance signifi-
cantly deteriorates, though, when the periodicity
weakens.

Stochastic models such as two-dimensional ARMA,
Markov random fields etc. can also be used for texture
feature extraction via parameter estimation.!>~*® These
approaches consider textures as realizations of a ran-
dom process. Structural and geometrical features ap-
pearing in textures are largely ignored. Other diffi-
culties such as that in choosing an appropriate order
for a model have also been reported.

This paper proposes a novel set of sixteen texture
features based on the statistics of geometrical pro-
perties of connected regions in a sequence of binary
images obtained from a texture image. The first step
of the approach is to decompose a texture image into
a stack of binary images. This decomposition has been
proven to have the advantage of causing no informa-
tion loss, and resulting in binary images that are easier
to deal with geometrically. For each binary image,
geometrical attributes such as the number of con-
nected regions and their irregularity are statistically
considered. Sixteen such statistical geometrical fea-
tures are proposed in this paper.

2. THE STATISTICAL GEOMETRICAL FEATURES

An n, x n, digital image with n, grey levels can
be modelled by a 2D function f(x,y), where (x,y)e
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{0,1,...,n,—1} x{0,1,...,n,— 1}, and f(x,y)e
{0,1,...,m,— 1}. f(x,y) is termed the intensity of the
pixel at (x, y).

When an image f(x, y) is thresholded with a thresh-
old value «, ae{l,...,n,— 1}, a corresponding binary
image is obtained, that is

1 if f(x,y)=«
0 otherwise

Jolx, yi0) = { Y
where f,(x,y;a) denotes the binary image obtained
with threshold a.

For a given original image, there are n, — 1 potenti-
ally different binary images, i.e. f,(x, ¥; 1), fo(x, %;2),...,
£+(x, y;n, — 1). This set of binary images shall be termed
a binary image stack. For images of a given size and
of a given number of grey levels, the above defined
mapping (of the space of images into the space of
binary image stacks)is bijective (one-to-one and onto),
which guarantees that no loss of information is en-
tailed by this transform. This is true because

n—1

fly)= Z Fo(x, v )

Vix,1)e{0,1,...,n, — 1}{0,1,...,n,— 1}. (2)

For each binary image, all 1-valued pixels are grouped
into a set of connected pixel groups termed connected
regions. The same is done to all 0-valued pixels. (Ap-
pendix A presents formal definition and an algorithm.)
Let the number of connected regions of 1-valued pixels
in the binary image f,(x, y; ) be denoted by NOC, (=),
and that of 0-valued pixels in the same binary image
by NOC,(a). Both NOC,(x) and NOCy(x) are func-
tions of &, ae{1,...,n,— 1}.

To each of the connected regions (of either 1-valued
pixels or 0O-valued pixels), a measure of irregularity
(un-compactness) is applied, which is defined to be

1+ /m-max /(x; — X + (v, — §)?
iel

irregularity = -1,
1]
3
where
Z X Z Vi
— iel iel
X=—nm, y=—1Hoj, “
1] 1]

I is the set of indices to all pixels in the connected
region concerned, |I| denotes the cardinality of the set
I (the number of elements in I). (%, 7) Can be thought
of as the centre of mass of the connected region under
the assumption that all the pixels in the region are of
equal weight.

Alternatively, the usual measure of compactness
(circularity) can be used, which is defined as

1|

compactness = ————,
perimeter

®)

where

Y. Q. CHEN et al.

perimeter = Z Lfo(x: — Ly @ folxi y) + fulxi + 1, )

iel

@ folxi, vi) + folxi yi — DD fox1, ¥3)

+ o0 yi + D@ fo(xi v 1 (6)
@ denotes the logic XOR operator, that is

x@y:{l 1fx;éy. "
0 x=y

(Appendix B discusses the properties of the irregularity
measure and the compactness measure in detail.)

As stated, a digital image corresponds to n,— 1
binary images, each of which, in turn, comprises a few
connected regions (of 1-valued pixels and of O-valued
pixels). Let the irregularity of the ith connected region
of 1-valued pixels (0-valued pixels, respectively) of the
binary image f,(x,y;®) be denoted by IRGL,(i, )
[IRGL,(i, ), respectively]. The average (weighted by
size) of irregularity of the regions of 1-valued pixels in
the binary image f,(x, y;«) is defined to be

3. [NOP (i,2)- IRGL,(i, )]
B >, NOP,(i,)

where NOP,(i,) is the number of pixels in the ith
connected region of 1-valued pixels of the binary image
f3(x, y;2). IRGLg() is similarly defined.

By now, four functions of o, i.e, NOC (), NOC(a),
IRGL, (%), IRGL(2), have been obtained, each of which,
is further characterized using the following four statis-
tics

TRGL, (%)

. ®

maxvalue= max g{a), )
1<asm—1
m—1
average value = Y glo), (10)
n— 1 a=1
n—1
samplemean = ———— a-gle) (11)
Z:‘: 11 g IX) 121
m—1
sample S.D. = \/ — Y (o« — sample mean)®- g(x)
zzl= 1 g(a) a=1
(12)

where g(x) is one of the four functions: NOC,(x),
NOCy(2), IRGL(e), IRGLy(o0).

The same procedures apply if the alternative com-
pactness measure is to be used. In all, there are 16
feature measures for a texture image, four obtained from
NOC, (), four from NOC(«), four from IRGL, (%), and
another four from IRGLg(x).

3. EXPERIMENTAL EVALUATION

3.1. The database

The set of all 112 texture pictures in the Brodatz’s
photographic atlas of textures was organized into three
groups. The first group comprises four sets with each
having 28 pictures, that is, the first set includes pictures
D1 through D28, the second set includes pictures D29
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through D356, and so on. The second group consists of
two sets, the first set contains pictures D1 through
D56, the second set contains pictures D57 through
D112. The third group is made up of the whole set,
namely, pictures D1 through D112. The database was
arranged to ensure a systematic comparison of algo-
rithms.

Each texture picture in the atlas was scanned by an
HP flat bed scanner to produce a 256 x 256 x 8 digital
image, from which, sixteen 64 x 64 x 8 sub-images
were obtained using perfectly aligned 64 x 64 win-
dows. Nine of them were then randomly chosen as
samples. One sub-image for each texture is shown in
Fig. C1 and C2 in appendix C.

3.2. Three other techniques for comparison

Three other methods along with the Statistical Geo-
metrical Features (SGF) proposed in this paper were
tested on the same aforementioned database under the
same conditions for comparison.

(1) The Spatial Grey Level Dependence Matrix
(SGLDM) approach (4) is popularly used for extract-
ing texture features. Five commonly used features as
suggested in (5); energy, entropy, correlation, local
homogeneity and inertia were computed in our experi-
ments.

(2) Liu’s features (11) are one of the many methods
based on the Fourier Transform. Eight optimal fea-
tures (as proposed by the authors) f7, f. fs. fi5 f200

S21:f255 f26 Were used.

(3) The recently proposed Statistical Feature Ma-
trix (SFM) method (7) was claimed to have superior
performance over SGLDM and Liu’s features and
therefore was considered in our experiments. The ma-
trices M,,, of size 4 x 4 and 8 x 8 were used.

There are 255 binary images obtainable from an
8-bit grey level digital image. To reduce computational
costs, 63 binary images (evenly spaced thresholds, i.e.
a=4,8, 12,...,252) were used in the experiments.

3.3. Feature normalization

All the features were standardized (normalized) by
their sample means and S.D.’s which amounts to say-
ing that every component was normalized using the
following equation

i=1,2,...,n, (13)
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where
1 n
== fo (14)
Ni=1
1 n
o=_[= Y (fi—w (15)
ni=1

n is the number of samples.
The k-nearest neighbour rule using the Euclidean

dictanee and the “laava ane ant” actimatall6) wara than
GIStance ana uc 16ave onc outl” estimatc weIC 1acii

adopted for feature evaluation (k = 3). The k-nearest
neighbour rule is popularly used in cases where the
underlying probability distribution is unknown, and
the “leave one out” estimate is unbiased and generally
desirable when the number of available samples for
each class is relatively small.

3.4. Classification results and discussions

On the first group of the four sets D1-D28, D29-D56,
D57-D84 and D85-D112, it is seen from Table 1 that
SGF’s average correct classification rate is 92.1%;, which
is substantially higher than that of the other three
techniques. A further look at the contingency tables
(confusion matrices) as shown in Tables 2-5 gives
more detailed information:

On the first set D1-D28, classification with SGF is
accurate with the exception of misclassification on
some rock/stone textures (D2, DS, D7, D23, D27 and
D28) and tree bark textures (D12, D13). This is under-
standable because these rock/stone/tree bark images
are non-stationary and its texture properties vary con-
siderably with the location of the window; see Figure
Cl in appendix. SFM’s correct classification rate is a
little higher than that of SGF on this set but it mis-
classifies nine textures into 12 wrong classes as against
SGF’s misclassifying eight textures into nine wrong
classes. SGLDM’s performance is poorer than the
previous two. Liu’s features can only correctly classify
D1, D4, D§, D11 and D21.

On the second set D29-D56, SGF correctly classi-
fies the textures with the exception of some misclassifi-
cation between two similar pebbles D30 and D31 one
on D50, and some misclassification among D43, D44
and D45 which is also understandable since D43, D44
and D45 contain patterns much larger than the win-
dow hence information obtainable within the window
is inadequate. SFM’s performance is considerably worse.
It misclassifies several textures that are considerably

Table 1. Correct classification rates of various algorithms on the first group (four sets of 28 texture pictures)

D1-D28 D29-D56 D57-D84 D85-D112 Average
SGF 90.8 92.6 93.5 91.5 921
SFM (4 x 4) 93.5 78.3 83.7 72.5 82.0
SFM (8 x 8) 93.1 80.8 81.7 70.1 81.4
SGLDM 88.4 83.9 76.6 79.2 82.0
Liu’s features 62.3 57.4 38.8 42.4 50.2

SGF: SGF with the irregularity measure.
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Table 2. Contingency tables on the first set D1-D28

classified as

classified as

true class

SGLDM

classified as

classified as

true class

Liu’s features

SGF: SGF with the irregularity measure. SFM: SFM M,,, of size 4 x 4.

different, e.g. D30/D46 and D33/D40/D42. SGLDM’s
discriminating ability is also considerably lower than
that of SGF. Liu’s features can only correctly classify
D29, D37, D47 and D48.

On the third set D57-D84, SGF’s discrimination
ability is considerably better than the other three tech-
niques in terms of correct classification rates and num-
bers of textures misclassified. Misclassification with
SGF happens on textures that contain very large pat-
terns or appear severely non-stationary. The same is
true on the fourth data set D85-D112.

An alternative assessment of feature vectors is based
on their within-class and inter-class distance distribu-
tions. We wish that the within-class distances of a
feature vector are small and the inter-class distances

are large, thus giving a small overlapping area, ideally
zero, since the smaller the area the less possibly pat-
terns are to be misclassified although the ordering
might not be strict.

Figures 1-4 show the distance distributions with the
four techniques on the four data sets. It is seen from
Fig. 1 that, on the first data set D1-D28, the over-
lapping area with SGF is the smallest, and that SFM
gives the second smallest overlapping area (slightly
larger than that with SGF), indicating that SGF and
SFM should be the best two for this data set. Figures
2-4 show that the overlapping areas with SGF are
considerably smaller than that with the other tech-
niques on the data sets D29-D56, D57-D84 and D85~
D112, indicating that SGF’s performance should be
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Table 3. Contingency tables on the second set D29-D56

classified as

classified as

true class

SGLDM

8
©
2
=
£
o

classified as

true class

Liu’s features

SGF: SGF with the irregularity measure. SFM: SFM M, of size 4 x 4.

substantially better than the other techniques on the
data sets.

Comparison of techniques was also done on larger
data sets, viz. on the two sets D1-D56 and D57-D112
of 56 textures as well as on the set of the whole data-
base D1-D112. Results are presented in Table 6 and
Table 7. It is expected that the performance of all
techniques decreases as the size of the set increases.
From Tables 1-3, one sees that the performance drop
of SGF is the smallest (6.5%; drop from average 92.1%,
on sets of size 28 to 859 for SGF, 9.2%; drop for SFM
4 x 4, 9.0% drop for SFM 8 x 8, 17.4%, for SGLDM,
and 17.5% for Liu’s features) indicating that SGF can
handle a larger texture population than the other
methods, which is indeed desirable since there are
thousands of natural textures.

3.5. Classification under additive noise

Classification under additive noise was also con-
sidered. Zero mean, uncorrelated, uniformly distri-
buted noise was added to the testing images. From the
results as shown in Tables 8—10, one naturally sees that
the performance of all the methods deteriorates as the
signal to noise ratio (SNR) decreases. On the first
group of four sets of 28 textures, SGF’s performance
under 30dB SNR is substantially better than the
others; under 20dB and 10dB SNRs, SFM 8 x 8’s
performance is comparable to that of SGF’s whilst the
others are considerably worse, showing that under
severe noise, SFM 8 x 8 may perform as well as SGF.
The same is true for the second and third group,
illustrating that SGF’s performance under additive
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Table 4. Contingency tables on the third set D57-D84

classified as

classified as

true class

SGLDM

classified as

classified as

true class

Liu’s features

SGF: SGF with the irregularity measure. SFM: SFM M_,, of size 4 x 4.

noise is good and SFM 8 x 8 is comparable to SGF
under severe noise.

3.6. Visual interpolations

There is some correspondence between the SGF fea-
tures and human perception of a texture. Eight features
derived from NOC, (), IRGL, () reflect the attributes
of the bright blobs in an image while another eight
features derived from NOCy(x), IRGLy() are related to
the properties of the dark blobs in the image. (Pixels
of higher values are brighter.) As NOC, (&) and NOCy(2)
are based on the number of blobs they reveal the granu-
larity of the texture whilst NOC,(«) and NOC,(x) de-
scribe the roundness of the blobs and they therefore
help determine whether the blobs look more like disks
or rods.

Table 11 lists the first SGF features from textures
D15, D31 and D101. It is observed that the maximum
value of NOC, () sorts the textures into the ascending
order D31, D101, D15, which basically agrees with
human perception of the granularity (of the bright
blobs). The maximum value of IRGL,(x) gives the
order D101, D31, D15, which also agrees with the fact
that the bright blobs in D101 look more like disks and
those in D15 look more like rods.

The second eight SGF features from textures D09,
D49 and D102 are listed in Table 12. It is observed,
similarly, that the ascending order D102, D49, D09,
sorted by the maximum value of NOC,(%) is largely
consistent with human perception of the granularity
(of the dark blobs). The order D102, D09, D49, sorted
by the maximum value of JRGL,(#) is also consistent
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Table 5. Contingency tables on the fourth set D85-D112

classified as

classified as

true class

SGLDM

classified as

classified as

true class

Liu’s features

SGF: SGF with the irregularity measure. SFM: SFM M., of size 4 x 4.

Table 6. Correct classification rates of various algorithms on
the second group (two set of 56 texture pictures)

D1-D56  D56-D112 Average

SGF 90.2 87.3 88.8
SFM (4 x 4) 82.9 73.8 78.4
SFM (8 x 8) 83.7 71.4 77.6
SGLDM 79.9 67.7 73.8
Liu’s features 50.8 319 41.4

SGF: SGF with the irregularity measure.

with the fact that the dark blobs in D102 are more like
disks and those in D49 are more like-rods.

The other statistics, namely, the averages, means,
and standard deviations of the functions are to help

further characterize the functions. They have less ob-
vious visual interpretations.

3.7. Computation time and storage requirements

While the storage requirement of all the four tech-
niques is in the order of tens of kilobytes, that is a small
fraction of the amount accommodated by modern
computers, computation time is a factor in choosing a
technique. Table 13 lists the computation time re-
quired by the four methods to extract features from a
64 x 64 image. (The data is based upon the codes in
C + + running on a 25 MHz 486.) The results suggest
that SGF requires less computation time than Liu’s
features but more than SDLDM and SFM. In view of
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Table 7. Correct classification rates of
various algorithms on the third group (one
set of 112 texture pictures)

Di1-D112
SGF 85.6
SFM (4 x 4) 72.8
SFM (8 x 8) 72.4
SGLDM 64.6
Liu’s features 327

SGF: SGF with the irregularity measure.

Fig. 5. A disk with a crack.

Table 8. Correct classification rates of various algorithms under additive noise on the first group (four sets
of 28 texture pictures)

D1-D28 D29-D56  D57-D84 D85-DI112 Average

SGF 91.1 91.1 92,0 90.8 91.3
SFM (4 x 4) 93.1 78.3 82.4 72.1 81.5
S/N = 30(db) SEM (8 x 8) 92.6 80.8 82.4 71.0 81.7
SGLDM 86.3 80.4 76.1 74.6 79.4
Liw’s features 61.8 54.7 37.9 39.5 48.5
SGF 84.4 60.3 77.2 83.7 76.4
SFM (4 x 4) 76.6 60.0 64.5 56.3 64.4
S/N = 20(db) SFM (8 x 8) 88.8 72.1 75.0 58.3 73.6
SGLDM 57.1 45.5 55.1 39.1 49.2
Liu’s features 55.8 399 32.8 384 41.6
SGF 24.6 8.3 22.1 359 22.7
SFM (4 x 4) 20.5 16.1 14.3 109 15.5
S/N =(10db) SFM (8 x 8) 24.1 23.0 174 17.0 204
SGLDM 11.8 12.3 8.7 15.4 12.1
Liu’s features 11.8 10.3 10.9 8.4 10.3

SGF: SGF with the irregularity measure.

Table 9. Correct classification rates of various algorithms under additive noise
on the second group (two sets of 56 texture pictures)

SGF 89.1 86.6 87.9
SFM (4 x 4) 82.3 73.5 779
S/N = 30(db) SFM (8 x 8) 83.5 72.0 778
SGLDM 75.8 63.8 69.8
Liu’s features 49.0 313 40.2
SGF 66.9 69.0 68.0
SFM (4 x 4) 60.5 53.5 57.0
S/N = 20(db) SFM (8 x 8) 74.8 61.3 68.1
SGLDM 42.2 375 39.9
Liu’s features 333 26.3 29.8
SGF 144 20.8 17.6
SFM (4 x 4) 16.4 5.7 11.1
S/N = 10(db) SFM (8 x 8) 20.5 11.0 15.8
SGLDM 75 8.9 8.2
Liu’s features 57 3.9 4.8

SGF: SGF with the irregularity measure.
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Table 10. Correct classification rates of various algorithms
under additive noise on the third group (one set of 112 texture

Table 13. Computation time of various

algorithms
Time (s)
SGF 15
SFM (4 x 4) 0.5
SFM (8 x 8) 1.0
SGLDM 0.3
Liu’s features 2.5

SGF: SGF with the irregularity measure.

pictures)
D1-D112
SGF 84.0
SFM (4 x 4) 71.4
S/N = 30(db) SFM (8 x 8) 72.3
SGLDM 58.6
Liu’s features 313
SGF 57.4
SFM (4 x 4) 51.7
S/N=20(db) SFM (8 x 8) 56.9
SGLDM 28.7
Liw’s features 20.9
SGF 13.6
SFM (4 x 4) 9.1
S/N=10(db) SFM (8 x 8) 13.6
SGLDM 5.5
Liu’s features 31

SGF: SGF with the irregularity measure.

the Statistical Feature Matrix method and Liu’s fea-
tures—shows that the correct classification rate achieved
by SGF proposed in the paper is substantially higher
than that by the other three approaches, and that the
reduction in performance with the increase in the num-
ber of textures in the set is slower with SGF than with
the other three, indicating that SGF can handle a

Table 11. SGF features from D15, D31 and D101

NOC, () IRGL, (%)
av max mean S.D. av max mean S.D.
Di5 51.6 136.0 33.6 9.2 0.78 1.76 314 12.5
D31 10.2 25.0 29.1 11.7 0.56 1.03 27.2 13.0
D101 56.3 93.0 277 12,6 0.24 0.99 254 15.7

Av, Average; S.D., standard deviation
Table 12. SGF features from D09, D49 and D102

NOC, () IRGL ()
Texture av max mean S.D. av max mean S.D.
D09 59.6 240.0 209 6.50 0.38 1.06 32.3 134
D49 13.9 1120 120 9.51 1.56 5.18 17.6 11.2
D102 62.3 101.0 30.6 12.7 0.26 0.57 325 17.9

Av, Average; S.D., standard deviation

its superior performance (with respect to correct classi-
fication rates), SGF’s computational costs may well be
warranted.

4. CONCLUSIONS

A set of sixteen novel Statistical Geometrical Fea-
tures (SGF) for texture analysis has been developed,
which is based on the statistics of geometrical pro-
perties of connected regions in a sequence of binary
tmages obtained from an original texture image. Sys-
tematic comparison using contingency tables of a k-
nearest classifier and class distance distributions with
the popularly-used Statistical Grey Level Dependence
Matrix technique and two recently proposed methods—

larger texture population. SGF’s performance under
additive noise also compares favourably with the other
three methods.
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APPENDIX A CONNECTIVITY

Definition 1. For a given coordinate pair (x, y), the 4-neigh-
bourhood is defined to be the set N,(x,y)={(x+1,y),
(x—1Ly), (x,y+1),(x,y— 1}

Definition 2. A pixel p, at (x,,y,) is said to be a 4-neighbour
of p, at (x5, y,) if and only if (x,, y1 )€ N4 (X3, y2)-

Definition 3. Two pixels p and p’ are 4-connected if and only
if p is a 4-neighbour of p’ and both the grey level I of p and
the grey level I satisfy some condition. e.g. they should be
equal.

Definition 4. A 4-connecting path between p, and p, is a
sequence of pixels (p;)f=, such that p;and p;, for1 <i<n—1
are 4-connected.

Definition 5. A 4-connected region is a set of pixels such that
there is at least one 4-connecting path for each pair of pixels
in this set.

A recursive algorithm for traversing a 4-connected region
of gl-valued (gl = 0 or gl = 1) pixels around (x, y) is given as
follows:

getConnectedRegion(int x, int y)

t if (imageArray[x][y] !=gl) return;
imageArray[x][y]=1—gl,;
addPixel (x,y);
getConnectedRegion (x + 1,y);
get ConnectedRegion (x — 1,¥);
getConnectedRegion (x,y +);
getConnectedRegion (x,y — 1);
return;

Y. Q. CHEN et al.

where imageArray [] [ is a two dimensional image array,
addPixel(int, int) is a function to store the pixels in a con-
nected region for analysis.

To obtain all the connected regions from a binary image,
one simply need to sequentially apply the above algorithm to
every pixel of the image. It is easy to see that the computa-
tional complexity for obtaining all the connected regions in
an image is o(n) where n is the number of pixels in the image.
In fact, no more than 6 x n times accesses to f(x,y) (an
element of a two-dimensional array), arithmetic comparisons,
and function calls are needed.

APPENDIX B. SHAPE MEASURES
Given a connected region A in the plane, the extent of its
irregularity can be measured by the ratio of its maximum

radius to the square root of its area, where the maximum
radius is defined to be

Tmax = SUP «/ (x - i)z + (y _.}7)29
(x,y)ed

x={xdx, y=[ydy
4 4

(81
(B2)

where sup is supremum {the least upper bound).

Equation (3) (in main text) is for measuring the irregularity
of a connected region in a digital image, where the factor \/;
and two additive 1’s are introduced to make the measure
approximate to zero when the region is a disk (the most
compact and hence least irregular region in the usual sense).
This can be seen as

(1) If there is only one pixel in the region, equation (3)

becomes
1 -0
irregularity = —+\I/L —-1=0 (B3)
(2) As the space ¢ of the sampling grid [at spacing (e, ¢}]
approaches 0 the irregularity of a disk becomes

1+ﬁ-max (x; — %)+ (y; — 7
iel
irregularity = lim -1
. g0 lIl

(B4)

1 max \/(x; — %) + (y; — y)*
iel
=lim| —+./7
AW 1]

=0

-1

(/1] approaches infinity as ¢ approaches 0.)

An alternative shape measure of a connected region in the
plane is the ratio of the square root of its area to its perimeter,
termed compactness or circularity. (The reciprocal of this
measure constitutes a regularity measure that has the same
properties to be discussed later.) Equation S (in main text) is
given for measuring the compactness of a region in a digital
image.

It is observed that the two measures, when applied to
digital images, have their respective advantages and dis-
advantages as follows

(1) The irregularity measure is invariant to rotation while
the compactness measure is not.

Proof. For a connected region 4 in the plane, a spatial
sampling process using a grid of spacing (g, €) gives rise to 2
corresponding region A, in a digital image. With moderate
conditions upon A that are satisfied by most natural images,
it is easy to see that as ¢ -0 the following independent of the
rotation of A. (The area of a pixel is ¢2, the height and width
ise)
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Table B1. Correct classification rates of SGF with the irregularity measure and that of
SGF with the compactness measure on the first group (four sets of 28 texture pictures)

D1-D28 D29-D56  D37-D84 D85-D112 Average
SGF (irregularity) 90.8 92.6 93.5 91.5 92.1
SGF (compactness) 91.3 89.7 92.9 92.4 91.6

(1a) The area of 4, by counting the pixels in it approaches
the area of 4;

(1b) the centre of mass of 4, by using equation (4) ap-
proaches the centre of mass of A;

(1c) the maximum radius of A, in equation (3) approaches
the maximum radius of 4.

Therefore the irregularity measure defined by equation (3)
is independent of rotation.

The perimeter as measured using equation (7) for regions
of some shape, however, is dependent on the angle of rotation.
In fact, as ¢ —0, the measured perimeter approaches 4 for a
unit square with sides parallel to the axes whilst the measured

perimeter approaches 4\/5 for a unit square with diagonals
parallel to the axes (rotated 45 degrees). As the measured
area of A, approaches that of A as stated in (1a), the compact-
ness measures gives a result \/5 times larger for the original
unit square than for the rotated square—a significant differ-
ence. [

(2) The irregularity measure of a square is (\/ﬁ/2) —1=
0.25 while that of a disk is 0 as expected since a square is more
irregular than a disk in the usual sense. However, the com-
pactness measure of a square parallel to the axes is 1 while
that of a disk is (ﬁ/Z) =0.89, suggesting a square is more
compact than a disk which is not usually acceptable.

(3) The compactness measure is more sensitive to a narrow:
crack in a region. The fact is demonstrated by considering a
disk with a narrow crack as illustrated in Fig. 5. As ¢ tends
to 0, the irregularity measure of the region converges to that
of the same disk without the crack while the compactness

measure converges to (2/5)f = 9.71—a value significantly
different from the compactness measure of the same disk

without the crack which is (ﬁ/2) = 0.89. This suggests that

Table B2. Correct classification rates of SGF with the ir-
regularity measure and that of SGF with the compactness
measure on the second group (two sets of 56 texture pictures)

D1-DS6  D56-D112 Average
SGF (irregularity) 90.2 87.3 88.8
SGF (compactness) 90.1 87.9 89.0

Table B3. Correct classification rates
of SGF with the irregularity measure and
that of SGF with the compactness measure
on the third group (one set of 112 texture

pictures)
D1-D112
SGF (irregularity) 85.6
SGF (compactness) 85.2

the irregularity measure tends to ignore narrow cracks whilst
the compactness measure will register them—a potential
advantage of the compactness measure.

Experimental results as shown in Tables B1-B3 are basic-
ally consistent with the theoretical analysis: the irregularity
measure and the compactness measure give approximately
the same performance as each has its own merits and short-
comings.
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APPENDIX C. THE TEXTURE DATABASE

D030 D031 D032 D033 D034 D035

Fig. Cl. Textures D1-D56.
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