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Abstract—
The categorization of speech sounds by the auditory system has been a

subject of intense attention over several decades, reflecting its importance
to the scientific study of speech perception and the technological develop-
ment of more human-like capabilities in automatic speech recognition. In
previous work, we have firmly established that a two-stage computational
model can mimic important aspects of the speech categorization behav-
ior of human and animal listeners. The first stage employs a biologically-
motivated ‘front-end’, modeling the peripheral auditory system, and the
second stage is a trainable artificial neural network ‘back-end’, modeling
more central processes. When suitably trained on syntheticstimuli, the
two-stage system is able to reproduce the important effectsof category for-
mation for the class of initial plosive-stop speech sounds,and movement of
the category boundary with place of articulation. Appropriate behavior
is maintained across a variety of ‘back-end’ architecturesand associated
learning algorithms. The behavior isemergent in that it was not explicitly
programmed into the model. These facts imply that there is something very
basic about categorization behavior.

Unlike real (human and animal) listeners, a software model can be in-
terrogated to find out the contribution of its component parts to the overall
behavior. Replacing the auditory front-end by a more prosaic fast Fourier
transform analyzer allows us to focus on the contribution ofthe acoustic-
to-auditory transformation to categorization. We find that the front-end
processor is not essential to category formation but plays an important part
in the boundary-movement phenomenon, by emphasizing important time-
frequency regions of the speech signal.

I. I NTRODUCTION

Speech sound pressure waves impinging on the ear are sub-
jected to a series of mechanical and then neural transforma-
tions resulting in the ultimate percept of a linguistic message.
Hence, understanding speech perception is virtually synony-
mous with understanding the staged transformations which re-
late the physically-continuous acoustic stimulation the discrete
code of phonetic percepts. In particular, in some as yet un-
known way, the continuous-to-discrete transformation effects a
variance reduction such that a variety of physical realizations
map to the same speech-sound category, with obvious impor-
tance for effective communication between individuals with dif-
ferent speech production apparatus. Understanding how this is
achieved is the celebrated ‘speech invariance problem’. Itis
clear that the way speech sounds are categorized by a listener’s
auditory system is a matter of considerable scientific interest. In
the words of Summerfield [1], however:

“. . . the relationship between acoustical structure and perceived
phonetic structure is complex and not obviously explained by
known properties of the mammalian auditory system.”

while Kuhl and Miller [2] write:

“Ideally, [one would like] experimental methods that somehow
allow one to intervene at various stages of the processing of
sound to observe the restructuring of information that has oc-
curred at each stage.”

While this intervention is difficult or impossible to achieve in
experiments using human or animal listeners, it is immeasur-
ably easier “to observe the restructuring of information” in a
software model of auditory processing. For this reason, we
have worked for several years on such models, with a view to
understanding the possible acoustic and auditory bases of the
categorical perception (CP) of voicing in syllable initialstop
consonants [3], [4], [5], [6].

In previous work, we have focused on simulated represen-
tations of synthetic speech sounds at the level of the auditory
nerve. Thus, the restructuring of information implicit in the
acoustic input by the peripheral auditory system has been anin-
tegral part of the model. This work has revealed very clearly
that any reasonably general learning system is able to cate-
gorize the patterns of simulated auditory nerve activationin a
way which mimics the psychophysical behavior of real listen-
ers. The question which then arises, and which we address here,
is: how important is the restructuring of information by thepe-
ripheral auditory system to the obtained categorization?

The remainder of this paper is organized as follows. In Sec-
tion II immediately following, we outline our modeling philos-
ophy. In Section III, we review the important aspects of the per-
ception of voicing in syllable-initial consonants, not only by hu-
man listeners, but by animals and machines (i.e. software mod-
els) also. Since the software simulation replicates the impor-
tant aspects of the human and animal data, we describe in Sec-
tion IV an analysis aimed at discovering the auditory features
underpinning this behavior. In Section V, we report the result
of removing the front-end of the simulation, so as to assess the
importance of restructuring of information by the peripheral au-
ditory system. Finally, Section VI presents some discussion and
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Fig. 1. (a) Two-stage model of the auditory system consisting of a biologically-
faithful simulation of the peripheral auditory system and an artificial neural
network trained on the auditory nerve firing patterns denoted X. This pro-
cessing scheme can be usefully related to the framework of signal detection
theory (b) which clearly separates sensory and decision operations.

conclusions.

II. A PPROACH TONEURAL MODELING

Artificial neural network (ANN) modeling in the ‘parallel
distributed processing’ style [7] and the biologically-faithful
modeling of real neural systems [8], [9] are typically seen as
orthogonal approaches to the simulation of intelligent behavior.
The former abstracts away putatively irrelevant complexities of
cell electrophysiology and interconnection, allowing systems of
practically large size to be studied, but at the expense of aban-
doning biological fidelity. The latter retains fidelity but com-
putational complexity dictates that only relatively smallneu-
ral systems (of known structure and function) can be consid-
ered [10].

We employ both modeling approaches, treating them as com-
plementary. Exploiting detailed anatomical and physiological
knowledge of the peripheral auditory system, the first stage
of the simulation is a biologically-faithful model of the trans-
duction of sound from the pinna to the mammalian auditory
nerve [11]. The second stage is a trainable ANN which mod-
els essentially unknown details of central auditory systemfunc-
tion at a high level of abstraction. (See Shamma [12] for ear-
lier, similarly-motivated work in this area.) Figure 1(a) shows
a schematic representation of this processing scheme and re-
lates it to a traditional signal-detection theoretic viewpoint [13]
in which a sensory process produces a (unidimensional) vari-
ateX which is the basis for subsequent decisions (Figure 1(b)).
Signal detection theory is important and relevant here [14], [15],
because its clear separation of sensory and decision operations
focuses attention on the locus of categorization. That is, does it
take place at the sensory stage (so thatX is discrete) or at the
decision stage (so thatX is continuous)?

Here, X is the (continuous) firing pattern of auditory nerve
activity computed in response to the synthetic speech stimuli
developed by Abramson and Lisker [16] – their so-called voice
onset time (VOT) continuum. The ANN is trained on these pat-
terns (‘neurograms’) and, hence, acts as a ‘synthetic listener’.
The perception of the Abramson and Lisker VOT stimuli by
human and animal listeners has been much studied and, as re-
viewed immediately below, a good deal is known about this.
Accordingly, we are able to verify that the two-stage model acts
essentially indistinguishably from a real listener. In this work,

we remove the auditory front-end – the sensory processing part
– and train the ANN on a more direct representation of the stim-
ulus, in order to assess the role of the auditory periphery incat-
egorization.

III. R EAL AND ‘SYNTHETIC’ VOT PERCEPTION

It has been known for many years now that the VOT con-
tinuum is perceived ‘categorically’, i.e. perception changes
abruptly from ‘voiced’ to ‘unvoiced’ as VOT is increased uni-
formly, and discrimination is far better between categories than
within a category. Hence, labeling functions are non-uniform
and discrimination functions are non-monotonic. An intriguing
finding is that such categorical behavior is also observed innon-
human listeners – a result which has usually been taken to indi-
cate that categorization is basic to the operation of animalaudi-
tory systems rather than relying on the existence of a ‘phonetic’
sub-system specialized for speech perception.

In now-classical work, Kuhl and Miller [2] obtained labeling
curves for English speakers and for chinchillas in responseto
bilabial (/ ba-pa /), alveolar (/ da-ta /) and velar (/ ga-ka /) stim-
uli in which VOT was varied. These revealed labeling func-
tions in which there was a sharp transition from a high num-
ber of ‘voiced’ judgements to a low number as VOT increased.
The functions were well fitted by a probit (sigmoid). Taking the
50% points as the boundaries between voiced and unvoiced cat-
egories, there was a phoneme boundary-shift effect with place
of articulation such that the boundary moves from about 25 ms
through 35 ms to 42 ms as the place of constriction in the vocal
tract moved back from bilabial through alveolar to velar. Also,
the chinchillas exhibit boundary values not significantly differ-
ent from the humans (although the curves are less steep).

In previous work, we have employed ANNs as synthetic lis-
teners. A variety of neural models has been studied: brain-state-
in-a-box associative networks [15]; competitive-learning net-
works[5]; multilayer perceptrons (MLPs) [3], [15] and single-
layer perceptrons (SLPs) [5]. In all cases reported here,
the ANNs were perceptrons trained by back-propagation [17].
In this earlier work, networks were trained on a neurogram rep-
resentation of the Abramson and Lisker stimuli.

Neurograms were computed as follows. Stimuli were ap-
plied to the auditory model at timet = 0 at a simulated level
of 65 dB SPL. The times of firing (‘spikes’) of each of the
simulated auditory-nerve fibers were noted. There are 128 of
these and, because of the tonotopic organization of the auditory
system, each can be associated with a particular ‘center’ fre-
quency (CF). Activity beforet = 0 is spontaneous, as is that
in channels with CF index 1..8 (for reasons to do with the band-
width of our auditory filters at low frequency). Fuller details are
given in [3], [11]. (Thanks to the detailed modeling of phenom-
ena such as middle-ear transmission, basilar membrane dynam-
ics, mechanical-to-neural transduction, neural tuning and tono-
topic organization, rate saturation, two-tone suppression etc., it
is possible to demonstrate that our computed responses agree
very well in all details with the physiological recordings (in
cat) of auditory nerve responses to synthetic / ba / and / da / syl-
lables (0 ms VOT) by Miller and Sachs [18], as redrawn by
Shamma [19].) Spikes were then counted in a.12× 16/ anal-
ysis window stretching from−25 ms to 95 ms in 10 ms steps in
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Fig. 2. Typical ‘reduced’ neurogram in the.12× 16/ matrix form presented
to the neural networks: / ba / stimulus, 40 ms VOT. There is very signif-
icant data-reduction relative to a representation which retains the CF and
time identity of each spike.

the time dimension and from 1 to 128 in steps of 8 in the CF di-
mension. Figure 2 shows a typical such ‘reduced’ neurogram in
response to the / ba / stimulus with 40 ms VOT. We refer to this
as ‘reduced’ because there is clearly very considerable data re-
duction relative to a representation which retains the individual
CF and time identity of each and every spike. Some such re-
duction is, of course, necessary if the parameters (connection
weights and thresholds) of the ANNs are to be reliably esti-
mated from limited training data. The reader should nonethe-
less bear in mind that all fine timing information has effectively
been eradicated from the inputs to the ANNs.

Separate networks were constructed for each of the three
stimulus series (bilabial, alveolar and velar). Each had 192
(12× 16) input units, a variable number (h) of hidden units, and
a single output unit (with sigmoidal activation function) to act as
a voiced/unvoiced detector.

As in the Kuhl and Miller study with chinchillas (which
had to be trained to respond appropriately to the stimuli), the
MLPs were trained on 50 repetitions of the endpoint stimuli
(0 and 80 ms VOT) and tested on 50 repetitions of the full range
of values (0 ms to 80 ms in 10 ms steps), so that generalization
was tested on the intermediate (10 ms to 70 ms) stimuli. Be-
cause the auditory model is probabilistic in nature (as a re-
sult of its simulation of mechanical-to-neural transduction in
the cochlea), stimulus repetition produced non-identicalneu-
rograms. This is convenient, because it allows us to gener-
ate sufficient training data for our purposes. Target outputs
were 1 for the voiced (0 ms VOT) stimuli and 0 for the unvoiced
(80 ms VOT) stimuli. Training used a learning rate of 0.01, a

Fig. 3. Mean output activation versus VOT for MLPs with 2 hidden units
trained on neurograms from 0 ms and 80 ms endpoints. The boundaryplace-
ment as a function of place of articulation mimics that seen in ‘real’ (human
and animal) listeners.

momentum of 0.7, and a range of±0:02 for the initial, random
weights; and was terminated when the average squared error per
training pattern was 0.0025.

Figure 3 shows typical labeling functions obtained by averag-
ing output activations over the 50 stimulus presentations.In this
case, there wereh = 2 hidden units, but results were insensitive
to the value ofh. This is illustrated by Figure 4 in which essen-
tially the same curves are obtained with single-layer perceptrons
(SLPs) having no hidden units whatsoever (h = 0). The form
of these labeling functions was insensitive to the initial random
weight settings for the back-propagation training. That is, la-
beling functions like these – with the correct order of bound-
ary shift – were consistently obtained over several repetitions of
the training.

Figures 3 and 4 closely mimic the labeling functions obtained
from human and animal listeners, even to the extent of repli-
cating the shift of category boundary with place of articulation
seen in the original studies. Thus, the neural model is clearly
capturing the ‘essence’ of categorical perception. The behavior
is emergent – it is not explicitly programmed into the simulation
– which strengthens the feeling that the effects are quite basic to
the way these stimuli are perceived. It is surely suggestivethat
very similar results are obtained from obviously very different
human, animal and machine listeners.

IV. A NALYZING THE MODEL

Unlike real (human and animal) listeners, the computational
model can be systematically manipulated and probed to deter-
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Fig. 4. Mean output activation versus VOT for single-layer perceptrons trained
on neurograms from 0 ms and 80ms endpoints.

mine the basis of its behavior. In this regard, the finding that
no hidden units are necessary in order to simulate CP is very
important. A major attraction of the single-layer perceptron ar-
chitecture is that it is straightforward to identify the areas of the
neurogram which contribute to the observed categorizationbe-
havior. That is, all connections are direct from the neurogram
to the SLP output node, without the complication of intervening
hidden units.

A simplified contribution analysis [20] was conducted by
identifying the connections associated with the highest absolute
product of input and weight, averaged across all 50 presenta-
tions of the endpoint patterns and all VOTs. Basing the analysis
on this product, rather than just the weight values, was found
to produce more meaningful results. The analysis considered
positive and negative weight values separately. (Note thatthe
input values are spike counts and are always positive.) High-
est products of input andpositive weight are located around
the low-frequency region (the four frequency channels covering
CF indices 8 to 48 in the model, corresponding to 73 to 675 Hz)
just after acoustic stimulus onset where voicing activity varies
maximally as VOT varies. (This is perhaps not surprising as this
the region of the perceptually important first formant (F1) tran-
sition.) The precise location of this region shifts in the three
nets (bilabial, alveolar, velar) in the same way as the boundary
point. Averaging the inputs to the 5 SLP nodes with the largest
positive product across all 50 stimuli at each value of VOT pro-
duces the pattern in Figure 5 (depicted for the alveolar series).
This curve is noticeably similar in shape to the curve for theun-
modified net, with its characteristic steep labeling function. In
this case, however, there is no thresholding or compressionby

Fig. 5. Mean spike-count input for the 5 SLP nodes with maximal product of
input andpositive weight versus VOT for the alveolar series.

a sigmoidal activation function as there is in the neural model,
so indicating that categorization behavior is not merely a trivial
consequence of specific details of the ANN architecture. Simi-
lar findings obtain for the bilabial and velar series.

A similar plot focusing on the large absolute negative weights
does not reproduce this pattern of variation with VOT: it is es-
sentially flat. We conjecture that the role of the negative weights
is simply to provide an ‘offset’, reducing the labeling function
to 0 as necessary in spite of all the inputs (spike counts) being
positive. These negatively-weighted lines can connect to any re-
gion of the neurogram where there is significant activity which
remains more or less constant as VOT changes. Generally, this
is the region of high CF and the period some time after stimulus
onset.

The implication of these results is that categorization canbe
explained in terms of a mechanism by which higher levels of the
auditory system focus on a particular region of auditory nerve
time-frequency activity and, in essence, count spikes in this re-
gion. But how important is restructuring of information by the
peripheral auditory system to this mechanism?

V. TRAINING ON AN ACOUSTIC REPRESENTATION

The previous section has illustrated the merits of an approach
whereby an artificial neural network is trained on a set of neuro-
grams obtained from repeated application of end-point stimuli –
and is then analyzed to find what it has learned in terms of its
connection weights. We can therefore assess the importanceof
the auditory front-end by removing it from the simulation. We
note at this point, however, the potentially important factthat
there is only one (synthesized) example of each endpoint stimu-
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Fig. 6. Output activation versus VOT for single-layer perceptrons trained on
FFT-processed 0 ms and 80 ms endpoint stimuli. The boundary shift with
place of articulation is abolished.

lus. Thus, we have very little data on which to train the ANNs.
We return to this matter below.

Since the waveform representations of the stimuli are, be-
cause of their high redundancy, inherently unsuitable for input
to the neural network, they were pre-processed by fast-Fourier
transform (FFT). That is, the power spectral densities of the
stimuli were computed using a 256-point fast Fourier transform
over 25.6 ms frames (the sampling rate was 10 kHz) centered on
the 10 ms cell widths previously employed. (The overlap be-
tween consecutive frames was (25:6 − 10/=2 = 7:8 ms.) Spec-
tral energy was again summed in a.12× 16/ analysis window
stretching from−25 ms to 95 ms in 10 ms steps in the time di-
mension but from 0 to 5 kHz in steps of 312.5 Hz in the fre-
quency dimension, to form the input to the nets. So, in this case,
the frequency dimension is divided up linearly (in Hz) rather
than approximately logarithmically according to CF.

Figure 6 shows a typical result for an SLP trained on the FFT-
processed endpoints. As can be seen, the sharp labeling func-
tion is retained, but the boundary shift is abolished. It seems,
therefore, that the auditory front-end – mimicking sensorypro-
cessing – is essential to the proper simulation of CP. There
are, however, some important differences between the ways that
the labeling functions of Figure 6 were produced relative to
those depicted earlier: namely the paucity of training datain the
present case, and the different frequency scalings.

As there is only one training instance for each endpoint and
each place of articulation, it is likely that the networks trained
on FFT-processed data are in factunder-trained. Further, it may
be important that the network sees some appropriate statistical

Fig. 7. Output activation versus VOT for single-layer perceptrons trained on
averaged neurograms for 0 ms and 80 ms endpoint stimuli. In spite of the
probable under-training, the boundary shift with place of articulation is re-
stored.

distribution of the data during training. To test the importance
of such factors to correct boundary shift, new sets of training
data were constructed, consisting of single, averaged instances
of the endpoint neurograms. Figure 7 shows a typical result:as
can be clearly seen, in spite of the probable under-training, the
correct boundary shift with place of articulation is restored. The
indication is that there is indeed an important role for “restruc-
turing of information” by the peripheral auditory system.

This, however, is contrary to the conclusion of [6]. In this
latter work, the spectral energy in the acoustic signal (FFT-
processed) was evaluated for the same putatively-important
time-frequency region as used in the spike-counting model.Fig-
ure 8 shows the result, which is a very fair approximation to the
‘correct’ labeling functions, with appropriate boundary shift,
except that the category boundaries are too long by about 10 ms.
This is a consequence of using the simulated neural responses
to place the analysis region without regard for the propagation
delay through the peripheral auditory system. Although this
delay is actually a function of frequency, it does not deviate
too much from about 10 ms for the frequencies of interest here.
Taking proper account of the propagation delay results in ap-
proximately correct boundaries.

VI. D ISCUSSION ANDCONCLUSIONS

How can the apparent contradiction between this last finding
and the inability of the SLPs trained on FFT-processed data to
exhibit correct boundary shifts be resolved? It seems that the
speech perception mechanism must focus on particular time-
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Fig. 8. Spectral energy in the acoustic stimuli evaluated over a time-frequency
range corresponding to that for the spike-counting model (Figure 5).

frequency regions in order to make discriminations betweenthe
categories of speech sounds studied here. Processing by thepe-
riphery renders these regions more prominent in the auditory
nerve representation. Thus, neural networks trained on an au-
ditory representation are able to make the necessary discrimi-
nations. On the other hand, networks trained on the acoustic
data have difficulty because the important information, although
present, is insufficiently prominent.

In conclusion, important aspects of the voiced/unvoiced cat-
egorization of synthetic syllable-initial stop consonants are re-
produced by a two-stage simulation of the auditory system.
This behavior isemergent – it is not explicitly programmed into
the model – and no fine timing information is necessary. Un-
like real (human and animal) listeners, the computational model
can be systematically manipulated to determine the basis ofits
behavior. This reveals information in the region of first formant
(F1) onset is vital to the perception of voicing for these stim-
uli. The peripheral auditory system plays an important partin
emphasizing this region in the neural representation.
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