
B-RAAM: A Connectionist Model which Develops Holistic Internal Representations of Symbolic Structures

Manuscript accepted for publication in Connection Science, final version, 16-Jan-99.

Martin J. Adamson and Robert I. Damper

Image, Speech and Intelligent Systems (ISIS) Research Group,

Department of Electronics and Computer Science,

University of Southampton,

Southampton,

SO17 1BJ,

United Kingdom.

Email:
mja95r@ecs.soton.ac.uk and rid@ecs.soton.ac.uk
ADDRESS REPRINT REQUESTS TO: Dr. R.I. Damper (Tel: +44-1703-594577)

RUNNING HEADING: Connectionist Representations of Symbolic Structures

KEYWORDS: RAAM, B-RAAM, recurrent neural networks, auto-associator, symbolic processing.

Abstract

Connectionist models have been criticised as seemingly unable to represent data structures thought necessary to support symbolic processing. However, a class of model – Recursive Auto-Associative Memory (RAAM) – has been demonstrated to be capable of encoding/decoding compositionally such symbolic structures as trees, lists and stacks. Despite RAAM’s appeal, a number of shortcomings are apparent. These include: the large number of epochs often required to train RAAM models; the size of encoded representation (and, therefore, of hidden layer) needed; a bias in the (fed-back) representation for more recently-presented information; and a cumulative error effect that results from recursively processing the encoded pattern during decoding. In this paper, the RAAM model is modified to form a new encoder/decoder, called Bi‑coded RAAM (B-RAAM). In bi-coding, there are two mechanisms for holding contextual information: the first is hidden-to-input layer feedback as in RAAM but extended with a delay line; the second is an output layer which expands dynamically to hold the concatenation of past input symbols. A comprehensive series of experiments is described which demonstrates the superiority of B‑RAAM over RAAM in terms of fewer training epochs, smaller hidden layer, improved ability to represent long-term time dependencies, and reduction of the cumulative error effect during decoding.

1. Introduction

Representing variable-sized recursive data structures such as trees, lists and stacks in neural systems can be problematic because of their dynamic temporal characteristics. The solution commonly adopted within classical Artificial Intelligence (AI) is either to represent such composition with list‑type constructs found in languages as Prolog, Lisp and Miranda, or alternatively, to code them explicitly using high-level language constructs (i.e. records and pointers). However, shortcomings with such schemes are highlighted by Chalmers (1990, p.54) who states: “… the only operations that are available, on a classical compositional representation are those of extraction or further composition. In particular, to do anything with such a representation (to exploit the information that is contained therein (one must first go through the process of extracting the original constituent tokens.” In other words, such schemes may offer a convenient way to store compositional structures, but the basic symbols must be extracted before they can be operated on.

Fodor and his colleagues (Fodor & Pylyshyn, 1988; Fodor & McLaughlin, 1991) famously argue against connectionist representations, based on their belief that Artificial Neural Networks (ANNs) do not have the potential to represent syntax or semantics (systematicity) for even the most basic symbols (suggesting an explicit representation is needed. However, these claims have since been shown to be incorrect by Pollack (1988; 1990) and Elman (1988; 1991; 1993) who demonstrated how compositionality (regarded by Fodor & Pylyshyn, 1988, as compositionality in an “extended sense”) could be captured in the hidden layer of an ANN. Further, authors including Pollack (1990), Chalmers (1990), Chrisman (1991), Niklasson & Van Gelder (1994) and Adamson & Damper (1996a; b) report how distributed representations of symbolic structures can be encoded, transformed, and successfully decoded in a way that is sensitive to their structure.

Van Gelder (1990) highlights a difference between connectionism and classical AI by stating how the former demonstrates a “functional” as opposed to “concatenative” compositionality (which is a form of “functional” compositionality). Rather than applying a simple concatenate operation to tokens, compositionality is achieved through the use of functions that take these as arguments (producing a coded compositional structure. Consequently, such a representation facilitates post-processing by simply applying further functions – e.g. principal component analysis (Elman, 1988; 1991; 1993), nearest neighbour (Pollack, 1990) and structure-sensitive transformations (Chalmers, 1990; Adamson & Damper, 1996a; b). In short, functional compositional models differ from concatenative forms in that explicit tokens of the original constituents are not necessary, but instead, are represented holistically in some implicit manner.

Contrary to the views of Fodor and his colleagues, connectionist models are capable of representing complex, hierarchical, recursive structures, and also provide characteristics that are not easily achieved in traditional AI solutions. For example, there is no need to decode the compositional representation back into its constituent parts before further processing. Chalmers (1990, p.54) states: “The reason that connectionist models have this ability lies in the fact that connectionist representations are much richer than symbolic representations … Connectionist representations may contain compositional structure, but the compositional structure does not nearly exhaust the properties of the representation … There is thus a functional distinction between connectionist and classical models of compositionality …”

Before proceeding, it is worth noting the view of Balogh (1994) who analysed the representations developed in Chalmer’s experiment, and argued that they were not holistic but localist with explicit tokening. However, Hammerton (1998) argues that there is considerable ambiguity and confusion surrounding the exact notion of holistic computation in the literature, and Van Gelder (1991) notes that it is often unclear or ambiguous what many connectionists are referring to when they talk of “distributed” or “holistic” representations. Hence, there is a need for more clarity on these issues. For instance, it may be that so-called holistic representations are no more than fixed-length vector or compressed. For the purposes of this paper, however, we retain the terminology that has become established.

The representation of lists, stacks, trees etc. is non-trivial for connectionist models because such structures are naturally expressed as sequences (possibly recursive) and, therefore, they require a holistic representation which reflects temporal and relative information (within a fixed width vector. Many of the earliest connectionist attempts at modelling cognitive tasks (e.g. Sejnowski & Rosenberg, 1987; Seidenberg & McClelland, 1989) possess only a weak mechanism for representing and processing sequential information. This forces inappropriate simplifications, such as imposing some predetermined upper bound on some aspects of sequential information, e.g. NETtalk’s contextual information. In spite of this, connectionism remains attractive for many reasons, not least the benefits of encoding information into a distributed representation learned by example (Hinton, 1984; 1986; 1988), which is capable of supporting different entities (“coarse coding”). This notion has been exploited in a number of different ways by authors including Rumelhart et al (1986), Cottrell et al (1987) and Hanson & Kegl (1987) who examined Auto‑Associators (AA) trained to reproduce any input presented as output. This scheme amounts to an encoder/decoder which develops compressed, distributed, holistic representations of input patterns at the hidden layer. In contrast to the AA approach, Elman (1988; 1991; 1993) described a Simple Recurrent Network (SRN) which utilises distributed hidden-layer knowledge by passing back activations from the previous iteration to the input layer. In this way, he achieved a representation of dynamic sequences within the fixed resources of the network. Combining the ideas of auto‑association and recurrent (feedback) connections leads to the Recurrent Auto-Associative Memory (RAAM) described by Pollack (1988; 1990). Thus, RAAM shows explicitly how variable‑sized recursive data structures can be captured within a fixed-resource system.

The RAAM model has been successfully applied to a variety of tasks involving compositional representation of structures such as stacks and trees. Pollack asserts that RAAM demonstrates a number of benefits over other systems employing coarse-coded representations (e.g. Touretzky, 1986; Rumelhart & McClelland, 1986). These include the automatic development of self-encodings of the input, more compact internal representations, and better generalisation (avoiding the need for all possible sequences to be considered in training). Despite its many obvious advantages, however, the RAAM model does suffer a number of shortcomings. Among these are:

· A large number of epochs is often needed to train a RAAM.

· The derived encoded (hidden-layer) representation although smaller than for coarse coding, can still be quite large.

· The recurrent structure typically results in a bias toward more recently presented information.

· Recursive processing can lead to intolerance to noise through a cumulative error effect (during decoding).

Thus, in the words of Callan & Palmer-Brown (1997, p.157): “At present, models such as RAAM … have to be seen as conceptual models on which to build.”

In this paper, an alternative encoder/decoder is described, which we call Bi-coded RAAM (B‑RAAM). It differs from RAAM in that a delay line is used to extend the recurrent state information fed back to the input layer, and the AA is bi-coded. In bi-coding, there are two mechanisms for holding contextual information: the first is hidden-to-input layer feedback as in RAAM but extended with a delay line; the second is an output layer which expands dynamically to hold the concatenation of past input symbols. The result is a model that requires only a single step to decode holistic representations, and has improved feedback memory capacity. We also show later how the introduction of a delay line can increase RAAM’s ability to hold long‑term time‑dependent information. In short, B-RAAM aims to improve upon RAAM by reducing decoding errors, decreasing training times and extending recurrent sequential memory, while achieving this using smaller hidden-layer representation. To quantify the benefits offered by B‑RAAM, a comprehensive series of experiments were undertaken, and will be described later. First, however, we briefly examine how ANNs can develop distributed representations, before describing RAAM and B-RAAM in a little more detail.

2. Developing a Distributed Representation of Knowledge

One prominent characteristic of connectionist models is that they learn for themselves through examples. They can also be used as an aid to developing ‘better’ representations for real‑world data. By ‘better’, we mean redundancies that existed in the original data are removed from the hidden-layer representations (i.e. compression) and, hence, non‑obvious relationships are reinforced between constituent components. The AA is one model commonly adopted with some success for this type of task, e.g. Rumelhart et al (1986), Cottrell et al (1987) and Hanson & Kegl (1987). Further, authors including Smolensky (1990), Plate (1995) and Callan & Palmer-Brown (1997) have considered analytical techniques for deriving connectionist representations. Callan & Palmer-Brown (1997) suggest that the main distinction between analytical and strict connectionist approaches is a more “transparent generalisation mechanism” in the former.

An AA typically takes the form of a single hidden-layer ANN, trained to reproduce each input pattern on the output layer. In learning to do so, the network develops a compressed (distributed) code at the hidden layer for each input pattern. Consequently, models of this type essentially represent encoder/decoders. Patterns are encoded via the weights between the input and hidden layers, while the hidden-to-output layer weights provide the corresponding decoder. In effect, the AA performs a type of principal component analysis (Bourlard & Kamp, 1988; Baldi & Hornik, 1989). Furthermore (as mentioned previously), because the hidden layer derives a functional representation for any input (Van Gelder, 1990), this representation can be extracted and meaningfully used in other procedures, e.g. Elman (1991; 1993), Chalmers (1990) and Adamson & Damper (1996a; b).

One drawback with conventional AAs is that feed-forward structure does not allow sequential representations to be expressed very naturally. Instead, temporal relationships must be specifically represented within the input patterns themselves. This is often extremely difficult to achieve, and seems somewhat contradictory to the purpose of the AA, i.e. automatic generation of efficient data encodings. However, the SRN is an important class of connectionist network that can capture sequential information (Jordan, 1986a; b, Elman, 1988; 1991; 1993). As Elman (1988) points out, time is clearly important in cognition and is inextricably bound to many tasks with temporal sequences. Consequently, it is difficult to consider such tasks without representing time (Port, 1990).

<FIGURE 1 HERE>

Elman’s solution is to introduce recurrent connections from the hidden layer back to the (enlarged) input layer (Figure 1). The feedback connections have fixed unity weight and, therefore, these weights are not updated during training (so that back-propagation can be used. At each iteration, a copy of the last hidden-layer activation is transferred into a same-sized set of state nodes in the input layer. This is then used alongside the next input pattern to provide a memory of past events. In this way, the network is exploiting its own developing internal representation of the input data, which should further aid the learning process. However, one side effect is the “moving-target” problem, which refers to input patterns partly comprising the previous hidden-layer values that develop (change) during learning. In many cases, this results in longer training times. It is also unclear exactly how much useful (sequential) memory passing back a single copy of the previous hidden layer representation provides. This point is considered later.

Elman (1988) has demonstrated the suitability of recurrent networks for solving a wide range of temporal problems, including the non-linearly-separable parity (XOR) problem, determining the start and end of words in a sentence, and predicting the next ‘symbol’ when parsing simple sentences. With the ‘simple sentence’ problem, when the (trained) hidden units were examined and arranged into a tree hierarchy based on their activation, the network was observed to have organised the dictionary into syntactic categories – see also Sejnowski & Rosenberg (1987) for a similar analysis of their NETtalk. This indicates that knowledge captured in ANNs is examinable, and contains meaningful/useful information (a point key to the RAAM and B-RAAM models described next.

3. RAAM: A Recursive Auto-Associative Memory Model

The problem addressed by Pollack was how to represent variable-sized symbolic data structures (within a fixed-width numerical vector) in a system performing neural-style processing such as association and categorisation. To this end, Pollack describes Recursive Auto-Associative Memory (RAAM (Figure 2) which combines the ideas of auto-association and recurrent connections within a single architecture.

<FIGURE 2 HERE>

During training, RAAM develops a compressed (compositional, distributed) representation at the hidden layer. Learning to represent a stack, for example, involves showing training examples one at a time to the RAAM. With reference to Figure 2, we start with STACK empty and TOP containing the first input value (duplicated in the input and output layers as shown). Back-propagation is then applied, and the resulting hidden unit representation (STACK) is copied into the input and output layers. The next element (new TOP value) of the stack is then processed. This procedure is continued for all elements comprising the current stack and for all examples in the training data until convergence is achieved. Convergence to a stable state in which all output patterns are decoded correctly is difficult to ascertain because the output comprises a moving target. Pollack considers a network to have converged when all hidden-layer patterns in the output achieve an error of less than 0.05, and the remaining output nodes have an error of less than 0.2.

After training, the model can be used to execute PUSH and POP commands so as to manipulate stacks. To build a stack, elements are presented one at a time with hidden-layer feedback as appropriate, in much the same way as during training. After all symbols have been PUSHed, the current hidden-layer activations (which represent the compressed encoded stack) can be derived. During this building procedure (recall), only the input and hidden layers need be processed as the forward half of RAAM (input(hidden) defines an encoder, and the latter half (hidden(output) comprises the corresponding decoder. To POP elements off a previously built stack, the derived hidden-layer activations need only be re-presented to the hidden layer and fed forward from this point. The result is an output layer that contains the top-most stack element together with its remainder (i.e. minus the POPed item) appropriately encoded so that it can be placed back in the hidden layer. The POP procedure must be repeated for as many items as originally PUSHed. Pollack has used the RAAM model to solve the Towers of Hanoi problem, for representing letter sequences, and as a shift register.

Pollack also considered the representation of trees within this architecture. As he points out, “this does not seem unreasonable as a stack is really a right-branching tree with a distinguished empty symbol.” Thus, the same RAAM structure presented with two sub-trees can build a new higher‑level tree via the input(hidden layer encoder. At a later time, this representation can be decomposed back into its previous form through the hidden(output decoder. Pollack explored this possibility using a simple artificial grammar, and presenting the network with binary trees representing valid sentences. Inspection of the hidden-layer representations after training showed that they could be meaningfully interpreted in grammatical terms. For example, one hidden node was seen to distinguish sentences from non-sentences, while another distinguished prepositional and noun phrases from all others. Such a representation must also be retaining enough information about the sub-trees to reconstruct them at a later time.

In short, Pollack’s RAAM model demonstrates the emergence of two separate mechanisms (an encoder and a decoder (which evolve simultaneously and co-operate to develop a shared representation. Further, the encoder produces a fixed-length analogue representation for a sequence (or tree) which the decoder can decompose and reconstruct into a good facsimile of the original. In this way, the hidden layer is representing that sequence, which demonstrates how a fixed-resource system can indeed accommodate an open-ended problem. The fact that the hidden-layer representations can be meaningfully interpreted and decoded at a later time strongly suggests that the encoded (sequential) information is ultimately useful and not “buried too deeply” (Chalmers, 1990). This point is by no means obvious, as it is possible that such encoded data could only be meaningfully used in the context of the ANN that created them.

The (holistic) distributed representations formed in the hidden layer can also be operated on directly, without the need to be decoded back into their constituent parts first. This point is considered further by Chalmers (1990), who showed that such representations are structure-sensitive by passing previously-encoded active sentences to a feed-forward ANN, and transforming them into their passive form. The ability to operate directly on holistic representations is extremely powerful, but is not possible in many classical AI systems. However, RAAM is ultimately useful because of its ability to generalise, as a result of learning, so that it can encode/decode novel data structures.

Despite the power and flexibility of RAAM, it has at least three non-obvious shortcomings:

1. Although AAs have been shown to be effective for compressing data, there are no ‘rules‑of‑thumb’ to determine in advance the appropriate hidden-layer size. The resulting guesswork is arguably made harder in the case of RAAM (which can take a long time to train in any case), as the model is trying to develop a compressed composite encoding within the context of a double moving-target problem. That is, the input/output patterns constantly change as a result of hidden-layer feedback. The size of the hidden layer not only directly affects the model’s learning and generalisation, but also complicates any post-processing that may be applied. For example, problems such as storage and training times are worsened, and in the case of transformation, the procedure may be particularly sensitive to the vector size, e.g. back‑propagation via another ANN.

2. The recursive process required to decode holistic representations, as well as being time consuming, suffers a cumulative error effect. More specifically, in the case of simple sequences, RAAM’s output is the top of the stack (current symbol) and the remainder of the sequence is appropriately encoded so that it may be placed back into the hidden layer for decoding. However, if the stack representation at the output is inaccurate for any reason (e.g. noise in the original holistic code), then this error will be passed onto the next decode step and will accumulate over time. Blair (1995) has previously reported RAAM extensions intended to address this problem (i.e. 2 extra hidden layers, binary thresholds/network-output and ‘hand-crafted’ weights/training-data representations), but these result in a system that “shows little or no capacity for generalisation” – a major shortcoming in our opinion.

3. Despite the appeal of recurrent connections for capturing temporal information, learning Long‑Term (LT) dependencies with SRNs is difficult (Bengio et al, 1994; Lin et al, 1996). ANNs are commonly trained using gradient-descent techniques (e.g. back-propagation), which adapt the network weights by minimising the error between the network’s output and a desired response. However, Bengio et al (1994) highlight a problem with such schemes called “vanishing gradients.” They state that the gradient with respect to past events rapidly becomes very small in comparison to the gradient with respect to recent events. Consequently, even though some weight changes might exist that could allow the transition to a better region in the weight space, the gradient considered does not reflect this possibility. In short, the effect of older activations reduces because their gradients are diminishing, making the influence of Short-Term (ST) dependencies dominate the weight gradients. That is, although feedback gives (in theory) the potential to retain information over arbitrarily long intervals, RAAM acts (in practice) as if only a limited amount of sequential memory is available. Consequently, RAAM typically produces a bias in favour of the last few symbols of a long sequence (Pollack, 1990).

We now present a number of extensions to RAAM in order to address these shortcomings.

4. B-RAAM: An Improved Encoder/Decoder

Originally, as part of a connectionist Text-To-Speech (TTS) system, we determined the need to capture a holistic representation of ‘words’ (Adamson & Damper, 1996a; b). That is, treating the whole sequence of letters as a single entity retains contextual information and allows ‘words’ to be processed in their entirety. To this end, a new recurrent AA encoder/decoder was derived which shares some fundamental properties with RAAM. The new architecture differs from Pollack’s RAAM in its use of bi-coding as depicted in Figure 3. It is consequently called Bi-coded RAAM (B‑RAAM). To correct for the dominance of ST dependencies, a delay line is introduced (Figure 4). Experiments to be described later show that these modifications circumvent or greatly reduce the shortcomings highlighted above for RAAM.

<FIGURE 3 HERE>

<FIGURE 4 HERE>

Bi-coding means that although the same information is present within both the input and output layers during each cycle, it is represented in two different ways. First, the output layer is dynamic (see later) and comprises a concatenation of external, input patterns – in this case hand-coded, although any sensible representation can be used. Second, the input-layer representation comprises an encoded sequence of fed-back data (taken from the hidden layer) and the current external pattern (next symbol). In this way, the network effectively learns to associate an encoded sequence with its (explicit) decoded symbolic alignment. This scheme offers two specific benefits over RAAM:

1. By mapping an encoded implicit representation onto its decoded explicit form, the double moving-target problem is avoided. For many of the experiments described later, B-RAAM requires fewer training epochs than RAAM, which can ultimately be translated into processing time because the B-RAAM’s decoder is parallelisable. This is not true for RAAM, where decoding is largely a serial procedure. Also, the hidden-layer sizes required for B‑RAAM were consistently much smaller than those of RAAM (with the same training data), probably reflecting a difference in what is being learned by the two models. B-RAAM learns to associate the encoded data with its decoded representation (which may allow the network to identify redundancies better), while RAAM predominantly works with encoded representations of the training patterns (plus the single external inputs each cycle). Thus, compression must be derived from already-compressed and encoded patterns that inherently suffer the moving-target effect.

2. For B-RAAM, an encoded sequence can be decoded within a single step, as opposed to the series of POP operations required by RAAM. This greatly reduces the cumulative error effect exhibited by RAAM. To recall, if one of RAAM’s POP operations does not result in a correct decoding, the remaining stack representation containing this error is immediately re-used to POP off the next symbol. Hence, errors will be carried through to all subsequent decoding. Furthermore, the single-step decoder expands dynamically to hold the concatenation of past input symbols, only using the number of nodes needed at any given iteration for the current sequence length (Figure 5). To illustrate, suppose the training dictionary contained 8 sequences of length 6 and 3 sequences of length 25. Until any of the 25-length sequences are shown, the output layer would comprise only 6 nodes. Then, as the longer sequences are shown, the output layer expands dynamically to accommodate them. However, when the 6-letter sequences are re-shown in the next epoch, only the weights connected to the first 6 output nodes are updated. This dynamical output mechanism contrasts with RAAM, which in theory should also be able to represent sequences of infinite length. In practice, however, this is often not the case because the recurrent memory capacity of RAAM imposes a restriction on sequence sizes (as described earlier for the Elman SRN. This did not impact greatly upon Pollack’s experiments, as letter sequences were short and the tree structures were binary.

<FIGURE 5 HERE>

To overcome the latter problem, a delay line is introduced within the input layer (Figure 4), into which previous hidden-layer activations are placed. This allows the state information to persist for longer, increasing its effect on learning. During each cycle, before the last hidden-layer activations are fed back, the current contents of the delay line are scrolled. When state information reaches the end of the delay line, it is simply removed. By trial and error, it was determined that a delay line holding activations from just two past time steps is sufficient, but too long a delay line can make the moving‑target problem even worse. The delay line increases the longevity of fed‑back information by preserving it more robustly over time. The result of this is a stronger influence on subsequent weight changes later on in the sequence. However, too long a delay line can dominate this process and result in word-beginning bias effects.

Lin et al (1996) adopted a similar mechanism for modelling LT dependencies, but in conjunction with the Jordan (1986b) model. They describe a class of model called Non-linear AutoRegressive with eXogenous input (NARX) SRN, claimed by the authors to provide faster convergence, better generalisation, and the capability to retain past information for two to three times longer than the Elman network. Similar to B-RAAM, the NARX network features a feedback/delay line, but in this instance it is drawn from the output layer. Although NARX still suffers from vanishing gradients, Lin et al show that it is better at discovering LT dependencies than the standard Elman model. By considering an SRN to be equivalent to a feed-forward model unfolded in time, NARX output delays are seen to be consistent with jump-ahead connections, thus providing a shorter path for the propagating gradient information and desensitising the network to LT dependencies.

Training B-RAAM is similar to training RAAM, but with modifications to account for the delay line and single-step decoding. B-RAAM uses standard back-propagation (with all feedback connections fixed to unity and not trained), but the specific weights updated depend on the length of sequence currently being represented. Hence, as stated above, the output layer is trained dynamically, i.e. only those nodes that contain (non-null) contributing data are updated (subject to a threshold‑error criterion described below). Typically, BRAAM is trained to associate each input sequence as a left- or right‑justified sequence on the output layer, although (as shown below) this is not a requirement. The right-justified training procedure is shown in Figure 5 for the words cat and concatenate. Notice how the sub‑word cat is realised during training as target values are scrolled along the output layer.

B‑RAAM takes into account the size of sequence being processed, increasing the output‑layer length as needed, and then directing training precisely to where it is appropriate. For example, a 3‑letter sequence will only update weights connected to the first 3 nodes of the output layer, irrespective of how large it has ‘grown’ to accommodate longer sequences. This technique also circumvents the problem that can arise with a fixed-width output designed to accommodate the longest sequences, whereby those parts of the output layer that do not contain contributing data during learning are predominantly set to null. By training nodes only when they contain non-null values, the model avoids learning null padding. Furthermore, errors are only back-propagated if they exceed 0.05 (although for sequences a larger tolerance can be used), with this decided on a node‑by‑node basis. This is in contrast to standard back‑propagation, which considers the network error as a whole and updates weights only if the error exceeds a threshold.

Another benefit of this node-by-node approach is that over-learning of individual nodes is avoided and the training time is reduced. For example, on the Pollack tree experiment (described later), we found that a RAAM model with dimensions 20‑10‑20 (400 weights) made 1,124,800 weight updates before convergence was achieved. This compares with only 797,830 calculations for B-RAAM, despite requiring a larger network of up to 800 weights (30-10-50) – a saving of 32.5% over the number it would have made if standard back-propagation training were employed (1,183,000), and a 29.1% improvement directly over RAAM. Furthermore, because B‑RAAM decodes sequences in a single-step, there are additional benefits specific to decoding tree structures. Namely, B-RAAM decodes each layer of a given tree in its entirety within a single step, contrasting with RAAM for which each element (terminal and non-terminal) has to be extracted individually. Therefore, the number of decode steps required for a tree with n layers and m nodes is m+(n-1) for RAAM but only m for RAAM (Figure 6).

Encoding is achieved for B-RAAM by presenting sequence/tree elements one at time (with the hidden layer fed back as appropriate and scrolled along the delay line as in training) until the entire sequence has been seen. The holistic hidden-layer representation for the input sequence is then extracted. Decoding is even more straightforward, in that the holistic code need only be placed into the hidden layer and fed forward from this point once. The result should be a sequence of symbols at the output layer representing the constituent parts of the encoded sequence. To allow reliable interpretation of the outputs, a sub-network (Figure 4) is also trained to associate hidden‑layer codes and those node activations in the output layer that represent meaningful contributions to the output sequence. This guarantees those noisy values in the output not explicitly trained as nulls are not confused as part of the current output sequence. (In the context of a TTS system, a model as just described achieved around 99% letters/phonemes correctly encoded and decoded, for a dictionary of 16,280 words – both seen and previously unseen.)

One further non-obvious benefit for B-RAAM is that output values can be positioned anywhere on the output layer during training. In the simplest form, we could either right- or left-justify sequences. Alternatively, if it was known for example, that the training data shared most correspondences about some specific region in the sequences, then the data could be positioned on the output layer during learning to reflect this. Consequently, the output layer for B‑RAAM is considerably more flexible than for RAAM. However, one aspect not addressed by either RAAM or B‑RAAM is sequence length incompatibility. This refers to compositional representations not allowing meaningful comparisons between differently structured data. For example, taking the simple case of letter sequences, it was observed that the distance (Hamming and Euclidean) between the encoded words note and bate was smaller than that between note and not, or bate and ate. This problem arises because of the holistic nature of the hidden-layer representations. A similar problem also exists for misaligned sub-sequence similarities. For example, the sub-word ate is unlikely to recognised as a correspondence between the words statement and related as it remains unaligned irrespective of whether the two words are right- or left-justified. To demonstrate the benefits of B‑RAAM over RAAM, however, experiments are now described that use as input sequences of fixed length (in most instances).

5. Experiments

The goal for these experiments is to encode and decode correctly all patterns in a training dictionary. All models are trained to converge on a network error (for each and every sequence in the dictionary) of less than or equal to 0.05 (as in Pollack, 1990). Such a small tolerance value is used because RAAM learns to reproduce (as part of its output-layer representation) the previous hidden-layer activations (non-terminal elements), which are typically continuous in nature. As this information is sensitive to errors during decoding, RAAM doesn’t usually converge until such non‑terminal elements are “very similar” to their intended targets. Although in some instances RAAM learned the task before reaching this convergence criterion (if the errors related to terminal elements), it was observed in a small number of cases that an error of 0.05 did not guarantee convergence. In these instances, training was continued until convergence was achieved. By contrast, the need for such a strict tolerance is avoided by B-RAAM, as all output nodes (for sequences) are trained to produce binary values only – although this is not a prerequisite. Therefore, while both models (for consistency) use 0.05 to assess convergence in the following experiments, the B-RAAM model was observed to converge successfully only with a much larger tolerance.

Because training ANNs using back-propagation can be sensitive to the initial starting weights (e.g. Kolen & Pollack, 1990), each model was trained to convergence 5 times using different initial weights. Training attempts that did not converge were abandoned. The total range and average number of epochs were recorded for the 5 training runs. The minimum number of epochs required for convergence was also estimated, based on using a much larger tolerance value. It was determined heuristically that tolerance values of 0.1 and 0.45 for RAAM and B-RAAM respectively provided a consistent way of estimating this minimum.

To assess the presence of any bias towards the last few characters, Hamming and Euclidean distances were calculated between hidden-layer codes for each training sequence and some base pattern (i.e. the first pattern listed in each table of results). To distinguish between different network configurations, reference to each model type is followed by ‘(n’, where n indicates the size of the delay line. Thus, ‘(2’ implies that the recurrent delay line holds the 2 previous states, and ‘(1’ means that no delay is implemented (as in the original RAAM model of Pollack). The absence of ‘(n’ implies reference to the RAAM or B-RAAM models in general. The Hamming/Euclidean figures reported in each table are the average of 5 sets of results for each model started from different weights.

5.1. Learning to Represent Letter Sequences

The first set of experiments considers the representation of letter sequences. Apart from our specific interest in holistic representations of words, sequences are the basis from which more complex structures are composed, as described later for trees.

5.1.1. Experiment 1

Here, encoding of the simple 19-word dictionary used by Pollack (1990) (air, ana, ani, barbar, banana, barbarian, barn, bibb, bin, brain, bran, briar, inn, nab, nib, rabbi, rain, ran, rib – is re‑implemented for both RAAM and B-RAAM, configured with and without delay lines. Table I defines the configuration and other details of the models. In experiment 1a, the basic Pollack architecture is used while in experiment 1b, the hidden-layer sizes are varied in an attempt to determine the minimal holistic representation possible in each case.

<TABLE I HERE>

A number of points was observed for these early experiments:

1. Both models successfully learned the task.

2. B-RAAM consistently converged in fewer epochs than RAAM.

3. With the hidden layer reduced to the minimum size of 7 nodes, B-RAAM (with and without a delay line) successfully managed to encode all the training data. This contrasts with RAAM, which needed 15 hidden nodes and a delay line capable of holding the hidden-layer activations from the previous two time steps.

As we will show later, these benefits of B-RAAM arise because of bi-coding and the use of a delay line, which reduces the effect of word-end bias and offers a way of reducing the hidden-layer size.

5.1.2. Experiment 2

The objective for experiment 2 was to ascertain where RAAM and B-RAAM place most emphasis (bias) within a sequence, to determine the severity of the bias problem, and to assess the effectiveness of the delay line as a solution. We first consider networks without a delay line. The training dictionary consisted of 9 patterns each of length 10. By comparing each pattern against the base pattern ‘ABCDEFGHIJ’, the common sub-sequences (below) should highlight any bias.

ABCDEFGHIJ

XXXXXXXHIJ

XXXXXXGHIX

XXXXXFGHXX

XXXXEFGXXX

XXXDEFXXXX

XXCDEXXXXX

XBCDXXXXXX

ABCXXXXXXX

For this experiment, 1-out-of-11 bit coding was used to represent the symbols A through J and X. The hidden-layer sizes used here and in the remainder of this paper were heuristically determined, and represent an approximate minimum that each model can support for the particular experiment. The hidden layer was initially set arbitrarily large and the model trained to convergence, starting from 5 random sets of initial weights. The hidden-layer size was then gradually reduced and the training data re‑learned until the model failed to converge on a solution for all of the 5 trials. We refer to the resulting hidden-layer sizes as being ‘approximate’ for two reasons. First, not every hidden-layer size was tested: instead, 5 hidden‑layer nodes were typically removed at each reduction. Second, it is conceivable that sets of initial weights exist other than those actually used that would allow the model to converge on a successful solution.

<TABLE II HERE>

B-RAAM consistently converged in far fewer epochs than RAAM, using a smaller hidden layer. Also, a bias towards word endings is immediately obvious. Those patterns where the common sub‑sequences occur towards the end of the recall sequence appear towards the top of the list ranked by distance (see highlighted parts in Table II). This is more pronounced for RAAM(1, although a similar effect can be seen for B-RAAM. In short, these results demonstrate the LT dependency problem inherent within the ‘(1’ models.

To explore this bias problem further, both models were modified to determine the effect of other aspects of the architecture. More specifically, we ask the questions: could initialising the starting weight range differently, or increasing the hidden-layer size, reduce the bias? Results revealed that RAAM(1 was far less sensitive to such alterations than B-RAAM(1. However, B‑RAAM(1 provided some interesting results that are briefly reviewed below.

<TABLE III HERE>

Initialising the starting weights in the range (0.05 (instead of (0.5 as in all other experiments) led to a more pronounced word-end bias (Table IIIa), similar to that observed for RAAM(1. Increasing the hidden-layer size from 15 to 25 nodes led to a reduction in training epochs. However, Table IIIb shows a shift in the bias previously seen. Now, emphasis is first placed on word ‘middles’, then shifts towards word ‘endings’, before shifting to word ‘beginnings’. Also, the range of distances has been reduced, in this instance from 3.26 to 1.20 (Hamming) and from 0.66 to 0.22 (Euclidean). This is interesting, because all the sub-sequences are in some sense equally ‘similar’ (i.e. they all share exactly three symbols with the base pattern). Thus, B-RAAM without a delay line, if configured appropriately, has the potential to offer useful improvements over RAAM(1.

We next consider use of a delay line to extend the recurrent state information. The model architectures are now 41-15-41 and 31-10-110 for RAAM(2 and B-RAAM(2 respectively.

<TABLE IV HERE>

The results in Table IV suggest that use of the delay line suppresses the effect of ST dependencies. Both networks produce a seemingly unbiased spread of sub-sequences within the ranked lists. Furthermore, in both cases, the Hamming and Euclidean distances for all patterns are much smaller across their total range. It was also observed that if B-RAAM training was forced to 1,250 epochs (as RAAM training was forced to 1,000 epochs for this experiment), then B-RAAM could successfully encode/decode the training dictionary with only a 6-node hidden layer.

5.1.3. Experiment 3

Here, we examine performance for longer sequences, to determine how much the delay line improves the sequential memory of RAAM and B-RAAM. The training data set (below) now comprises 4 sequences of length 25 characters. The last 3 patterns each contain an aligned 4-character sub‑sequence of the first pattern (at the beginning, middle and end of the patterns respectively.

ABCDEFGHIJKLMNOPQRSTUVWXY

ABCDZZZZZZZZZZZZZZZZZZZZZ

ZZZZZZZZZZKLMNZZZZZZZZZZZ

ZZZZZZZZZZZZZZZZZZZZZVWXY

To provide a benchmark, this data set was first used to train RAAM(1 (66-60-66) and B-RAAM(1 (51-45-150), i.e. without use of a delay line.

<TABLE V HERE>

Two points are apparent from the results in Table V. First, RAAM(1 with 60 hidden nodes only manages to encode and decode all patterns in the dictionary correctly when training is forced to 1000 epochs, i.e. beyond a network error of 0.05. Increasing the hidden-layer size to 69 nodes or more (with number of weights similar to B-RAAM(1) did not affect this outcome. Second, as expected, both models demonstrate distinct word-end biasing. Thus, state memory feedback capacity is only ST. Although the sequence of letters passed back is ‘remembered’ implicitly (within the hidden-layer codings), the immediate past is dominant compared to the older information. The holistic hidden-layer encodings can still be decoded into their constituent parts. With sufficiently long sequences, older information will eventually be forgotten altogether as the ultimate memory capacity is reached.

Having established a benchmark for RAAM and B-RAAM, both models were re-implemented with ‘(2’ delay lines. Hence, any improvements observed in the following experiment will be a direct result of the delay line, allowing us to determine if feedback memory capacity can be improved (and word-end biasing reduced).

<TABLE VI HERE>

The results show (Table VI) that the delay line offers a way of improving RAAM’s sequential memory without having to increase the hidden-layer dimensions. As previously, the B‑RAAM(2 network successfully manages to encode/decode all patterns in the training data set. Use of a delay line has caused the number of epochs to increase, but considerably fewer are required than for the RAAM(2 model.

Both models exhibit a change in the ranked lists. B-RAAM(2 now places the middle sub-sequence at the top of the list, when previously it was clearly biased towards the ending. This shift is also reflected in the Hamming/Euclidean distances. For B-RAAM(1, the differences in Hamming distances between the first and third patterns listed give a total range of 7.34, while for B‑RAAM(2 the overall range is only 3.47. A similar reduction is also apparent for the RAAM model. Hence, a delay line enables improved performance without the need to increase either the hidden-layer size or number of epochs.

5.1.4. Experiment 4

Experiments 2 and 3 used sub-sequence information padded with a repeating character to make all patterns the same size. The following experiment uses patterns padded with non-repeating sequences (extending patterns with random letters as below), thus depriving the models of the chance simply to learn a uniform ‘block’ of padding symbols. The input size is now increased to 17, with RAAM and B-RAAM configured as 72-55-72 and 47-30-170 respectively.

ABCDEFGHIJ

KLMNOPQHIJ

NKPMOOGHIK

LKMNLFGHMM

KLMMEFGKNO

MLNDEFONOK

LKCDELMNLO

KBCDNMOJNK

ABCKLKMOPN

Despite the need for larger hidden-layer sizes compared to experiment 2, the results (Table VII) are similar. As before, B-RAAM(1 seems to bias towards word endings and to group sub-sequences into ‘beginning’, ‘middle’ and ‘ending’. Similarly, RAAM(1 shows a strong bias towards endings, with word similarities decreasing with symbols earlier in the sequence. This suggests that RAAM and B-RAAM without a delay line gain no advantage in being shown repetitive padding. However, the non-repetitive task seems ‘harder’, in that a larger hidden layer was required in both instances.

<TABLE VII HERE>

<TABLE VIII HERE>

The experiment was repeated, but this time with a recurrent feedback delay line. The models used were 127-55-127 for RAAM(2, and 77-30-170 for B-RAAM(2, i.e. hidden-layer sizes were as before. Again, both models correctly learned to encode/decode all the patterns in the training dictionary. The results in Table VIII are similar to earlier experiments with repetitive padding. Both distribute similarities between sub-sequences and the base pattern across the ranked list, as opposed to biasing towards any specific position. As concluded above, this suggests that repeated padding offers no specific advantage to either RAAM or B-RAAM, at least for 10 character patterns. It is not known if this is the case for larger sequences. This negative result was unexpected, especially for RAAM, as it was observed in earlier experiments (not reported here) that RAAM seemed to perform better with repetitive padding (more so than B-RAAM). This was probably a result of RAAM learning temporal sub-sequences with less emphasis on where (within a long pattern) they are actually positioned. The same effect was not so easily exploited for B-RAAM, as the output layer comprises an explicit concatenation of symbols, so that AAA… is regarded as different from …AAA.

In some instances, a shift in ‘bias’ from word‑endings towards word‑beginnings was seen when a delay line is introduced (more so for RAAM). The purpose of the delay line is to ease the moving‑target problem by increasing the robustness of fed-back information throughout the presentation of a given sequence. To recap, the moving‑target problem refers to the model having to learn continuously-changing training patterns – as a result of incorporating hidden-layer activations within the input/output layer(s). By including a delay line, the presence of earlier fed-back information is extended, which reduces the bias that would otherwise be observed. This is only a limited solution, however, as activations fed back from earlier time steps will be inconsistent for the network weights in following iterations. This is because the weights that originally generated earlier hidden-layer representations (and which are subsequently fed back) are adjusted to learn/include the next item in the sequence. In this way, at early stages of training, the weights are unlikely to reproduce the same hidden-layer activations for the feedback in the next epoch. The errors generated by RAAM and B-RAAM during training are always first reduced at the start of the sequences. Only after a representation has been learned for items at the start of each sequence can the model utilise such representations successfully, as feedback for items further along the sequence.

Beyond offering a mechanism that maintains the presence of older information for longer, the delay line also seems to offer stability. By re-presenting previous fed-back data in subsequent iterations (via continued reinforcement), network weights are adjusted in a way that incorporates this information throughout the length of the current sequence. Hence, knowledge of older fed-back representations implicitly influences the training of the weights for all later items in the sequence, as opposed to past feedback being rapidly dominated by more recent data and consequently changing with every successive iteration. So how does this impact on our original question: why is there a ‘bias’ towards word-beginnings in some instances? Despite the word ending being the most recently seen information, the word beginning has been continuously re-presented and reinforced for the length of the sequence. This information is, therefore, captured in successive weight updates and, in some instances, can become the dominant aspect of the final hidden-layer representation. This effect is more pronounced for RAAM, perhaps as a result of RAAM using feedback in both the input and output layers during training. This said, however, we believe the most important results from these experiments are the reduction of the word-end bias, and a resulting lower Hamming/Euclidean distance between each pattern. The latter point is important, as it shows how the models regard each of the training patterns as equally similar to the base pattern – which they are in terms of number of correspondences.

5.1.5. Experiment 5

So far, hidden-layer sizes have been determined empirically and represent an approximate minimum for their specific tasks. Similarly, a ‘(2’ delay line has been sufficient to reduce the problem of LT dependencies. To explore the impact of hidden-layer and delay-line sizes more fully, the training dictionaries used in previous experiments were retained but the model architectures were varied.

It was generally observed that B-RAAM(2 with a smaller hidden layer offered the best performance (i.e. fewer epochs, smaller encoded pattern sizes, and less biased Hamming/Euclidean distances). Although increasing the length of the delay line (up to ‘(8’ was tried) could reduce any remaining word-end biasing, it typically shifted the bias from word endings to beginnings. In contrast, RAAM benefits most from increasing the hidden-layer dimensions in conjunction with a ‘(2’ delay line. Thus, RAAM works better with a larger hidden layer. This is unfortunate because it is often desirable or necessary to keep the holistic representation as small as possible, while ensuring that knowledge is not buried too deeply. However, if RAAM is more appealing for a specific application, and the holistic representation dimensions are not critical, then a larger hidden layer is one way in which the biasing problem may be tackled.

5.1.6. Experiment 6

A criticism earlier levelled at RAAM was its potential inability to cope with noisy data. This problem is particularly prevalent for RAAM because its recursive decoding can produce cumulative errors. More specifically, the network generates two representations at the output layer during the decode phase (one containing the current symbol (i.e. the top of the stack) and another containing the remaining encoded information (i.e. rest of the stack). Consequently, there is a risk of passing errors onto every subsequent decode step (Pollack, 1991), where they are likely to accumulate and be amplified. For an n pattern sequence, RAAM has n distinct opportunities to pass on or introduce errors. We now demonstrate that the same is not true for B-RAAM, because the hidden layer is decoded in one step.

A further problem with the two representations generated by RAAM on each cycle is that they seem ‘incompatible’. The first is a discrete (hand-coded) pattern comprising values of either 0 or 1 (the top of stack). The other is a pattern derived from the hidden layer that is more continuous in nature, comprising values between 0 and 1. Although most ANNs are capable of generating continuous‑valued outputs, they seem to perform most effectively when trained to produce well‑separated output values, e.g. 0’s and 1’s (but see Niklasson & Van Gelder, 1994, for counter‑examples). The situation is made worse for RAAM, as the model has to derive a pattern that contains both discrete and continuous patterns. Furthermore, the moving‑target problem affects both the input and output layers. This problem is reduced for B-RAAM, as the hidden layer is only fed back to the input layer. Because the network is bi‑coded, the output does not depend on this hidden‑layer representation, but instead on its decoded value (constituent parts). In this way, the output-layer activations seem more stable during training.

ADEGJCBAJA

BIDFHADBGE

BDFIEGHJJA

EHABIEHGJA

DBAJIIEFBB

BDCBAJDEFJ

AAJCGHHIAG

JAHDBEFGIG

HEBDCJFDJA

GEDDGJIIAB

To explore these issues, a training data set comprising 10 patterns is defined above. Each consists of 10 random letters, i.e. no deterministic sequences exist for the models to learn. Each network was then trained to encode/decode this dictionary (Table IX) and holistic hidden-layer representations for each pattern derived. For these experiments, RAAM and B-RAAM were configured with 40 and 30 hidden layer nodes respectively (without delay lines).

<TABLE IX HERE>

The hidden-layer representations were then contaminated by varying severities of noise. Two parameters control this procedure: one determines the number of nodes affected (frequency) and the other the noise magnitude (disturbance). The noisy holistic representations were then decoded. For both RAAM and B‑RAAM, only the initially derived hidden-layer codes (i.e. the originally derived encoded representation) were subjected to noise. Table X shows that RAAM(1 suffers many more errors than B-RAAM(1. As expected, the errors for RAAM were observed to accumulate throughout the decoding procedure and did not occur all at the same time.

<TABLE X HERE>

Having seen how noise affects RAAM(1 and B-RAAM(1 without delay lines, ‘(2’ delay lines were then introduced. Again, the networks were trained to encode/decode all patterns in the training data set before noise was applied to the derived hidden-layer representations. The hidden layer for RAAM(2 had to be increased from 40 (without a delay line) to 50 so that all patterns in the training dictionary could be encoded/decoded correctly.

<TABLE XI HERE>

A similar overall picture can be seen in Table XI for RAAM(2 and B-RAAM(2 compared to the earlier case without delay lines. RAAM(2 still suffers many more errors than B-RAAM(2, but the delay line goes some way to suppressing the effect of noise. Many fewer errors are present for both models despite having applied exactly the same level of noise, both in frequency and disturbance (but with a different distribution for RAAM as the hidden layer is not consistent across both tests). Once again, a delay line offers more than just a mechanism to reduce the LT dependency problem. It also gives a way of handling noisy data.

5.2. Learning to Represent Trees

Thus far, we have concentrated on sequences. However, a stack is effectively a right-branching binary tree with a distinguished empty symbol. Hence, it should be possible to use the B‑RAAM model to encode/decode more complex data structures. For example, trees can be encoded much in the same as for RAAM (Pollack, 1990). Consequently, encoding comprises a bottom-up process, with the lowest layer of leaf nodes encoded as a sequence and its hidden-layer representation stored. This non-terminal encoding is then simply presented as part of the tree’s next layer as if it was just another terminal node (Figure 7). Decoding by RAAM and B-RAAM, however, highlights a significant difference between them. Instead of RAAM’s recursive one‑node‑at‑a‑time procedure, B‑RAAM decodes a whole layer at a time. B‑RAAM’s ability to process tree structures in this way means decoding ‘similarly-structured’ trees is more consistent, and encoding/decoding is generally quicker (Figure 6). As stated earlier, the number of decode steps required for a tree with n layers and m nodes is m+(n-1) for RAAM but only m for RAAM.

The following experiments show how ‘stack’ principles can be applied to trees by revisiting the simple grammar defined by Pollack (1988) and shown below.

S (NP VP | NP V

(D (A (A (A N))))

NP (D AP | DN | NP PP

((D N) (P (D N)))

PP (P NP

(V (D N))

VP (V NP | V PP

(P (D (A N)))

AP (A AP | A N

((D N) V)

((D N) (V (D (A N))))

((D (A N)) (V (P (D N))))

The purpose of the experiments described here is two-fold: (1) to determine if the B-RAAM model can easily represent such tree structures, (2) to see how noise affects both the RAAM(1 and B-RAAM(1 models when used to encode/decode tree representations.

<TABLE XII HERE>

Initially, the RAAM(1 model defined by Pollack (20-10-20) was re-implemented together with a B‑RAAM(1 model with the same number of hidden nodes. Both successfully managed to encode/decode all trees in the grammar, with B-RAAM(1 achieving this in fewer epochs (Table XII). Thus, not only can B-RAAM(1 represent trees, it also learns the task in consistently fewer epochs.

Finally, the ability of B‑RAAM to cope with noise is considered. As for learning sequences, varying levels of noise were applied to the encoded hidden-layer representations before decoding.

<TABLE XIII HERE>

The results are shown in Table XIII for noisy trees are similar to those for noisy sequences. That is, B-RAAM(1 suffers many fewer errors due to noise than RAAM(1. The cumulative effect was again observed, with the number of errors produced by RAAM(1 increasing throughout decoding. Clearly, the benefits observed for B-RAAM(1 when processing simple sequences also seem to apply to more complex representations such as trees. It is not known if the B-RAAM model reduces the problems inherent with storing large-depth trees (Pollack, 1991; Blair, 1995). However, for all cases tested, B‑RAAM did not suffer loss of generalisation at the cost of more robust encoding/decoding – which is the case for Blair’s RAAM extensions (1995).

6. Structure-Sensitive Transformations

To determine if the holistic representations developed by B-RAAM can be transformed in a way which is sensitive to the underlying structure of the data, we re-implemented Chalmers’ (1990) experiment on sentence passivisation, using his training dictionary of 13 words. This dictionary can be used to define 125 = 5 (5 (5 sentence pairs of the form shown in Figure 8 – with a localist 13-bit vector used to represent each word (Table XIV).

Originally, Chalmers randomly generated 40 sentences of each type (active and passive) for training purposes, and a further 40 for testing. In our re-implementation, however, we train on 150 sentences and test on 100 (75 and 50 of each type respectively), as this does not exclude any of the dictionary. Chalmers’ 40 sentence pairs may not be enough to train RAAM or B‑RAAM satisfactorily, and furthermore, the untested 40 sentence pairs may all be incorrectly encoded/decoded by the model.

The training and testing procedure is as follows. First, B-RAAM was trained on 150 sentences – 75 of each type (active and passive). After convergence, B-RAAM was tested on the 150 training sentences, and the remaining 100 sentences (50 of each type) not yet seen (Table XV). The hidden‑layer representations for each of the 150 seen sentences were then derived and used as the input to, and corresponding target output for, a 3-layer feedforward ANN – which thus learned to transform active to passive sentences. Once trained, the remaining 75 seen and 50 unseen active (encoded) sentences were presented to the 3-layer transformation ANN, and the network output was subsequently decoded by the (trained) B-RAAM encoder/decoder (Table XV).

It is clear from the results that B-RAAM is capable of structure-sensitive processing as defined by Chalmers (1990) – namely, encoding/decoding both original and transformed holistic representations for tree structures. Although the figures reported here represent a marked improvement over the RAAM model tested by Chalmers, he used a training set of only 40 sentence-pairs. To make a reasonable comparison, we also re-implemented RAAM for this problem using the same training/test data used here by B-RAAM. In contrast to Chalmers’ original results (80% correct encoding/decoding and 65% correct transformation), 100% performance was observed by RAAM for both parts of the problem (Table XV). However, one fact differentiating B-RAAM and RAAM is that B-RAAM requires significantly fewer training epochs for both encoding/decoding and transformation. The reduction in training epochs demonstrated by B-RAAM for transformation is particularly interesting, as the model at this stage is only transforming holistic representations. Although no analysis has been carried out to determine if B-RAAM’s hidden-layer representations are ‘easier’ to transform, the most likely reason is its one-step decoding. By contrast, RAAM is far more sensitive to decode errors if the (transformed) holistic representations are not very similar to their intended targets. Hence, many more epochs may be needed by the transformation ANN.

7. Summary and Conclusions

In spite of well-known reservations about the ability of connectionist models to develop and represent compositional symbol structures (Fodor and Pylyshyn, 1988; Fodor and MacLaughlin, 1990), in the terms expressed by Van Gelder (1990), connectionist models demonstrate a “functional compositionality”, a form of “concatenative compositionality”. Rather than applying a simple concatenate operation to tokens, compositionality is achieved through the use of functions. Supporting this view, examples of connectionist models representing data structures such as lists, sequences and trees (through use of self-developing hidden-layer representations) have been reported in the literature. We have focussed on the RAAM model (Pollack, 1990) which combines auto‑association and recurrent connections in a single architecture.

Pollack successfully applied this model to a variety of tasks, and demonstrated the ability to represent a number of symbolic structures compositionally. However, despite its many obvious advantages, RAAM still suffers a number of shortcomings, including: the large number of epochs often needed in training, an unnecessarily-large encoded representation, a bias towards more recently-presented information, and an intolerance to noise through a cumulative error effect in decoding. These shortcomings all result from the moving-target problem exhibited by RAAM (in both input and output layers), and the restricted sequential memory provided by the state nodes.

In this paper, an alternative encoder/decoder has been presented which addresses these issues. Called Bi-coded RAAM (B-RAAM), it differs from RAAM in two ways. First, a delay line is used to extend the state memory fed-back to the input layer. Second, B‑RAAM comprises a bi‑coding scheme, meaning that training involves associating the encoded pattern with its decoded format. As a result, B-RAAM only requires a single step to decode the holistic representations learned in auto‑association, and it offers an improved feedback memory capacity that reduces the word-end biasing exhibited by the standard (Elman) feedback scheme incorporated within both RAAM and B‑RAAM. Further, the ability to decode (encoded) sequences in a single step means that a tree structure can be decoded whole layers at a time, as opposed to RAAM’s recursive node extraction.

The benefits of B-RAAM over RAAM have been demonstrated across a range of experiments. In all cases, B-RAAM converged in fewer epochs than RAAM, and required a smaller hidden layer within which to capture compositional representations. This reflects a general reduction in the moving‑target effect, since B-RAAM’s hidden-layer representations are directed only towards the input layer (without RAAM’s feed-forward to the output layer). Also, because B-RAAM learns to associate encoded and decoded data during training (bi-coding), the network is better able to determine redundancies in the data, i.e. the translation process is more stable. Furthermore, the single step decoder of B-RAAM avoids the cumulative error effect apparent within RAAM’s recursive decode procedure when confronted with noisy representations. Despite B-RAAM having a larger architecture in some cases, using a dynamic output layer and localised thresholding during training means that a significant reduction in weight calculations is achieved over RAAM.

B-RAAM’s delay line also offers an improvement over RAAM by increasing the ST nature of recurrent sequential memory, so easing the LT dependency problem. Ordinarily this problem materialises in a bias towards sequence endings when two hidden-layer representations are compared (here using Hamming and Euclidean distances. Although the problem of sequence-end bias has not been removed completely, use of a simple delay line can be effective in reducing its effect – for both B‑RAAM and RAAM. In fact, the delay line also proved effective both for reducing the size of the learned representation and improving encode/decode accuracy without resorting to the use of larger hidden layers. This finding is important, because post-processing operations applied to holistic representations may be sensitive to their size. We also showed how B-RAAM’s holistic representations could undergo transformation in a separate feedforward network, before being successfully decoded, i.e. structure-sensitive processing (Chalmers, 1990).

This paper has described a new connectionist model – bi-coded RAAM – designed to overcome some shortcomings of the recursive auto-associative memory (RAAM) model introduced by Pollack (1988). We have demonstrated the ability of B‑RAAM to represent compositionally such data structures as sequences, lists and trees, and also (by replicating Chalmers’ sentence passivisation experiments) to effect structure-sensitive transformations. All this is achieved in a more effective way than using conventional RAAM. However, this new connectionist model should also exhibit generalisation abilities. Although Blair (1995) has also presented extensions to RAAM that surmount some of the same problems addressed by B‑RAAM, the advantages gained by Blair are at the expense of generalisation. In related work addressing the NETtalk (text‑to‑speech translation) task, we have confirmed that B‑RAAM possesses good generalisation characteristics in terms of pronouncing unknown words. This work will be separately reported in a future publication.

References

Adamson, M.J. & Damper, R.I. (1996a) A recurrent network which learns to pronounce English text. Proceedings of International Conference on Spoken Language Processing, Philadelphia, PA, Vol. 3, 1704-1707.

Adamson, M.J. & Damper, R.I. (1996b) Recurrent networks for English text-to-phoneme conversion, Proceedings of the Institute of Acoustics, 18, Part 9, 27-34.

Baldi, P. & Hornik, K. (1989) Neural networks and principal component analysis: Learning from examples without local minima. Neural Networks, 2, 53-58.

Balogh, I.L. (1994) An analysis of a connectionist internal representation: Do RAAM networks produce truly distributed representations? PhD Thesis, New Mexico State University, Las Cruces, New Mexico.

Bengio, Y., Simard, P. & Frasconi P. (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5, 157-166.

Blair, A.D. (1995) Two-layer digital RAAM. Proceedings of the 17th Annual Conference of the Cognitive Science Society, Pittsburgh, PA, 478-481.

Bourlard, H. & Kamp, Y. (1988) Auto-association by multilayer perceptrons and singular value decomposition. Biological Cybernetics, 59, 291-294.

Callan, R.E., & Palmer-Brown, D. (1997) (S)RAAM: An analytical technique for fast and reliable derivation of connectionist symbol structure representations. Connection Science, 9, 139-159.

Chalmers, D.J. (1990) Syntactic transformations on distributed representations. Connection Science, 2, 53-62

Chrisman, L. (1990) Learning recursive distributed representations for holistic computation. Connection Science, 3, 345-366

Cottrell, G., Munro, P. & Zipser, D. (1987) Learning internal representations from grey-scale images: An example of extensional programming. Proceedings of Ninth Annual Conference of the Cognitive Science Society, Seattle, WA, 461-473.

Elman, J.L. (1988) Finding structure in time. Cognitive Science, 14, 179-211.

Elman, J.L. (1991) Distributed representations, simple recurrent networks, and grammatical structure, Machine Learning, 7, 195-225.

Elman, J.L. (1993) Learning and development in neural networks: The importance of starting small. Cognition, 48, 71-99.

Fodor, J.A., & Pylyshyn Z.W. (1988) Connectionism and cognitive architecture: A critical analysis. Cognition, 28, 3-71.

Fodor, J.A. & MacLaughlin B. (1990) Connectionism and the problem of systematicity: Why Smolensky’s solution doesn’t work. Cognition, 35, 183-204.

Hanson, S.J. & Kegl, J. (1987) PARSNIP: A connectionist network that learns natural language grammar from exposure to natural language sentences. Proceedings of Ninth Annual Conference of the Cognitive Science Society, Seattle, WA, 106-119.

Hammerton, J.A. (1998) Holistic computation: Reconstructing a muddled concept. Connection Science, 10, 3-10.

Hinton, G.E. (1984) Distributed representations. Technical Report CMU-CS-84-157, Carnegie-Mellon University, Computer Science Department, Pittsburgh, PA.

Hinton, G.E. (1986) Learning distributed representations of concepts. Proceedings of Eighth Annual Conference of the Cognitive Science Society, Amherst, MA, 1-12.

Hinton, G.E. (1988) Representing part-whole hierarchies in connectionist networks. Proceedings of Tenth Annual Conference of the Cognitive Science Society, Montreal, Canada, 48-54.

Jordan, M.I. (1986a) Attractor dynamics and parallelism in a connectionist sequential machine. Proceedings of Eighth Conference of the Cognitive Science Society, Amherst, MA, 531-546.

Jordan, M.I. (1986b) Serial order: A parallel distributed processing approach. Institute for Cognitive Science Report 8604, University of California, San Diego, CA.

Kolen, J. & Pollack, J.B. (1990) Back-propagation is sensitive to initial conditions. Technical Report TR-90-JK-BPSIC, Computer and Information Science Department, Ohio State University, Columbus, Ohio.

Lin, T., Horne, B.G., Tino, P. & Giles. C.L. (1996) Learning long-term dependencies in NARX recurrent neural networks. IEEE Transactions on Neural Networks, 7, 329-1338.

Niklasson L.F. & Van Gelder T. (1994) On being systematically connectionist. Mind and Language, 9, 288-302.

Plate, T. (1995) Holographic reduced representations. IEEE Transactions on Neural Networks, 6, 623-641.

Pollack, J.B. (1988) Recursive auto-associative memory: Devising compositional distributed representations. Proceedings of the Tenth Annual Conference of the Cognitive Science Society, Montreal, Canada, 33-39.

Pollack, J.B. (1990) Recursive distributed representations. Artificial Intelligence, 46, 77-105.

Pollack, J.B. (1991) The induction of dynamical recognizers. Machine Learning, 7, 227-252.

Port, R. (1990) Representation and recognition of temporal patterns. Connection Science, 2, 151‑176.

Rumelhart, D.E., Hinton, G. & Williams, R. (1986) Learning internal representations through error propagation. In (Ed.) D.E Rumelhart, McClelland J.L. and the PDP Research Group Parallel Distributed Processing: Experiments in the Microstructure of Cognition 1: Foundations, MIT Press, Cambridge, MA, 25-40.

Rumelhart, D.E. & McClelland, J.L. (1986) Learning the past tense of English verbs. In (Ed.) McClelland J.L., D.E Rumelhart and the PDP Research Group, Parallel Distributed Processing: Experiments in the Microstructure of Cognition 2: Applications, MIT Press, Cambridge, MA, 216-217.

Seidenberg, M.S. & McClelland, J.L. (1989) A distributed developmental model of word recognition and naming. Psychological Review, 96, 523-568.

Sejnowski, T.J. & Rosenberg, C.R. (1987) Parallel networks that learn to pronounce English text. Complex Systems, 1, 145-168.

Smolensky, P. (1990) Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artificial Intelligence, 46, 159-216.

Touretzky, D.S. (1986) BoltzCONS: Reconciling connectionism with the recursive nature of stacks, or trees do grow in Boltzmann machines. Proceedings of Eighth Annual Conference of the Cognitive Science Society, Amherst, MA, 522-530.

Van Gelder, T. (1990) Compositionality: A connectionist variation on a classical theme. Cognitive Science, 14, 355-384.

Van Gelder, T. (1991) What is the ‘D’ in PDP? A survey of the concept of distribution. In (Ed.) Ramsey, W., Stich, S.P. and D.E Rumelhart, Philosophy and Connectionist Theory, Lawrence Erlbaum Associates, Hillsdale, NJ, 33-60.

[image: image1.wmf]Hidden layer

Input layer

Output layer

State nodes

Network feedback

Input nodes

Figure 1: Elman’s (1988) recurrent neural network.

[image: image2.wmf]TRAINING

ENVIRONMENT

Feedback

Hidden

Input

Output

TOP

STACK

STACK

TOP

STACK

Figure 2: Pollack’s recurrent auto-associator which defines a stack function.

[image: image3.wmf]COMPOSITION

COMPOSITIO

COMPOSITI

N

Key:

associates with

Encoded hidden representation

External representation

a) Adamson & Damper: Bi-coded recurrent AA

associates with

N

COMPOSITIO

COMPOSITIO

N

b) Pollack: Strict recurrent AA

Input

layer

Output

layer

Figure 3: B-RAAM(2 associates a time-delayed encoded input (partly drawn from the hidden layer) to its decoded constituent parts during learning. This contrasts with RAAM(1, which is a strict recurrent AA.

[image: image4.wmf]Sub-network trained

on word length

associations

Output layer

State node delay line

Input layer

Hidden layer

Input (next letter)

Figure 4: Bi-coded recurrent AA with mid-term memory provided through a delay line, and an output layer which holds the accumulating external input sequence. The sub-network allows those nodes containing meaningful symbols during recall to be identified.

Dynamic output-layer length:

11
10
9
8
7
6
5
4
3
2
1

[image: image5.wmf]1 …

6

7 …

17

18 …

99

1

2

3

4

5

6

7

8

a) 3 layers, 8 terminal nodes:

 B-RAAM = 3 decode steps

 RAAM = 10 (8

 +

 3

-

 1) decode steps

b) 3 layers, 99 terminal nodes:

 B-RAAM = 3 decode steps

 RAAM = 101 (99

 +

 3

-

1) decode steps

Cycle:
1

C

3

C
O
N

6

C
O
N
C
A
T

11
C
O
N
C
A
T
E
N
A
T
E

[image: image6.wmf]JOHN

LOVE

MICHAEL

MICHAEL

IS

LOVE

NIL

BY

JOHN

NIL

12

C

13

C
A

14

C
A
T

Figure 5: Contents of the output layer after selected cycles for the first presentation of the words concatenate and cat. The dynamical property of B-RAAM’s output layer means nodes are created as needed, with only those weights attached to output nodes containing a contributing sequence/tree element (not greyed out) updated during its respective cycle. Each output node is represented by an n-length vector, e.g. a 26-bit localist representation for the letters of the alphabet.

[image: image7.wmf]1 …

6

7 …

17

18 …

99

1

2

3

4

5

6

7

8

a) 3 layers, 8 terminal nodes:

 B-RAAM = 3 decode steps

 RAAM = 10 (8

 +

 3

-

 1) decode steps

b) 3 layers, 99 terminal nodes:

 B-RAAM = 3 decode steps

 RAAM = 101 (99

 +

 3

-

1) decode steps

Figure 6: The number of decode steps required for a tree with n layers and m nodes is m+(n-1) for RAAM but only m for RAAM. In the above examples, this equates to only 3 decode steps for both trees by B-RAAM, but 10 and 101 steps in the case of RAAM, for the two trees respectively.

Tree: XYZ

Tree: X(YZ)

Tree: (XY)Z

Input Layer
Hidden Layer
Output Layer

Input

Layer
Hidden Layer
Output

Layer

Input

Layer
Hidden

Layer
Output

Layer

X
H1
X

Y
H1
Y

X
H1
X

H1 Y
H2
X Y

H1 Z
H2
Y Z

H1 Y
H2
X Y

H2 Z
H3
X Y Z

X
H3
X

H2
H3
H2

H3 H2
H4
X H2

H3 Z
H4
H3 Z

Figure 7: How B-RAAM learns to represent trees, e.g. XYZ, X(YZ) and (XY)Z. To represent trees using B‑RAAM (or RAAM), the coding scheme for leaf nodes (terminals) must equal the hidden-layer size.

[image: image8.wmf]JOHN

LOVE

MICHAEL

MICHAEL

IS

LOVE

NIL

BY

JOHN

NIL

Figure 8: Example active and passive sentences.

Experiment 1a

Model
Delay line
Epochs
Architecture

Size
Low.
Ave.
High.
Min.

RAAM
1
117
140
166
110
30-25-30

B-RAAM
1
42
44
48
19
30-25-45

RAAM
2
210
340
658
169
55-25-55

B-RAAM
2
35
37
39
18
55-25-45

Encoding
Dict. Size
Word Lengths
Min/Max Sequence

1-out-of-5
19
variable
3/9

Experiment 1b

Model
Delay line
Epochs
Architecture

Size
Low.
Ave.
High.
Min.

RAAM
1
152
183
199
87
21-16-21

B-RAAM
1
180
212
290
56
12-7-45

RAAM
2
308
369
412
96
37-16-37

B-RAAM
2
147
160
175
42
19-7-45

Encoding
Dict. Size
Word Lengths
Min/Max Sequence

1-out-of-5
19
variable
3/9

Table I: Model architectures used for the simple Pollack (1990) training data set. Experiment 1a shows the results for a straightforward re-implementation, whereas experiment 1b represents the minimum hidden-layer size that still allowed convergence.

The following key applies to all tables (as appropriate) in this paper:

Model:
type of model implemented.

Delay-line size:
the number of time steps captured by the delay line.

Epochs:
the number of complete presentations of the training data seen during learning. The first three values show the lowest, average and highest number of epochs observed across a number of training runs respectively. See main body of text for description of training procedure. The adjacent min. column approximates the earliest point at which convergence is achievable.

Architecture:
the network dimensions, i.e. input-hidden-output layer sizes. In the case of B-RAAM, the output layer indicates the maximum size dynamically expanded to.

Encoding:
the length of each encoded input pattern, and the number of bits turned on, i.e. set to 1 with all other bits set to 0.

Dict. Size:
the number of patterns in the training dictionary.

Word Lengths:
indicates if the training patterns are all of the same length.

Min/Max Sequence:
the minimum and maximum lengths of patterns in the training dictionary.

Experiment 2a

Model
Delay‑line
Epochs
Architecture

Size
Low.
Ave.
High.
Min.

RAAM
1
127
151
183
94
26-15-26

B-RAAM
1
99
101
110
60
21-10-110

Encoding
Dict. Size
Word Lengths
Min/Max Sequence

1-out-of-11
9
fixed
10

Model: B-RAAM(1
Model: RAAM(1

Model: B-RAAM(1
Model: RAAM(1

Hamming
Dictionary
Hamming
Dictionary

Euclidean
Dictionary
Euclidean
Dictionary

Distance
Entry
Distance
Entry

Distance
Entry
Distance
Entry

0.00
ABCDEFGHIJ
0.00
ABCDEFGHIJ

0.00
ABCDEFGHIJ
0.00
ABCDEFGHIJ

4.45
XXXXXFGHXX
4.94
XXXXXXXHIJ

1.88
XXXXXFGHXX
1.42
XXXXXXXHIJ

5.01
XXXXXXXHIJ
7.01
XXXXXFGHXX

2.01
XXXXXXXHIJ
1.83
XXXXXFGHXX

5.42
XXXDEFXXXX
7.21
XXXXXXGHIX

2.03
XXXDEFXXXX
1.84
XXXXXXGHIX

5.51
XXXXEFGXXX
7.44
XXXXEFGXXX

2.05
XXXXEFGXXX
1.86
XXXXEFGXXX

5.71
XXXXXXGHIX
7.81
XXXDEFXXXX

2.09
XXXXXXGHIX
1.95
XXXDEFXXXX

6.24
XXCDEXXXXX
8.47
XXCDEXXXXX

2.20
XBCDXXXXXX
2.00
XXCDEXXXXX

6.39
XBCDXXXXXX
9.31
XBCDXXXXXX

2.34
XXCDEXXXXX
2.22
XBCDXXXXXX

7.71
ABCXXXXXXX
9.81
ABCXXXXXXX

2.54
ABCXXXXXXX
2.27
ABCXXXXXXX

Table II: List of patterns ranked by similarity of the internal representation, for RAAM(1 and B-RAAM(1 when trained on the sub-word dictionary. Similarities between each sequence and the pattern at the top of each list (base pattern) have been highlighted (i.e. in the last column, ‘XXXXXXXHIJ’ is considered more similar to ‘ABCDEFGHIJ’ than ‘ABCXXXXXXX’.

a) Model: B-RAAM(1

b) Model: B-RAAM(1

Hamming
Dictionary
Euclidean
Dictionary

Hamming
Dictionary
Euclidean
Dictionary

Distance
Entry
Distance
Entry

Distance
Entry
Distance
Entry

0.00
ABCDEFGHIJ
0.00
ABCDEFGHIJ

0.00
ABCDEFGHIJ
0.00
ABCDEFGHIJ

3.24
XXXXXXXHIJ
1.52
XXXXXXGHIX

8.86
XXCDEXXXXX
2.65
XXXXEFGXXX

3.85
XXXXXXGHIX
1.57
XXXXXXXHIJ

9.01
XXXXXFGHXX
2.67
XXXXXFGHXX

4.57
XXXXXFGHXX
1.89
XXXXXFGHXX

9.02
XXXXXXGHIX
2.67
XXXXXXGHIX

4.70
XXXXEFGXXX
1.93
XXXXEFGXXX

9.11
XXXXEFGXXX
2.71
XXXXXXXHIJ

5.79
XXXDEFXXXX
2.08
XXXDEFXXXX

9.49
XXXXXXXHIJ
2.71
XXCDEXXXXX

6.18
XXCDEXXXXX
2.26
XXCDEXXXXX

9.54
XXXDEFXXXX
2.88
XXXDEFXXXX

7.02
XBCDXXXXXX
2.33
XBCDXXXXXX

9.60
XBCDXXXXXX
2.84
XBCDXXXXXX

7.32
ABCXXXXXXX
2.44
ABCXXXXXXX

10.06
ABCXXXXXXX
2.87
ABCXXXXXXX

Table III: a) Ranked similarities for B-RAAM(1 trained on the sub-word dictionary with starting weights in the range (0.05. b) Ranked similarities for B-RAAM(1 trained on the same dictionary but with 15 hidden nodes.

Experiment 2b

Model
Delay‑line
Epochs
Architecture

Size
Low.
Ave.
High.
Min.

RAAM
2
–
-
-
1000*
41-15-41

B-RAAM
2
205
233
265
55
31-10-110

B-RAAM
2
–
–
–
1250*
23-6-110

Encoding
Dict. Size
Word Lengths
Min/Max Sequence

1-out-of-11
9
fixed
10

(*) For these simulations, training had to be forced to the number of epochs listed before convergence was observed.

Model: B-RAAM(2
Model: RAAM(2

Model: B-RAAM(2
Model: RAAM(2

Hamming
Dictionary
Hamming
Dictionary

Euclidean
Dictionary
Euclidean
Dictionary

Distance
Entry
Distance
Entry

Distance
Entry
Distance
Entry

0.00
ABCDEFGHIJ
0.00
ABCDEFGHIJ

0.00
ABCDEFGHIJ
0.00
ABCDEFGHIJ

4.63
XXXXEFGXXX
8.57
ABCXXXXXXX

1.91
XXXXEFGXXX
2.26
ABCXXXXXXX

4.75
XXXDEFXXXX
9.06
XXXXXXXHIJ

2.02
XXXXXXXHIJ
2.53
XXXXXXXHIJ

4.81
XXXXXXXHIJ
9.88
XXXXXXGHIX

2.03
XXXDEFXXXX
2.57
XXXXXXGHIX

5.42
XXXXXFGHXX
9.93
XBCDXXXXXX

2.09
XBCDXXXXXX
2.62
XBCDXXXXXX

5.45
XBCDXXXXXX
10.23
XXXXXFGHXX

2.11
XXXXXFGHXX
2.69
XXCDEXXXXX

5.45
XXCDEXXXXX
10.49
XXCDEXXXXX

2.11
XXCDEXXXXX
2.71
XXXXXFGHXX

5.51
XXXXXXGHIX
10.52
XXXXEFGXXX

2.20
XXXXXXGHIX
2.75
XXXXEFGXXX

6.66
ABCXXXXXXX
11.21
XXXDEFXXXX

2.37
ABCXXXXXXX
2.81
XXXDEFXXXX

Table IV: Ranked similarities for RAAM(2 and B-RAAM(2 trained on the sub-word dictionary.

Experiment 3a

Model
Delay‑line
Epochs
Architecture

Size
Low.
Ave.
High.
Min.

RAAM
1
–
-
-
1000*
66-60-66

B-RAAM
1
250
265
276
218
51-45-150

Encoding
Dict. Size
Word Lengths
Min/Max Sequence

1-out-of-6
4
fixed
25

(*) For these simulations, training had to be forced to the number of epochs listed before convergence was observed.

Model: B-RAAM(1
Model: RAAM(1

Hamming
Dictionary
Hamming
Dictionary

Distance
Entry
Distance
Entry

0.00
ABCDEEEEEEABCDEEEEEEEABCD
0.00
ABCDEEEEEEABCDEEEEEEEABCD

12.24
FFFFFFFFFFFFFFFFFFFFFABCD
9.37
FFFFFFFFFFFFFFFFFFFFFABCD

18.17
FFFFFFFFFFABCDFFFFFFFFFFF
12.98
FFFFFFFFFFABCDFFFFFFFFFFF

19.58
ABCDFFFFFFFFFFFFFFFFFFFFF
15.06
ABCDFFFFFFFFFFFFFFFFFFFFF

Model: B-RAAM(1
Model: RAAM(1

Euclidean
Dictionary
Euclidean
Dictionary

Distance
Entry
Distance
Entry

0.00
ABCDEEEEEEABCDEEEEEEEABCD
0.00
ABCDEEEEEEABCDEEEEEEEABCD

3.28
FFFFFFFFFFFFFFFFFFFFFABCD
1.81
FFFFFFFFFFFFFFFFFFFFFABCD

4.08
FFFFFFFFFFABCDFFFFFFFFFFF
2.51
FFFFFFFFFFABCDFFFFFFFFFFF

4.18
ABCDFFFFFFFFFFFFFFFFFFFFF
2.79
ABCDFFFFFFFFFFFFFFFFFFFFF

Table V: Ranked similarities for RAAM(1 and B-RAAM(1 trained on 4 patterns of length 25 characters.

Experiment 3b

Model
Delay-line
Epochs
Architecture

Size
Low.
Ave.
High.
Min.

RAAM
2
–
-
-
1000*
126-60-126

B-RAAM
2
147
173
212
113
96-45-150

Encoding
Dict. Size
Word Lengths
Min/Max Sequence

1-out-of-6
4
fixed
25

(*) For these simulations, training had to be forced to the number of epochs listed before convergence was observed.

Model: B-RAAM(2
Model: RAAM(2

Hamming
Dictionary
Hamming
Dictionary

Distance
Entry
Distance
Entry

0.00
ABCDEEEEEEABCDEEEEEEEABCD
0.00
ABCDEEEEEEABCDEEEEEEEABCD

13.77
FFFFFFFFFFABCDFFFFFFFFFFF
13.80
ABCDFFFFFFFFFFFFFFFFFFFFF

14.67
FFFFFFFFFFFFFFFFFFFFFABCD
15.57
FFFFFFFFFFFFFFFFFFFFFABCD

17.24
ABCDFFFFFFFFFFFFFFFFFFFFF
18.48
FFFFFFFFFFABCDFFFFFFFFFFF

Model: B-RAAM(2
Model: RAAM(2

Euclidean
Dictionary
Euclidean
Dictionary

Distance
Entry
Distance
Entry

0.00
ABCDEEEEEEABCDEEEEEEEABCD
0.00
ABCDEEEEEEABCDEEEEEEEABCD

3.53
FFFFFFFFFFABCDFFFFFFFFFFF
3.57
ABCDFFFFFFFFFFFFFFFFFFFFF

3.63
FFFFFFFFFFFFFFFFFFFFFABCD
4.72
FFFFFFFFFFFFFFFFFFFFFABCD

3.96
ABCDFFFFFFFFFFFFFFFFFFFFF
5.23
FFFFFFFFFFABCDFFFFFFFFFFF

Table VI: Ranked similarities for RAAM(2 and B-RAAM(2 trained on 4 patterns of length 25 characters.

Experiment 4a

Model
Delay-line
Epochs
Architecture

Size
Low.
Ave.
High.
Min.

RAAM
1
187
202
230
180
72-55-72

B-RAAM
1
78
80
82
40
47-30-170

Encoding
Dict. Size
Word Lengths
Min/Max Sequence

1-out-of-17
9
fixed
10

Model: B-RAAM(1
Model: RAAM(1

Model: B-RAAM(1
Model: RAAM(1

Hamming
Dictionary
Hamming
Dictionary

Euclidean
Dictionary
Euclidean
Dictionary

Distance
Entry
Distance
Entry

Distance
Entry
Distance
Entry

0.00
ABCDEFGHIJ
0.00
ABCDEFGHIJ

0.00
ABCDEFGHIJ
0.00
ABCDEFGHIJ

9.03
NKPMOOGHIK
13.10
KLMNOPQHIJ

2.48
NKPMOOGHIK
2.39
LKMNLFGHMM

10.36
KLMNOPQHIJ
13.88
LKMNLFGHMM

2.61
KLMNOPQHIJ
2.41
KLMNOPQHIJ

10.47
KLMMEFGKNO
14.92
KLMMEFGKNO

2.73
KBCDNMOJNK
2.56
KLMMEFGKNO

10.53
MLNDEFONOK
15.00
NKPMOOGHIK

2.75
KLMMEFGKNO
2.57
NKPMOOGHIK

10.55
KBCDNMOJNK
15.50
MLNDEFONOK

2.83
LKMNLFGHMM
2.75
MLNDEFONOK

11.11
LKCDELMNLO
16.71
LKCDELMNLO

2.84
ABCKLKMOPN
2.87
LKCDELMNLO

11.13
LKMNLFGHMM
17.39
KBCDNMOJNK

2.85
MLNDEFONOK
2.90
KBCDNMOJNK

11.41
ABCKLKMOPN
17.63
ABCKLKMOPN

2.91
LKCDELMNLO
2.99
ABCKLKMOPN

Table VII: Ranked similarities for RAAM(1 and B-RAAM(1 trained on a dictionary with no repetitive padding.

Experiment 4b

Model
Delay-line
Epochs
Architecture

Size
Low.
Ave.
High.
Min.

RAAM
2
456
472
501
466
127-55-127

B-RAAM
2
67
79
84
54
77-30-170

Encoding
Dict. Size
Word Lengths
Min/Max Sequence

1-out-of-17
9
fixed
10

Model: B-RAAM(2
Model: RAAM(2

Model: B-RAAM(2
Model: RAAM(2

Hamming
Dictionary
Hamming
Dictionary

Euclidean
Dictionary
Euclidean
Dictionary

Distance
Entry
Distance
Entry

Distance
Entry
Distance
Entry

0.00
ABCDEFGHIJ
0.00
ABCDEFGHIJ

0.00
ABCDEFGHIJ
0.00
ABCDEFGHIJ

7.71
KBCDNMOJNK
9.75
ABCKLKMOPN

2.36
KBCDNMOJNK
2.52
ABCKLKMOPN

8.59
MLNDEFONOK
10.42
KBCDNMOJNK

2.44
NKPMOOGHIK
2.59
KBCDNMOJNK

8.63
LKMNLFGHMM
12.00
NKPMOOGHIK

2.46
LKMNLFGHMM
2.90
NKPMOOGHIK

8.79
NKPMOOGHIK
13.14
KLMNOPQHIJ

2.46
MLNDEFONOK
3.10
KLMNOPQHIJ

9.10
ABCKLKMOPN
13.62
MLNDEFONOK

2.53
ABCKLKMOPN
3.13
MLNDEFONOK

9.23
KLMNOPQHIJ
14.04
LKMNLFGHMM

2.56
KLMNOPQHIJ
3.17
LKMNLFGHMM

9.95
LKCDELMNLO
17.05
KLMMEFGKNO

2.73
KLMMEFGKNO
3.63
KLMMEFGKNO

9.96
KLMMEFGKNO
19.10
LKCDELMNLO

2.74
LKCDELMNLO
3.90
LKCDELMNLO

Table VIII: Ranked similarities for RAAM(2 and B-RAAM(2 trained on a dictionary with no repetitive padding.

Experiment 6

Model
Delay-line
Epochs
Architecture

Size
Low.
Ave.
High.
Min.

RAAM
1
451
542
601
321
50-40-50

B-RAAM
1
58
59
73
38
40-30-100

RAAM
2
601
622
687
589
110-50-110

B-RAAM
2
48
56
83
28
70-30-100

Encoding
Dict. Size
Word Lengths
Min/Max Sequence

1-out-of-10
10
fixed
10

Table IX: RAAM and B-RAAM model parameters used to assess noise tolerance.

Disturbance
Frequency
Errors (%)
Disturbance
Frequency
Errors (%)

(approx. %)
(approx. %)
B-RAAM
RAAM
(approx. %)
(approx. %)
B-RAAM
RAAM

50
20
1
4
80
20
1
11

40
1
5

40
2
20

60
1
7

60
4
25

80
1
6

80
5
27

100
1
12

100
9
40

60
20
1
5
90
20
2
16

40
1
8

40
6
24

60
1
12

60
7
31

80
2
13

80
8
35

100
1
23

100
14
44

70
20
1
9
100
20
2
19

40
2
15

40
10
26

60
1
20

60
10
33

80
4
17

80
12
39

100
5
35

100
18
49

Table X: Effect of noise on RAAM(1 and B-RAAM(1. A value of e.g. 50 in the disturbance column indicates that a noise value of up to (50% of the original node value (rectangularly distributed) is added to that node, and the frequency column indicates the percentage of nodes affected in this way. Although the errors clearly increase for both models as noise is increased, the effect is less prominent for B-RAAM(1.

Disturbance
Frequency
Errors (%)
Disturbance
Frequency
Errors (%)

(approx. %)
(approx. %)
B-RAAM
RAAM
(approx. %)
(approx. %)
B-RAAM
RAAM

50
20
0
0
80
20
1
9

40
0
0

40
2
11

60
0
1

60
2
12

80
0
1

80
5
13

100
0
2

100
8
27

60
20
0
1
90
20
1
13

40
0
6

40
3
16

60
0
7

60
9
17

80
2
6

80
7
19

100
2
7

100
11
31

70
20
0
8
100
20
3
17

40
1
10

40
5
26

60
1
12

60
10
24

80
3
10

80
10
25

100
4
17

100
15
38

Table XI: Effect of noise for RAAM(2 and B-RAAM(2. As the frequency and distribution parameters increase, the number of errors increases. However, the effect for both models is less severe than without a delay line.

Learning to represent trees

Model
Delay-line
Epochs
Architecture

Size
Low.
Ave.
High.
Min.

RAAM
1
221
284
339
124
20-10-20

B-RAAM
1
116
133
148
76
20-10-35

RAAM
1
599
773
919
236
10-5-10

B-RAAM
1
97
116
126
65
10-5-35

Encoding
Dict. Size
Word Lengths
Min/Max Sequence

1-out-of-5
15
variable
7

Table XII: RAAM and B-RAAM model parameters used to represent the grammar trees defined by Pollack (1990).

Disturbance
Frequency
Errors (%)

(approx. %)
(approx. %)
B-RAAM
RAAM

50
20
0.00
0.00

40
0.00
0.00

60
0.00
0.00

80
1.30
4.00

100
1.30
6.67

100
20
4.00
10.67

40
6.67
12.00

60
8.00
16.00

80
8.00
17.33

100
8.00
21.33

Table XIII: Effect of noise on RAAM(1 and B-RAAM(1 when representing tree structures. As the frequency and distribution parameters are increased, the number of errors also increases. The overall effect is considerably less for the B-RAAM(1 model.

Word
Representation

Part of speech
Word Code
Spare Bits

John
010000
10000
00

Michael
010000
01000
00

Helen
010000
00100
00

Diane
010000
00010
00

Chris
010000
00001
00

Love
001000
10000
00

Hit
001000
01000
00

Betray
001000
00100
00

Kill
001000
00010
00

Hug
001000
00001
00

Is
000010
10000
00

By
000001
10000
00

Nil
000000
00000
00

Table XIV:
Structure-sensitive transformation

Model
Process
Delay-line
Epochs
Architecture
%sentences correct

Size

Seen
Unseen

B-RAAM
E/D
2
852
39-13-91
100
100

B-RAAM
Trans.
2
251
13-29-13
100
100

RAAM
E/D
1
2899
26-13-26
100
100

RAAM
Trans.
1
975
13-29-13
100
100

Table XV: Re-implementation of Chalmer’s sentence passivisation experiment. The process column indicates either the Encoder/Decoder (E/D) or Transformation (Trans.) networks. Epochs refers to the average score across 5 tests from different starting weights.

Table I: Model architectures used for the simple Pollack (1990) training data set. Experiment 1a shows the results for a straightforward re-implementation, whereas experiment 1b represents the minimum hidden-layer size that still allowed convergence.
36
Table II: List of patterns ranked by similarity of the internal representation, for RAAM(1 and B-RAAM(1 when trained on the sub-word dictionary. Similarities between each sequence and the pattern at the top of each list (base pattern) have been highlighted (i.e. in the last column, ‘XXXXXXXHIJ’ is considered more similar to ‘ABCDEFGHIJ’ than ‘ABCXXXXXXX’.
37
Table III: a) Ranked similarities for B-RAAM(1 trained on the sub-word dictionary with starting weights in the range (0.05. b) Ranked similarities for B-RAAM(1 trained on the same dictionary but with 15 hidden nodes.
38
Table IV: Ranked similarities for RAAM(2 and B-RAAM(2 trained on the sub-word dictionary.
39
Table V: Ranked similarities for RAAM(1 and B-RAAM(1 trained on 4 patterns of length 25 characters.
40
Table VI: Ranked similarities for RAAM(2 and B-RAAM(2 trained on 4 patterns of length 25 characters.
41
Table VII: Ranked similarities for RAAM(1 and B-RAAM(1 trained on a dictionary with no repetitive padding.
42
Table VIII: Ranked similarities for RAAM(2 and B-RAAM(2 trained on a dictionary with no repetitive padding.
43
Table IX: RAAM and B-RAAM model parameters used to assess noise tolerance.
44
Table X: Effect of noise on RAAM(1 and B-RAAM(1. A value of e.g. 50 in the disturbance column indicates that a noise value of up to (50% of the original node value (rectangularly distributed) is added to that node, and the frequency column indicates the percentage of nodes affected in this way. Although the errors clearly increase for both models as noise is increased, the effect is less prominent for B-RAAM(1.
45
Table XI: Effect of noise for RAAM(2 and B-RAAM(2. As the frequency and distribution parameters increase, the number of errors increases. However, the effect for both models is less severe than without a delay line.
46
Table XII: RAAM and B-RAAM model parameters used to represent the grammar trees defined by Pollack (1990).
47
Table XIII: Effect of noise on RAAM(1 and B-RAAM(1 when representing tree structures. As the frequency and distribution parameters are increased, the number of errors also increases. The overall effect is considerably less for the B-RAAM(1 model.
48
Table XIV:
49
Table XV: Re-implementation of Chalmer’s sentence passivisation experiment. The process column indicates either the Encoder/Decoder (E/D) or Transformation (Trans.) networks. Epochs refers to the average score across 5 tests from different starting weights.
50

Figure 1: Elman’s (1988) recurrent neural network.
28
Figure 2: Pollack’s recurrent auto-associator which defines a stack function.
29
Figure 3: B-RAAM(2 associates a time-delayed encoded input (partly drawn from the hidden layer) to its decoded constituent parts during learning. This contrasts with RAAM(1, which is a strict recurrent AA.
30
Figure 4: Bi-coded recurrent AA with mid-term memory provided through a delay line, and an output layer which holds the accumulating external input sequence. The sub-network allows those nodes containing meaningful symbols during recall to be identified.
31
Figure 5: Contents of the output layer after selected cycles for the first presentation of the words concatenate and cat. The dynamical property of B-RAAM’s output layer means nodes are created as needed, with only those weights attached to output nodes containing a contributing sequence/tree element (not greyed out) updated during its respective cycle. Each output node is represented by an n-length vector, e.g. a 26-bit localist representation for the letters of the alphabet.
32
Figure 6: The number of decode steps required for a tree with n layers and m nodes is m+(n-1) for RAAM but only m for RAAM. In the above examples, this equates to only 3 decode steps for both trees by B-RAAM, but 10 and 101 steps in the case of RAAM, for the two trees respectively.
33
Figure 7: How B-RAAM learns to represent trees, e.g. XYZ, X(YZ) and (XY)Z. To represent trees using B‑RAAM (or RAAM), the coding scheme for leaf nodes (terminals) must equal the hidden-layer size.
34
Figure 8: Example active and passive sentences.
35

Weights attached to these node are not updated for the word cat

Nodes here not yet created

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

_952183429.doc

Network feedback

Input layer

Output layer

Input nodes

State nodes

Hidden layer

_952258783.doc

Sub-network trained

on word length

associations

Input (next letter)

Output layer

State node delay line

Input layer

Hidden layer

_963141989.doc

1	2

3	4

5	6	7	8

1 …	6

7 …	17

18 …	99

a) 3 layers, 8 terminal nodes:

 B-RAAM = 3 decode steps

 RAAM = 10 (8 + 3 (1) decode steps

b) 3 layers, 99 terminal nodes:

 B-RAAM = 3 decode steps

 RAAM = 101 (99 + 3 (1) decode steps

_960811907.doc

JOHN	LOVE	MICHAEL

IS	LOVE	NIL	BY	JOHN	NIL

MICHAEL

_952242936.doc

COMPOSITION

COMPOSITIO

COMPOSITI

N

Key:

associates with

Encoded hidden representation

External representation

a) Adamson & Damper: Bi-coded recurrent AA

N

COMPOSITIO

COMPOSITIO

N

associates with

b) Pollack: Strict recurrent AA

Input

layer

Output

layer

_952170071.doc

TOP

STACK

STACK

TRAINING

ENVIRONMENT

Feedback

Hidden

Input

Output

TOP

STACK

