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Abstract Thispaperdescribesa multi-spectral, multi-
source approach to the importantproblemof speaker
identification. The widebandspeech signal is filtered
into several sub-bandsand the output time trajectory
of each is individually modeledby linear prediction
cepstral coefficients.Theseindividual modelsare then
matched against referencedata and the scores com-
binedusingthe sumrule of informationfusion,before
usinga k-nearest-neighborrule to decidetheidentified
speaker. Multi-spectral processingis shownto deliver
performanceimprovementsoverwidebandrecognition.
Theoptimalnumberof filters is foundto be16. These
resultsare interpreted in light of the hypothesisthat
the multi-spectral approach solvesthe bias/variance
dilemma of commonlymanifest in systemsthat are
trainedonexampledata.
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1 Intr oduction

Automaticspeaker recognition(ASR), wherebya
computerattemptsto recognizeanindividual from
their voice, is an important,emerging technology
with many potentialapplicationsin commerceand
business,security, surveillance etc. This paper
is concernedwith the applicationof moderndata
engineeringtechniquesto the problem of ASR.
The main ideahereis the useof a multi-spectral
approach,in which the widebandacousticsignal
is pre-processedby a bank of bandpassfilters to
give a setof time-varyingoutputs– so-calledsub-
bandsignals.Becausethesetime trajectoriesvary

slowly relative to thewidebandsignal,theproblem
of representingthemby somedatamodelshould
be simplified. A major goal for this paperis to
testif this is so,andif so,to determinetheoptimal
numberof sub-bands.Sincewe now have several
time trajectoriesto considerratherthan just one,
the questionarisesof how to (re)combineor fuse
the informationin each,to reachan overall deci-
sionaboutspeaker identity.

Theremainderof thepaperis organizedasfol-
lows. Section2 providesa motivationfor research
into recognition. Section3 introducesthe multi-
spectralaspectof the recognitionsystemand in-
cludesfuller discussionon thepossiblebenefitsto
an identificationsystem. In section4, the com-
ponentpartsof the baselinemulti-spectralsystem
whichprovidesthefoundationfor thisresearchare
describedin turn. Finally, section6 concludeswith
discussionof the issuesraisedby multi-spectral
recognitionand somepossibleavenuesof future
work.

2 Speaker Recognition

Recognitioncan be divided into speaker verifi-
cation and speaker identification tasks, each of
which may in turn be text-independentor text-
dependent[1, 2]. In verification,thereis anab ini-
tio claim aboutspeaker identity, andthe aim is to
determineif agivenutterancewasproducedby the
claimedspeaker. This is doneby testingthemodel
of theclaimedspeaker againsttheutterance,com-
paringthescoreto athreshold,anddecidingonthe
basisof this comparisonwhetheror not to accept



the claimant. In identification,thereis no ab ini-
tio identity claim, and the systemmust typically
decidewho thepersonis, or that thepersonis un-
known.

In text-independentrecognition, there are no
limits on the vocabulary employed by speakers.
This is in contrastto text-dependentrecognition,
where the presentedutterancemust be from a
set of predeterminedwords or phrases.As text-
dependentrecognitiononly modelsthespeaker for
a limited set of phonemesin a fixed context, it
generallyachieves higher recognitionrates than
text-independentrecognition,which mustmodela
speaker for avarietyof phonemesandcontexts.

Speaker recognitionis anexampleof biometric
personalidentification[3]. Biometric techniques
basedon intrinsic characteristics(suchas voice,
finger prints, retinal patterns)have an advantage
over artifactsfor identification(keys, cards,pass-
words)becausebiometricattributescannotbelost
or forgotten. Biometric techniquesare generally
believedto offerareliablemethodof identification,
sinceall peopleare physically different to some
degree. Automaticspeaker identificationandver-
ification areoftenconsideredto be themostnatu-
ral andeconomicalmethodsfor avoidingunautho-
rizedaccessto physicallocationsor computersys-
tems[1]. Thanksto the low costof microphones
andtheuniversaltelephonenetwork, theonly cost
for a speaker recognitionsystemmaybe the soft-
ware.

In thispaper, weareprimarily interestedin text-
dependentidentification. Successdependson ex-
tractingandmodelingthespeaker-dependentchar-
acteristicsof the speechsignal which can effec-
tively distinguishonetalker from another.

Figure1 shows the structureof a typical, sim-
ple identificationsystem.In general,identification
consistsof fivesteps:

� digital speechdataacquisition

� featureextraction

� patternmatching

� identificationdecision

� enrollmentto generatereferencemodelsof
eachspeaker

Initially, theacousticsoundpressurewave from
an unknown speaker is transformedinto an ana-
log signalby a microphoneor telephonehandset.
The analogsignal is thenpassedthroughan anti-
aliasingfilter beforebeingsampledto form adigi-
tal signalby ananalog-to-digitalconverter.

In featureextraction,eachframeof speech(typ-
ically spanning10–30msof thespeechwaveform)
is mappedinto a multidimensionalfeaturespace
creatinga sequenceof featurevectorsxi . This
sequenceis comparedto existing speaker mod-
els,createdduring theenrollmentstep,by pattern
matching,resultingin a matchscorezi for eachof
thespeaker models.Thematchscoregivesan in-
dicationof thesimilarity betweenthesequenceof
vectorsandthemodelsof all theknown speakers.
The last stepconsistsof a decisionas to speaker
identity. Beforeuse,speakers mustenroll on the
system. During enrollment,speaker modelsare
createdfor all authorizedusersandstoredfor later
referenceduringidentification.

3 Multi-Spectral Processing

In a seminalandinfluential paper, Allen [4] pop-
ularizedthe earliernotionof Harvey Fletcherthat
thedecodingof speechsignalsby humansis based
on decisionsin narrow frequency bandsthat are
processedindependentlyof eachother. Decisions
fromthesefrequency bandsarecombinedsuchthat
theglobalerror rateis equalto theproductof the
band-limitederrorrateswithin theindependentfre-
quency channels.Thismeansthatif any frequency
bandyields a zero(or low) error ratethenthe re-
sultingglobalerrorratewouldalsobezero(or very
low), regardlessof theerrorratesof theremaining
bands. While this hascometo be known as the
Fletcher-Allen principle,Allen himself refersto it
as“the Stewart-Fletchermultiindependentchannel
model” (p.572). He further characterizesthe ap-
proachas“across-time”ratherthanthemoreusual
“across-frequency” processing(p.575)typified by
templatematchingin automaticspeechrecogni-
tion. In this paper, we will refer to this asmulti-
spectral processing.

The positive benefitsof this new approachto
speechrecognitionare startingto be investigated
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Figure1: Block diagramof a typicalspeaker-identification system.

andreported[5, 6, 7, 8]. Thereareseveralcogent
reasonswhy it might alsoprofitablybeappliedto
speaker recognition:

� The deleteriouseffect of narrow-bandnoise
may be reduced. If noiseonly affectssome
frequency bands,then the remaining(clean)
bandsshouldcarry sufficient information to
allow thecorrectdecisionstill to bereached.
This follows from the (idealized)Fletcher-
Allen principle accordingto which only one
error-free bandis requiredfor correctrecog-
nition.

� Certain bands may contain more speaker-
specificinformation than others. Weighting
theseto emphasizetheir contribution to the
overallscoreshouldleadto betterrecognition
rates.In fact,somebandsmight bebetterfor
somespeakers than others,so that speaker-
specificweightingduringthe informationfu-
sion– or (re)combination– stagemaybepos-
sible.Note,however, thatthisassumesaform
of fusion in which weightingcanbesensibly
done.(If, for instance,combinationis bymul-
tiplicationof scores,thenweightinghasnoef-
fect.)

� Successfulrecognitioncritically dependson
building goodspeaker modelsfrom thetrain-
ing data. Datamodeling,however, is subject

to thewell-known bias/variancedilemma[9].
Accordingto this, modelswith too many ad-
justableparameters(relative to theamountof
trainingdata)will tendto overfit thedata,ex-
hibiting high variance,andsowill generalize
poorly. On the otherhand,modelswith too
few parameterswill be over-regularized,or
biased,andsowill be incapableof fitting the
inherentvariability of thedata.Multi-spectral
processingoffers a practicalsolution to the
bias/variancedilemmaby replacinga large,
unconstraineddatamodelingproblemby sev-
eral smaller (and hencemore constrained)
problems. Empirical supportfor this notion
in thespecificcontext of speaker recognition
comesfrom the work of Reynolds[10], who
writes: “giving too muchspectralresolution
will degradeperformanceby modelingspuri-
ous spectraleventsor introducingtoo many
parametersto betrained”(p.642).

Thereare,however, several practicalissuesto be
resolved before theseadvantagesmight be real-
ized:

� The number, width and location of the fre-
quency bandsmustbeoptimized.Sub-bands
designedfor speechrecognitionmay not be
suitablefor speaker recognition: it may be
that the frequency division should best be



doneon a speaker-specificbasisfor speaker
recognition.

� Someknowledgeis requiredof which bands
containthemostspeaker-dependentinforma-
tion. Thescoresfrom thesebandsmight then
beemphasizedto improve recognition.

� The featuresto be usedfor recognitionmust
be decided. Again, featuresdesignedfor
speechrecognitionmay not be suitablefor
speaker recognition[2]. It is also possible
that featureswhich areappropriatefor wide-
bandspeaker recognitionarelesssofor multi-
spectralprocessing.

To date,relatively few workershavestudiedthis
problem. In the conferenceliterature,[11], [12],
[13] and[14] have all presentedempiricalresults
which confirm that worthwhile performancead-
vantagescan be gainedfrom multi-spectralpro-
cessingin speaker recognition. Taken together,
however, theseprior worksdo not cover anything
like the full rangeof implementationoptions,so
thatmany of theaforementionedquestionsremain
open.Further, thereis still only a rudimentaryun-
derstandingof multi-spectralprocessing– andpre-
ciselyhow it deliversperformanceimprovements–
from a theoreticalperspective.

4 Identification System

This section describesthe different components
thatmake up theidentificationsystem.

4.1 Database

The text-dependentMillar databasefrom British
Telecomwas specifically designedand recorded
for text-dependentspeaker recognitionstudies. It
consistsof 43 maleand14 femalenative English
speakerssayingthedigitsoneto nine, zero, nought
andoh 25 timeseach. Recordingsweremadein
five sessionsspacedover threemonths,to capture
thevariationin speakers‘voicesovertimewhichis
oneof themostimportantaspectsof speakerrecog-
nition [15]. The speechwasrecordeddigitally in
a quiet environment using a high-quality micro-
phone,anda samplingrateof 20kHz with 16bit

resolution.The databasewasalsomadeavailable
at an 8kHz samplingrate. In this version, the
speechhasbeenband-passedto telephonequality
and then downsampled. Only this latter version
wasused.

For the experiments,12 male speakers were
usedsayingthewordseven. Thefirst two sessions
(i.e. 10 repetitionsof seven) were usedas refer-
encesand the remainingthreesessions(15 repe-
titions)wereusedfor testing.

4.2 Sub-BandProcessing

The widebandsignalwassplit into variousnum-
bers of sub-bands. Filters were simple second-
order Butterworth, spacedon the psychophysical
mel scale[16], coveringthefrequency rangeup to
3,600Hz. Thereare many possiblefeaturesthat
can be extractedfrom a speechsignal, e.g. fun-
damentalfrequency, formantfrequencies,andlin-
ear predictor (LP) coefficients. For recognition
purposes,it is importantto usea featureset that
maximally discriminatesbetweenspeakers. In
this research,the feature set is basedon cep-
stral coefficients. Cepstralanalysisis motivated
by, and was designedfor, problemscenteredon
voiced speech[17] but also works well for un-
voiced sounds. Cepstralcoefficients have been
usedextensively asthe featuresin speaker recog-
nition [18, 19]. This is becausea simplerecursive
relation(seebelow) canbe usedto transformthe
LP coefficientsinto cepstralcoefficients.

The time trajectoriesin each sub-bandwere
modeledusingan analysisframeof 20ms, Ham-
ming windowed and overlapping by 50%, and
12thorderlinearprediction[20]. Thesewerethen
usedtocreatecepstralcoefficientsvia therecursion
describedby Atal [21]. That is, the LP cepstrum
(or pseudo-cepstrum)is used,ratherthantheorig-
inal (power or complex) cepstrumwhichwouldbe
obtainedfrom Fourieranalysis.

4.3 Pattern Matching

A popularmethodof patternmatchingin speaker
recognitionsystemsuses‘templates’. The input
signal is representedas a seriesof featurevec-
tors that characterizethe speechof a particular
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Figure2: Typical DTW plot, illustrating the opti-
malwarppathmappingthetesttimeaxisn into the
referencetimeaxism.

speaker [22]. This time-orderedset of features
constitutesthetemplate.Evenif thesamespeaker
utters the sameword on different occasions,the
durationchangeseachtime with nonlinearexpan-
sion and contraction. Therefore, any template
matchingalgorithmneedsto beableto copewith
this: we use the popular techniqueof dynamic
time warping(DTW) becauseof its ability to han-
dle nonlineartime scalevariations. It combines
alignmentanddistancecomputationthrougha dy-
namicprogrammingprocedure[23]. It is normal
to usetheEuclideandistancemeasurewhenwork-
ing with cepstralcoefficients.Figure2 depictsthe
DTW procedureschematically.

4.4 Fusion

Kittler, Hatef, Duin, andMatas[24] recentlyde-
velopedacommontheoreticalframework for com-
bining classifierswhich usedistinctpatternrepre-
sentations. They outlined a numberof possible
combinationschemessucha product,sum, min,
max,andmajority vote rules,andcomparedtheir
performanceempirically using two different pat-
ternrecognitionproblems.Kittler et al. foundthat
thesumruleoutperformedtheotherclassifiercom-
bination schemes.This surprisedthem, because
thestatisticalassumptionsunderlyingthis rule are

strongerthan,say, thosefor theproductrule andit
is clearthattheseassumptionsdonotholdwell.

To explain this empiricalfinding, they investi-
gatedthesensitivity of variousschemesto estima-
tionerrors.Theiranalysisshowedthatthesumrule
is themostresilientto estimationerrors,soalmost
certainlyexplainingits superiorperformance.Ac-
cordingly, thesumrule is used,at leastinitially, for
combinationpurposesin this researchwhile rec-
ognizingthat this is oneareawhich could benefit
from further researchby investigatingother rules
andmethodsof combination.

4.5 DecisionRule

Thereare 15 test utterancesper speaker, eachof
whichis matchedto the10referenceutterancesfor
all 12speakers– atotalof 120comparisons.These
are thenranked (closestmatchesfirst) and the k-
nearest-neighborrule appliedwith k � 5. That is,
thespeaker maximally representedamongthe top
fiverankingmatchesis declaredto betheidentified
person.

5 Results

To investigatethe benefitsof multi-spectralpro-
cessing,aswell asansweringthe questionof the
optimal numberof sub-bands,we have collected
identificationresultsasthenumberof filtersvaries
from 2 to 24. For comparison,recognition was
performedusingthewideband(unfiltered)speech
signalalso.Figure3 displaystheresults.

It is clearthat a multi-spectralrecognitionsys-
tem can perform better than one using just the
widebandsignal. Using the widebandspectrum,
thesystemachieved85%recognitionrate.By con-
trast, the best-performingmulti-spectralsystem,
using16mel-spacedsub-bands,produceda recog-
nition rateof 96%.This is a veryconsiderableim-
provement.

Using a small numberof filters ( � 6� ), perfor-
mancewasgenerallyworsethanthewidebandsys-
tem. Thereasonfor this is currentlyunknown, but
we conjecturethat too muchspectralenergy is re-
movedby thefilterbank,i.e. theregionsof overlap
betweenadjacentfilters aretoo wide. Conversely,
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Figure3: Percentageof correctidentificationsfor
differentnumbersof mel-spacedsub-bands(* in-
dicateswideband).

it is possibleto have toomany filters. Performance
reduceswhen thereat 20 filters or more. We at-
tributethisto attemptingto fit toomany parameters
in thedatamodelsdescribingeachspeaker.

Fromtheperspective of time-frequency duality,
it seemsintuitively reasonablethatthereshouldbe
somesuchtrade-off. With a small numberof fil-
ters, we will be attemptingto fit the time trajec-
tories too closely, having only a few parameters
to do so. With a large numberof filters, we will
be attemptingto fit the frequency distribution too
closelybut with moreparametersthancanbe re-
liably estimatedfrom the data. There is an in-
terestingconvergencewith Allen’s comment[4]:
“It hasbeenreported. . . that10 bandsis too few,
and 30 bandsgives no improvementin accuracy
over 20” (p.572).

6 Discussionand Conclusions

The results highlight the advantageof a using
multi-spectralapproachtospeakerrecognition.We
believe that the approachoffers a practicalsolu-
tion to thebias/variancedilemmamanifestin train-
ablesystems,andso leadsto improveddatamod-
eling. The problemof fitting parametersto train-
ing data is constrainedby requiring them to be
moreor lessuniformly deployedacrossfrequency.
Although multi-spectralprocessingincreasesper-
formance,thereis a limit to how many sub-bands

canbeusedbeforeperformancestartsto decrease.
Here,it seemsthat16 is theoptimalnumber. This
finding is interpretedin data-modelingtermsasre-
flecting an attemptto fit too many parametersfor
theavailabletrainingdata. By contrast,thewide-
bandapproach(or useof a small numberof fil-
ters)attemptsdatamodelingwith too few, uncon-
strainedparameters.

The traditional approachto identification has
beento basethe developmentof recognitionsys-
temson a priori knowledge.Theprior knowledge
hasbeenapplied to such things as choosingthe
typeandnumberof featureparametersanddeter-
mining the patternmatchingmethodto use. Cur-
rent speaker identification systemsproducerea-
sonableresultsbut still lack the necessaryperfor-
manceif they areto beusedroutinelyby thegen-
eral public. Furui has listed 16 open questions
about speaker recognitionwhich needto be ad-
dressedif performanceis to be improved. One
of theseconcernsthe selectionof featureparam-
eters:commonlycepstral(or deltacepstral)coef-
ficients. Theseareemployed principally (or only)
becausethey arefamiliar from their usein speech
recognition. Hence,they may not optimally dis-
criminatebetweendifferent speakers. From this
perspective, thereseemsmuchto be gainedfrom
automatic(data-driven)selectionof features– and
otherarchitecturalparameters.

Futurework will look at possiblewaysof im-
plementinga data-driven strategy for numberand
placementof the filters, andfor automaticallyde-
termining the type and numberof featuresto be
usedin eachsub-band.We will alsoexploreother
combinationschemesandwill extendthework to
speaker verification. Finally, we proposea direct
testof our hypothesisof improveddatamodeling,
by varying the numberof parametersfitted in the
differentfiltering scenarios.
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