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Abstract Thispaperdescribes multi-spectal, multi-
souice appmoad to the important problemof spealer
identification. The widebandspeet signal is filtered
into several sub-bandsand the outputtime trajectory
of ead is individually modeledby linear prediction
cepstal coeficients. Thesendividual modelsare then
matded against refelence data and the scoes com-
bined usingthe sumrule of informationfusion, before
usinga k-nearest-neighborule to decidetheidentified
spealer. Multi-spectal processings shownto deliver
performancemprovement®ver widebandrecanition.
The optimal numberof filters is foundto be 16. These
resultsare interpretedin light of the hypothesisthat
the multi-spectal approacd solvesthe bias/variance
dilemma of commonlymanifestin systemsthat are
trainedon exampledata.

Keywords: spealer recognition,feature-setonstruc-
tion, multi-spectrafusion

1 Intr oduction

Automaticspealer recognition(ASR), wherebya
computerattemptgo recognizeanindividual from
their voice, is an important,emeging technology
with mary potentialapplicationdn commerceand
business,security suneillance etc. This paper
is concernedvith the applicationof moderndata
engineeringtechniquesto the problem of ASR.
The mainideahereis the useof a multi-spectral
approachjn which the widebandacousticsignal
is pre-processetly a bank of bandpasdilters to
give a setof time-varying outputs— so-calledsub-
bandsignals.Becausdhesetime trajectoriesvary

slowly relative to thewidebandsignal ,theproblem
of representinghem by somedatamodel should
be simplified. A major goal for this paperis to
testif thisis so,andif so,to determingheoptimal
numberof sub-bands Sincewe now have several
time trajectoriesto considerratherthanjust one,
the questionarisesof how to (re)combineor fuse
the informationin each,to reachan overall deci-
sionaboutspeakr identity.

The remainderof the paperis organizedasfol-
lows. Section2 providesa motivationfor research
into recognition. Section3 introducesthe multi-
spectralaspectof the recognitionsystemand in-
cludesfuller discussioron the possiblebenefitsto
an identificationsystem. In section4, the com-
ponentpartsof the baselinemulti-spectralsystem
which providesthefoundationfor thisresearclare
describedn turn. Finally, sectioné concludesvith
discussionof the issuesraisedby multi-spectral
recognitionand somepossibleavenuesof future
work.

2 Spealer Recognition

Recognitioncan be divided into spealer verifi-
cation and speakr identification tasks, each of
which may in turn be text-independenor text-
dependenfd, 2]. In verification,thereis anab ini-
tio claim aboutspealer identity, andthe aim is to
determinef agivenutterancevasproducedy the
claimedspeakr. Thisis doneby testingthe model
of the claimedspeakr againsthe utterancecom-
paringthescoreto athresholdanddecidingonthe
basisof this comparisorwhetheror not to accept



the claimant. In identification,thereis no ab ini-
tio identity claim, and the systemmust typically
decidewho the personis, or thatthe personis un-
known.

In text-independentrecognition, there are no
limits on the vocahlulary emplo/ed by spealkers.
This is in contrastto text-dependentecognition,
where the presentedutterancemust be from a
setof predeterminedvords or phrases. As text-
dependentecognitiononly modelsthe spealker for
a limited set of phonemesn a fixed contet, it
generally achieves higher recognition rates than
text-independentecognition which mustmodela
speakr for avariety of phonemesindcontexts.

Speakr recognitionis an exampleof biometric
personalidentification[3]. Biometric techniques
basedon intrinsic characteristic§such as voice,
finger prints, retinal patterns)have an advantage
over artifactsfor identification(keys, cards,pass-
words)becausdiometricattributescannotbe lost
or forgotten. Biometric techniquesare generally
believedto offer areliablemethodof identification,
sinceall peopleare physically differentto some
degree. Automaticspeakr identificationandver
ification areoften consideredo be the mostnatu-
ral andeconomicamethodgor avoiding unautho-
rizedaccesso physicallocationsor computersys-
tems[1]. Thanksto the low costof microphones
andthe universaltelephonenetwork, the only cost
for a spealer recognitionsystemmay be the soft-
ware.

In this papeywe areprimarily interestedn text-
dependenidentification. Successlependn ex-
tractingandmodelingthe speakr-dependenthar
acteristicsof the speechsignal which can effec-
tively distinguishonetalker from another

Figure 1 shaws the structureof a typical, sim-
ple identificationsystem.In generaljdentification
consistf five steps:

o digital speecltdataacquisition

featureextraction

patternmatching
¢ identificationdecision

¢ enrolimentto generatereferencemodels of
eachspealer

Initially, theacousticsoundpressuravave from
an unknavn spealer is transformedinto an ana-
log signalby a microphoneor telephonehandset.
The analogsignalis then passedhroughan anti-
aliasindfilter beforebeingsampledo form a digi-
tal signalby ananalog-to-digitatonverter

In featureextraction,eachframeof speecHtyp-
ically spannindgl0—30msof thespeectwaveform)
is mappedinto a multidimensionalfeaturespace
creatinga sequenceof featurevectorsx;. This
sequencds comparedto existing speakr mod-
els, createdduring the enrollmentstep,by pattern
matching resultingin a matchscorez; for eachof
the speakr models. The matchscoregivesanin-
dicationof the similarity betweernthe sequencef
vectorsandthe modelsof all the knovn spealers.
The last stepconsistsof a decisionasto speakr
identity Beforeuse,spealkrs mustenmoll on the
system. During enrollment, speakr modelsare
createdor all authorizedusersandstoredfor later
referencaluringidentification.

3 Multi-Spectral Processing

In a seminalandinfluential papey Allen [4] pop-
ularizedthe earliernotion of Harvey Fletcherthat
thedecodingof speeclsignalsby humangs based
on decisionsin narrav frequeng bandsthat are
processedhdependenthof eachother Decisions
fromthesdrequenyg bandsarecombinedsuchthat
the global errorrateis equalto the productof the
band-limitederrorrateswithin theindependenfre-
queng channelsThis meanghatif ary frequenyg
bandyields a zero (or low) errorratethenthe re-
sultingglobalerrorratewould alsobezero(or very
low), regardlesf theerrorratesof theremaining
bands. While this hascometo be known asthe
FletcherAllen principle, Allen himselfrefersto it
as“the Stewart-Fletchemultindependenthannel
model” (p.572). He further characterizeshe ap-
proachas“across-time’ratherthanthemoreusual
“across-frequeng processindp.575)typified by
templatematchingin automaticspeechrecogni-
tion. In this paper we will referto this as multi-
spectal processing

The positive benefitsof this new approachto
speechrecognitionare startingto be investigated
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Figurel: Block diagramof atypical speakr-identification system.

andreported?5, 6, 7, 8]. Thereareseveralcogent
reasonavhy it might also profitably be appliedto
spealer recognition:

to thewell-known bias/variancedilemma[9].
Accordingto this, modelswith too mary ad-
justableparametergrelative to the amountof

trainingdata)will tendto overfit the data,ex-
e The deleteriouseffect of narrav-band noise

may be reduced. If noiseonly affects some
frequeng bands,thenthe remaining(clean)
bandsshouldcarry sufiicient information to

allow the correctdecisionstill to bereached.
This follows from the (idealized) Fletcher

Allen principle accordingto which only one

errorfree bandis requiredfor correctrecog-
nition.

Certain bands may contain more speakr-
specificinformation than others. Weighting
theseto emphasizeheir contritution to the
overall scoreshouldleadto betterrecognition
rates.In fact,somebandsmight be betterfor
somespeakrs than others, so that spealker-
specificweightingduring the informationfu-
sion—or (re)combination- stagemaybe pos-
sible. Note,however, thatthisassumeaform
of fusionin which weightingcanbe sensibly
done.(If, for instancecombinatioris by mul-
tiplicationof scoresthenweightinghasnoef-
fect.)

Successfulecognitioncritically dependson
building goodspealkr modelsfrom thetrain-
ing data. Datamodeling,however, is subject

hibiting high variance andsowill generalize
poorly. On the otherhand, modelswith too
few parameterill be overregularized,or
biasedandsowill beincapableof fitting the
inherentvariability of the data.Multi-spectral
processingoffers a practical solutionto the
biashariancedilemmaby replacinga large,
unconstrainedatamodelingproblemby sev-
eral smaller (and hence more constrained)
problems. Empirical supportfor this notion
in the specificcontext of spealer recognition
comesfrom the work of Reynolds[10], who
writes: “giving too much spectralresolution
will degradeperformancéoy modelingspuri-
ous spectraleventsor introducingtoo mary
parameter$o betrained” (p.642)

Thereare, however, several practicalissuesto be
resoled before theseadwantagesmight be real-
ized:

The number width and location of the fre-
gueny bandsmustbe optimized. Sub-bands
designedfor speechrecognitionmay not be
suitablefor spealer recognition: it may be
that the frequeng division should best be



doneon a speakr-specificbasisfor spealer
recognition.

e Someknowledgeis requiredof which bands
containthe mostspeakr-dependeninforma-
tion. The scoresrom thesebandsmightthen
beemphasizetb improve recognition.

e Thefeaturesto be usedfor recognitionmust
be decided. Again, featuresdesignedfor
speechrecognitionmay not be suitablefor
speakr recognition[2]. It is also possible
thatfeatureswhich are appropriatefor wide-
bandspeakrrecognitionarelesssofor multi-
spectraprocessing.

To date relatively few workershave studiedthis
problem. In the conferencditerature,[11], [12],
[13] and[14] have all presente@mpirical results
which confirm that worthwhile performancead-
vantagescan be gainedfrom multi-spectralpro-
cessingin speakr recognition. Taken together
however, theseprior works do not cover arything
like the full rangeof implementationoptions, so
thatmary of the aforementionedjuestiongemain
open.Further thereis still only arudimentaryun-
derstandingf multi-spectraprocessing-andpre-
ciselyhow it deliversperformancémprovements-
from atheoreticaberspectie.

4 ldentification System

This sectiondescribesthe different components
thatmalke up theidentificationsystem.

4.1 Database

The text-dependentMillar databasdrom British
Telecomwas specifically designedand recorded
for text-dependenspealer recognitionstudies. It
consistsof 43 maleand 14 femalenative English
speakrssayingthedigits oneto nine zeo, nought
and oh 25 timeseach. Recordingswvere madein
five sessionspacedver threemonths,to capture
thevariationin spealers' voicesovertime whichis
oneof themostimportantaspect®f speakrrecog-
nition [15]. The speechwasrecordeddigitally in
a quiet ervironmentusing a high-quality micro-
phone,anda samplingrate of 20kHz with 16bit

resolution. The databasevasalsomadeavailable
at an 8kHz samplingrate. In this version, the
speechthasbeenband-passetb telephonequality
and then downsampled. Only this latter version
wasused.

For the experiments,12 male speakrs were
usedsayingtheword seven Thefirst two sessions
(i.e. 10 repetitionsof sever) were usedas refer
encesand the remainingthreesessiong15 repe-
titions) wereusedfor testing.

4.2 Sub-BandProcessing

The widebandsignal was split into variousnum-
bers of sub-bands. Filters were simple second-
order Butterworth, spacedon the psychophysical
mel scale[16], coveringthefrequeng rangeup to
3,600Hz. Thereare mary possiblefeaturesthat
can be extractedfrom a speechsignal, e.g. fun-
damentafrequenyg, formantfrequenciesandlin-
ear predictor (LP) coeficients. For recognition
purposesit is importantto usea featuresetthat
maximally discriminatesbetweenspeakrs. In
this research,the feature set is basedon cep-
stral coeficients. Cepstralanalysisis motivated
by, and was designedfor, problemscenteredon
voiced speech[17] but also works well for un-
voiced sounds. Cepstralcoeficients have been
usedextensiely asthe featuresin speakr recog-
nition [18, 19]. Thisis because simplerecursie
relation (seebelov) canbe usedto transformthe
LP coeficientsinto cepstrakoeficients.

The time trajectoriesin each sub-bandwere
modeledusing an analysisframe of 20ms, Ham-
ming windowed and overlapping by 50%, and
12thorderlinear prediction[20]. Thesewerethen
usedo createcepstratoeficientsviatherecursion
describedby Atal [21]. Thatis, the LP cepstrum
(or pseudo-cepstruni$ used ratherthanthe orig-
inal (power or comple) cepstrumwhich would be
obtainedrom Fourieranalysis.

4.3 Pattern Matching

A popularmethodof patternmatchingin spealer
recognitionsystemsuses‘templates’. The input
signal is representeds a seriesof featurevec-
tors that characterizethe speechof a particular
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Figure2: Typical DTW plot, illustrating the opti-
malwarppathmappingthetesttime axisn into the
referencdime axism.

speakr [22]. This time-orderedset of features
constituteghetemplate.Evenif the samespealker

uttersthe sameword on different occasionsthe
durationchangesachtime with nonlinearexpan-
sion and contraction. Therefore, ary template
matchingalgorithmneedsto be ableto copewith

this: we use the popular techniqueof dynamic
time warping(DTW) becausef its ability to han-
dle nonlineartime scalevariations. It combines
alignmentanddistancecomputatiorthrougha dy-

namic programmingprocedurg23]. It is normal
to usethe Euclideandistancemeasuravhenwork-

ing with cepstralcoeficients. Figure2 depictsthe
DTW procedureschematically

4.4 Fusion

Kittler, Hatef, Duin, and Matas[24] recentlyde-
velopedacommontheoreticaframevork for com-
bining classifierswhich usedistinct patternrepre-
sentations. They outlined a numberof possible
combinationschemessucha product, sum, min,
max, and majority vote rules,and comparedheir
performanceempirically using two different pat-
ternrecognitionproblems Kittler etal. foundthat
thesumrule outperformedheotherclassifiercom-
bination schemes. This surprisedthem, because
the statisticalassumptionsinderlyingthis rule are

strongerthan,say thosefor the productrule andit
is clearthattheseassumptionslo not hold well.

To explain this empirical finding, they investi-
gatedthe sensitvity of variousschemeso estima-
tionerrors.Theiranalysisshavedthatthesumrule
is themostresilientto estimationerrors,soalmost
certainlyexplainingits superiorperformanceAc-
cordingly thesumruleis used atleastinitially, for
combinationpurposesn this researchwhile rec-
ognizingthatthis is oneareawhich could benefit
from further researchy investigatingotherrules
andmethodsf combination.

45 DecisionRule

Thereare 15 test utteranceger speakr, eachof

whichis matchedo the 10referencautterancesor

all 12 spealkrs—atotal of 120comparisonsThese
arethenranked (closestmatchedfirst) andthe k-

nearest-neighbaule appliedwith k = 5. Thatis,

the speakr maximally representedmongthe top

fiverankingmatchess declaredo betheidentified
person.

5 Results

To investigatethe benefitsof multi-spectralpro-

cessingaswell asansweringthe questionof the

optimal numberof sub-bandswe have collected
identificationresultsasthe numberof filters varies
from2to24. For comparison,recognitionwas

performedusingthe wideband(unfiltered)speech
signalalso.Figure3 displaystheresults.

It is clearthata multi-spectralrecognitionsys-
tem can perform better than one using just the
widebandsignal. Using the widebandspectrum,
thesystemachiezed85%recognitionrate. By con-
trast, the best-performingmulti-spectralsystem,
using16 mel-spacedub-bandsproducedarecog-
nition rateof 96%. This is a very considerablém-
provement.

Using a small numberof filters (< 6)), perfor
mancewasgenerallyworsethanthewidebandsys-
tem. Thereasorfor thisis currentlyunknavn, but
we conjecturghattoo muchspectralenegy is re-
movedby thefilterbank,i.e. theregionsof overlap
betweeradjacenfilters aretoo wide. Corversely
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it is possibleto have too mary filters. Performance
reduceswhenthereat 20 filters or more. We at-
tributethisto attemptingo fit toomary parameters
in the datamodelsdescribingeachspealer.

Fromthe perspectie of time-frequeng duality,
it seemsntuitively reasonabl¢hatthereshouldbe
somesuchtrade-of. With a small numberof fil-
ters, we will be attemptingto fit the time trajec-
tories too closely having only a few parameters
to do so. With a large numberof filters, we will
be attemptingto fit the frequeng distribution too
closelybut with more parametershancanbe re-
liably estimatedfrom the data. Thereis an in-
terestingcorvergencewith Allen’s comment[4]:
“It hasbeenreported... that10 bandsis too few,
and 30 bandsgives no improvementin accurag
over20” (p.572).

6 Discussionand Conclusions

The results highlight the adwantageof a using
multi-spectrabpproacho speakrrecognition.We
believe that the approachoffers a practical solu-
tion to thebiashariancedilemmamanifestin train-
ablesystemsandsoleadsto improved datamod-
eling. The problemof fitting parameterso train-
ing datais constrainedby requiring them to be
moreor lessuniformly deplo/ed acrossrequeng.
Although multi-spectralprocessingncreaseper
formance thereis a limit to how mary sub-bands

canbe usedbeforeperformancestartsto decrease.
Here,it seemghat 16 is the optimalnumber This
findingis interpretedn data-modelingermsasre-
flecting an attemptto fit too mary parametergor
the availabletraining data. By contrastthe wide-
band approach(or use of a small numberof fil-
ters)attemptsdatamodelingwith too few, uncon-
strainedparameters.

The traditional approachto identification has
beento basethe developmentof recognitionsys-
temson a priori knowledge. The prior knowledge
hasbeenappliedto suchthings as choosingthe
type andnumberof featureparametersind deter
mining the patternmatchingmethodto use. Cur-
rent speakr identification systemsproducerea-
sonableresultsbut still lack the necessarperfor
manceif they areto be usedroutinely by the gen-
eral public. Furui haslisted 16 open questions
aboutspealkr recognitionwhich needto be ad-
dressedf performances to be improved. One
of theseconcernshe selectionof featureparam-
eters:commonlycepstral(or deltacepstral)coef-
ficients. Theseareemplg/ed principally (or only)
becausehey arefamiliar from their usein speech
recognition. Hence,they may not optimally dis-
criminate betweendifferent speakrs. From this
perspectie, thereseemamuchto be gainedfrom
automatiddata-diwen) selectionof features- and
otherarchitecturaparameters.

Futurework will look at possibleways of im-
plementinga data-dwen stratgy for numberand
placemenbf thefilters, andfor automaticallyde-
termining the type and numberof featuresto be
usedin eachsub-bandWe will alsoexploreother
combinationschemesndwill extendthe work to
spealkr verification. Finally, we proposea direct
testof our hypothesiof improved datamodeling,
by varying the numberof parameterditted in the
differentfiltering scenarios.
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