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Abstract—

The categorization of speech sounds by the auditory systenak been a
subject of intense attention over several decades, refleagj its importance
to the scientific study of speech perception and the technajacal develop-
ment of more human-like capabilities in automatic speech reognition. In
previous work, we have firmly established that a two-stage aoputational
model can mimic important aspects of the speech categorizah behav-
ior of human and animal listeners. The first stage employs a biogically-
motivated ‘front-end’, modeling the peripheral auditory system, and the
second stage is a trainable artificial neural network ‘backend’, modeling
more central processes. When suitably trained on synthetistimuli, the
two-stage system is able to reproduce the important effectsf category for-
mation for the class of initial plosive-stop speech soundsind movement of
the category boundary with place of articulation. Appropriate behavior
is maintained across a variety of ‘back-end’ architecturesand associated
learning algorithms. The behavior isemergent in that it was not explicitly
programmed into the model. These facts imply that there is smething very
basic about categorization behavior.

Unlike real (human and animal) listeners, a software model &n be in-
terrogated to find out the contribution of its component parts to the overall
behavior. Replacing the auditory front-end by a more prosa¢ fast Fourier
transform analyzer allows us to focus on the contribution ofthe acoustic-
to-auditory transformation to categorization. We find that the front-end
processor is not essential to category formation but playsraimportant part
in the boundary-movement phenomenon, by emphasizing impaant time-
frequency regions of the speech signal.

I. INTRODUCTION

Speech sound pressure waves impinging on the ear are

jected to a series of mechanical and then neural transforné

tions resulting in the ultimate percept of a linguistic naeps
Hence, understanding speech perception is virtually syno
mous with understanding the staged transformations wigich
late the physically-continuous acoustic stimulation thesgtte
code of phonetic percepts. In particular, in some as yet
known way, the continuous-to-discrete transformatiorctff a
variance reduction such that a variety of physical redtrat

map to the same speech-sound category, with obvious impglr-

tance for effective communication between individualgwudiif-
ferent speech production apparatus. Understanding hashi
achieved is the celebrated ‘speech invariance problemis It

clear that the way speech sounds are categorized by a listen

auditory system is a matter of considerable scientific agterin
the words of Summerfield [1], however:

u

sot on. ac. uk)

“... the relationship between acoustical structure andgieed
phonetic structure is complex and not obviously explaingd b
known properties of the mammalian auditory system.”

while Kuhl and Miller [2] write:

“Ideally, [one would like] experimental methods that somehow
allow one to intervene at various stages of the processing of
sound to observe the restructuring of information that has o
curred at each stage.”

While this intervention is difficult or impossible to acheein
experiments using human or animal listeners, it is immeasur
ably easier “to observe the restructuring of information”ai
software model of auditory processing. For this reason, we
have worked for several years on such models, with a view to
understanding the possible acoustic and auditory basdseof t
categorical perception (CP) of voicing in syllable init&tbp
consonants [3], [4], [5], [6].

In previous work, we have focused on simulated represen-
tations of synthetic speech sounds at the level of the aydito
nerve. Thus, the restructuring of information implicit inet
acoustic input by the peripheral auditory system has beén-an
tegral part of the model. This work has revealed very clearly
that any reasonably general learning system is able to cate-

rize the patterns of simulated auditory nerve activatioa

y which mimics the psychophysical behavior of real listen
f5. The question which then arises, and which we address her
is: how important is the restructuring of information by e

ri’ipheral auditory system to the obtained categorization?

" The remainder of this paper is organized as follows. In Sec-

tion 1l immediately following, we outline our modeling pbs-

n- . : :

ophy. In Section I, we review the important aspects of the p
ception of voicing in syllable-initial consonants, not pbly hu-
man listeners, but by animals and machines (i.e. softwaig mo

s) also. Since the software simulation replicates theoimp

tant aspects of the human and animal data, we describe in Sec-
tion IV an analysis aimed at discovering the auditory fesgur

underpinning this behavior. In Section V, we report the Itesu
removing the front-end of the simulation, so as to asdess t
importance of restructuring of information by the peripieu-

ditory system. Finally, Section VI presents some discusaitd



we remove the auditory front-end — the sensory processirtg pa
Response —and train the ANN on a more direct representation of the-stim
ulus, in order to assess the role of the auditory periphecgain
@ egorization.
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IIl. REAL AND ‘SYNTHETIC' VOT PERCEPTION

Stimulus sonsory becison Resporse It has been known for many years now that the VOT con-
Operation Operation tinuum is perceived ‘categorically’, i.e. perception cbhas
abruptly from ‘voiced’ to ‘unvoiced’ as VOT is increased tni
formly, and discrimination is far better between categotiean
Fig. 1. (a) Two-stage model of the auditory system consjsiira biologically- Within a category. Hence, labeling functions are non-umifo
faithful fi?;?#féognoi gzeaﬂzﬁg?ega;rigigtr?;y S);St::m :gﬁé&cﬁigeurga' and discrimination functions are non-monotonic. An intiigy

ggzgicr)wrg scheme can be usefull); related togt]hpe frameworlgn&lsdetegtion finding IS that such categorlca! behavior is also observewbin .

theory (b) which clearly separates sensory and decisioratipes. human listeners — a result which has usually been taken to ind

cate that categorization is basic to the operation of anaudl-
tory systems rather than relying on the existence of a ‘pticne
conclusions. sub-system specialized for speech perception.

In now-classical work, Kuhl and Miller [2] obtained labaiin
curves for English speakers and for chinchillas in respadase

Artificial neural network (ANN) modeling in the ‘parallel bilabial (/ba-pa/), alveolar (/da-ta/) and velar (/ ga)kstim-
distributed processing’ style [7] and the biologicallytféul uli in which VOT was varied. These revealed labeling func-
modeling of real neural systems [8], [9] are typically sesn dions in which there was a sharp transition from a high num-
orthogonal approaches to the simulation of intelligentvédr. ber of ‘voiced’ judgements to a low number as VOT increased.
The former abstracts away putatively irrelevant compiegiof The functions were well fitted by a probit (sigmoid). Takirmgt
cell electrophysiology and interconnection, allowingteyss of 50% points as the boundaries between voiced and unvoiced cat
practically large size to be studied, but at the expense afi-abegories, there was a phoneme boundary-shift effect witbepla
doning biological fidelity. The latter retains fidelity bubm- of articulation such that the boundary moves from about 25ms
putational complexity dictates that only relatively sma#u- through 35ms to 42 ms as the place of constriction in the vocal
ral systems (of known structure and function) can be consitact moved back from bilabial through alveolar to velars@|l
ered [10]. the chinchillas exhibit boundary values not significaniiffed-

We employ both modeling approaches, treating them as coemt from the humans (although the curves are less steep).
plementary. Exploiting detailed anatomical and physiaaly  In previous work, we have employed ANNs as synthetic lis-
knowledge of the peripheral auditory system, the first statgners. A variety of neural models has been studied: braie-s
of the simulation is a biologically-faithful model of theatrs- in-a-box associative networks [15]; competitive-leagimet-
duction of sound from the pinna to the mammalian auditokyorks[5]; multilayer perceptrons (MLPs) [3], [15] and siag
nerve [11]. The second stage is a trainable ANN which moliyer perceptrons (SLPs) [5]. In all cases reported here,
els essentially unknown details of central auditory sysheme- the ANNSs were perceptrons trained by back-propagation [17]
tion at a high level of abstraction. (See Shamma [12] for edn this earlier work, networks were trained on a neurograpa re
lier, similarly-motivated work in this area.) Figure 1(&josvs resentation of the Abramson and Lisker stimuli.

a schematic representation of this processing scheme and réNeurograms were computed as follows. Stimuli were ap-
lates it to a traditional signal-detection theoretic vievp [13] plied to the auditory model at time= 0 at a simulated level

in which a sensory process produces a (unidimensional vasf 65 dB SPL. The times of firing (‘spikes’) of each of the
ate X which is the basis for subsequent decisions (Figure 1(b§)mulated auditory-nerve fibers were noted. There are 128 of
Signal detection theory is important and relevant here, [14], these and, because of the tonotopic organization of theaaydi
because its clear separation of sensory and decision @peratsystem, each can be associated with a particular ‘center’ fr
focuses attention on the locus of categorization. Thatdesdt quency (CF). Activity befor¢ = 0 is spontaneous, as is that
take place at the sensory stage (so tKas discrete) or at the in channels with CF index 1..8 (for reasons to do with the band
decision stage (so that is continuous)? width of our auditory filters at low frequency). Fuller dészare

Here, X is the (continuous) firing pattern of auditory nervagiven in [3], [11]. (Thanks to the detailed modeling of pheno
activity computed in response to the synthetic speech §timena such as middle-ear transmission, basilar membranendyna
developed by Abramson and Lisker [16] — their so-called @oidcs, mechanical-to-neural transduction, neural tunindy tamo-
onset time (VOT) continuum. The ANN is trained on these patspic organization, rate saturation, two-tone suppressto., it
terns (‘neurograms’) and, hence, acts as a ‘syntheticmkste is possible to demonstrate that our computed responses agre
The perception of the Abramson and Lisker VOT stimuli byery well in all details with the physiological recordings (
human and animal listeners has been much studied and, ascat)} of auditory nerve responses to synthetic /ba/and /ga/s
viewed immediately below, a good deal is known about thigbles (O0ms VOT) by Miller and Sachs [18], as redrawn by
Accordingly, we are able to verify that the two-stage modéta Shamma [19].) Spikes were then counted if1d x 16) anal-
essentially indistinguishably from a real listener. Irstiiork, ysis window stretching froma-25 ms to 95 ms in 10 ms steps in

®)
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Fig. 2. Typical ‘reduced’ neurogram in tH&2 x 16) matrix form presented
to the neural networks: /ba/ stimulus, 40ms VOT. There iy ®gnif- Fjg. 3. Mean output activation versus VOT for MLPs with 2 héaidunits
icant data-reduction relative to a representation whi¢hims the CF and trained on neurograms from 0 ms and 80 ms endpoints. The laoypkhce-
time identity of each spike. ment as a function of place of articulation mimics that seergial’ (human
and animal) listeners.

the time dimension and from 1 to 128 in steps of 8 in the CF di- o

mension. Figure 2 shows a typical such ‘reduced’ neurogrammomentum of 0.7, and a range £0.02 for the initial, random
response to the /ba/ stimulus with 40 ms VOT. We refer to th{§ights; and was terminated when the average squared error p
as ‘reduced’ because there is clearly very considerabkereat training pattern was 0.0025.

duction relative to a representation which retains theviddgial ~ Figure 3 shows typical labeling functions obtained by agera
CF and time identity of each and every spike. Some such #&g outputactivations over the 50 stimulus presentatitmhis
duction is, of course, necessary if the parameters (coiomectcase, there werle = 2 hidden units, but results were insensitive
weights and thresholds) of the ANNs are to be reliably estR the value oh. This is illustrated by Figure 4 in which essen-
mated from limited training data. The reader should nonetHéally the same curves are obtained with single-layer geroas

less bear in mind that all fine timing information has effeety (SLPS) having no hidden units whatsoever=( 0). The form
been eradicated from the inputs to the ANNSs. of these labeling functions was insensitive to the initsaldom

Separate networks were constructed for each of the th%%ight settings for the back-propagation training. Thatas
ing functions like these — with the correct order of bound

stimulus series (bilabial, alveolar and velar). Each had 1§¢ . . . _—
(12 x 16) input units, a variable number)(of hidden units, and &Y shift — were consistently obtained over several repestof

a single output unit (with sigmoidal activation functionjgct as € training. o _ . .
a voiced/unvoiced detector. Figures 3 and 4 closely mimic the labeling functions obtdine

As in the Kuhl and Miller study with chinchillas (which from human and animal listeners, even to the extent of repli-

had to be trained to respond appropriately to the stimuid, tcatmg the shift of category boundary with place of artitigla

MLPs were trained on 50 repetitions of the endpoint stimatcen N the original studies. Thus, the neural model is lglear

(0 and 80 ms VOT) and tested on 50 repetitions of the full ran gpturlng the ‘essence’ of categorical perception. Thetieh

of values (O ms to 80 ms in 10 ms steps), so that generalizat ﬁmergent —itis not explicitly programmed into the simulation

was tested on the intermediate (10ms to 70ms) stimuli. B_%WhiCh strengthgns Fhe feeling _that the_effects are qutt'ze:pa
cause the auditory model is probabilistic in nature (as a rte—e way these stimuli are perceived. Itis surely suggeshise

sult of its simulation of mechanical-to-neural transdotin V<Y S|m|Ia_r results are optalqed from obviously very créfet
the cochlea), stimulus repetition produced non-identizal- human, animal and machine listeners.

rograms. This is convenient, because it allows us to gener-
ate sufficient training data for our purposes. Target ostput

were 1 for the voiced (0 ms VOT) stimuli and O for the unvoiced Unlike real (human and animal) listeners, the computationa
(80ms VOT) stimuli. Training used a learning rate of 0.01, model can be systematically manipulated and probed to-deter

IV. ANALYZING THE MODEL



mean activation mean input (spikes)
50

40

30

20

1 1 1 1 1 1
0 10 20 30 40 50 60 70 80
VOT (ms)

o L L L L L L L
0 10 20 30 40 50 60 70 80

VOT (ms)

—— bilabial —+— alveolar —k— velar

Fig. 4. Mean output activation versus VOT for single-layergeptrons trained Fig. 5. Mean spike-count input for the 5 SLP nodes with makipnaduct of
on neurograms from 0 ms and 80 ms endpoints. input andpositive weight versus VOT for the alveolar series.

mine the basis of its behavior. In this regard, the finding tha sigmoidal activation function as there is in the neural ehod
no hidden units are necessary in order to simulate CP is v&gindicating that categorization behavior is not merelsiaet
important. A major attraction of the single-layer perceptar- consequence of specific details of the ANN architecture.i-Sim
chitecture is that it is straightforward to identify the aseof the lar findings obtain for the bilabial and velar series.
neurogram which contribute to the observed categorizdin A similar plot focusing on the large absolute negative wisgh
havior. That is, all connections are direct from the neuasogr does not reproduce this pattern of variation with VOT: itss e
to the SLP output node, without the complication of inteimgn sentially flat. We conjecture that the role of the negativegives
hidden units. is simply to provide an ‘offset’, reducing the labeling ftiot

A simplified contribution analysis [20] was conducted byo O as necessary in spite of all the inputs (spike countsjgpei
identifying the connections associated with the highesbhlte POsitive. These negatively-weighted lines can conneatyaer
product of input and weight, averaged across all 50 preserﬂépn of the neurogram where there is significant activitychhi
tions of the endpoint patterns and all VOTs. Basing the aimlyremains more or less constant as VOT changes. Generaby, thi
on this product, rather than just the weight values, was doui$ the region of high CF and the period some time after stiswulu
to produce more meaningful results. The analysis congidefnSet.
positive and negative We|ght values Separate|y_ (Note[ﬂ'mt The implication of these results is that categorization loan
input values are spike counts and are always positive.) Higplained in terms of a mechanism by which higher levels ef th
est products of input angositive weight are located aroundauditory system focus on a particular region of auditoryeer
the low-frequency region (the four frequency channels doge time-frequency activity and, in essence, count spikesigr
CF indices 8 to 48 in the model, corresponding to 73 to 675 Hgtlen. But how important is restructuring of information et
just after acoustic stimulus onset where voicing actividyies Peripheral auditory system to this mechanism?
maximally as VOT varies. (This is perhaps not surprisindgnés t
the region of the perceptually important first formahtl{ tran-
sition.) The precise location of this region shifts in theetth ~ The previous section has illustrated the merits of an abroa
nets (bilabial, alveolar, velar) in the same way as the bangnd whereby an artificial neural network is trained on a set ofoeu
point. Averaging the inputs to the 5 SLP nodes with the ldrgegrams obtained from repeated application of end-pointigtim
positive product across all 50 stimuli at each value of VO3-prand is then analyzed to find what it has learned in terms of its
duces the pattern in Figure 5 (depicted for the alveolaesgri connection weights. We can therefore assess the importdnce
This curve is noticeably similar in shape to the curve forthe the auditory front-end by removing it from the simulationeW
modified net, with its characteristic steep labeling fumatiIn note at this point, however, the potentially important fewit
this case, however, there is no thresholding or compressionthere is only one (synthesized) example of each endpomtisti

V. TRAINING ON AN ACOUSTIC REPRESENTATION
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Fig. 6. Output activation versus VOT for single-layer p@trens trained on Fig. 7. Output activation versus VOT for single-layer pgrens trained on

FFT-processed O0ms and 80 ms endpoint stimuli. The boundétyath averaged neurograms for 0 ms and 80 ms endpoint stimuli. ite spthe
place of articulation is abolished. probable under-training, the boundary shift with place iitalation is re-
stored.

lus. Thus, we have very little data on which to train the ANNs, =~ . . )
We return to this matter below. distribution of the data during training. To test the impoite

Since the waveform representations of the stimuli are, b f such factors to correct boundary shift, new sets of trani

cause of their high redundancy, inherently unsuitablerput ata were constructed, consisting of single, averagedrinss

to the neural network, they were pre-processed by fastiﬁourOf the endpoint neurograms. Figure 7 shows a typical reaslt:

transform (FFT). That is, the power spectral densities ef 1§20 be clearly seer, In §p|te of the prqbablg under—tra;rlhug
stimuli were computed using a 256-point fast Fourier trarsf correct bOl_Jndary shift W'th place of qrtlculatlon is restbr The
over 25.6 ms frames (the sampling rate was 10 kHz) centered”éﬁ'r?até??n'fso :ggtitgﬁfi 'St;}r;de:g ilgg%gﬁgtr rc;lesi%rr;m
the 10 ms cell widths previously employed. (The overlap bé— g , y berip ) ysy ' .
tween consecutive frames was (@5 10)/2 = 7.8ms.) Spec- This, however, is contrary to the conclusion of [6]. In this

tral energy was again summed i x 16) analysis window latter work, the spectral energy in the acoustic. signgl (FFT
stretching from—25ms to 95ms in 10 ms steps in the time diprocessed) was evaluated for the same putatively-importan

mension but from 0 to 5kHz in steps of 312.5Hz in the frdime-frequency region as u.seo! inthe spik_e-counting m_cRigL
quency dimension, to form the input to the nets. So, in triecal'® 8 shows the result, _Whlch is a very falr.approxmatlor_hm t
the frequency dimension is divided up linearly (in Hz) ratheCOMect labeling functions, Wlth.approprlate boundaryift
than approximately logarithmically according to CF. except that the category boundaries are too long by abous10 m

Figure 6 shows a typical result for an SLP trained on the FEH ISI;ieatﬁgnjsgluzigcreeoifolf\l/\r/]i?ht:uet fém;rlgt%jr ?ﬁ;rarlorgjp:tnse
processed endpoints. As can be seen, the sharp labeling fdﬁcf) y €d utreg propagat
tion is retained, but the boundary shift is abolished. Ithsge elay through the peripheral auditory system. Althougss thi

therefore, that the auditory front-end — mimicking sengamy- delay is actually a function of frequency, it. does. not deviat

: : X ) X too much from about 10 ms for the frequencies of interest.here
cessing — is essential to the proper simulation of CP. Th ek. t of th tion del Its i
are, however, some important differences between the \ways t axing proper account of the propagation delay resufts i ap
the labeling functions of Figure 6 were produced relative %roxmately correct boundaries.
those depicted earlier: namely the paucity of training drathe
present case, and the different frequency scalings.

As there is only one training instance for each endpoint andHow can the apparent contradiction between this last finding
each place of articulation, it is likely that the networkaitled and the inability of the SLPs trained on FFT-processed data t
on FFT-processed data are in faotler-trained. Further, it may exhibit correct boundary shifts be resolved? It seems that t
be important that the network sees some appropriate statistspeech perception mechanism must focus on particular time-

VI. DIscussiION ANDCONCLUSIONS
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Fig. 8. Spectral energy in the acoustic stimuli evaluatezt atime-frequency
range corresponding to that for the spike-counting modgL(€ 5). [13]
[14]

frequency regions in order to make discriminations betvwtben
categories of speech sounds studied here. Processing bg—théls]
riphery renders these regions more prominent in the ayditgtg)
nerve representation. Thus, neural networks trained oruan a
ditory representation are able to make the necessary mhiscri, ,
nations. On the other hand, networks trained on the acoustic
data have difficulty because the important informatiomalgh [18]
present, is insufficiently prominent.

In conclusion, important aspects of the voiced/unvoiced cgu9)
egorization of synthetic syllable-initial stop consorsate re-
produced by a two-stage simulation of the auditory systemg;
This behavior ismergent — it is not explicitly programmed into
the model — and no fine timing information is necessary. Un-
like real (human and animal) listeners, the computatioreadeh
can be systematically manipulated to determine the basts of
behavior. This reveals information in the region of firstfiant
(F1) onset is vital to the perception of voicing for these stim-
uli. The peripheral auditory system plays an important part
emphasizing this region in the neural representation.
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