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Abstract

To recognize people by their gait from a sequence of images, we have
proposed a statistical approach which combinedeigenspace transformation
(EST) withcanonical space transformation(CST) for feature transformation
of spatial templates. This approach is used to reduce data dimensionality
and to optimize the class separability of different gait sequences simultane-
ously. Good recognition rates have been achieved. Here, we incorporate
temporal information from optical flows into three kinds of temporal tem-
plates and use them as features for gait recognition in addition to the spa-
tial templates. The recognition performance for four kinds of template fea-
tures has been evaluated in this paper. Experimental results show that spatial
templates, horizontal-flow templates and the combined horizontal-flow and
vertical-flow templates are better than vertical-flow templates for gait recog-
nition.

1 Introduction

Biometrics such as automatic face and voice recognition continue to be subject to in-
creasing interest. Gait is a new biometric aimed to recognize subjects by the way they
walk [6, 10, 8, 3]. Recently, Niyogi and Adelson [11] distinguished different walkers
by extracting their spatio-temporal gait patterns obtained from the curve-fitting ”snakes”.
Cunadoet al. [3] developed a technique which considers legs as an interlinked penduli
and use phase-weighted Fourier magnitude spectra as the feature to recognize different
people. Little and Boyd [8] use frequency and phase features from optical flow informa-
tion to recognizeeigenface different people by their gait. However, these feature-based
methods, which use boundaries, lines, edges or optical flow are dependent on the re-
liability of the feature extraction process. Using the human shapes and their temporal
changes during walking, Murase and Sakai [10] proposed a template-matching method
which uses the parametric eigenspace representation, as applied in face recognition [12],
to recognize different human gait. For recognizing people by their gait, this appears more
potent compared with other approaches. Based on Principal Component Analysis (PCA),
eigenspace transformation (EST) has actually been demonstrated to be a potent metric in
automatic face recognition and gait analysis, but without using data analysis to increase
classification capability.
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Previously, we proposed a statistical approach [6] which combinedeigenspace trans-
formation(EST) with canonical space transformation(CST) based on Canonical Anal-
ysis for feature extraction of spatial templates to recognize humans by their gait. This
approach can be used to reduce data dimensionality and to optimize the class separability
of different gait sequences simultaneously. By using spatial templates of human silhou-
ettes as features, each image template is projected from high-dimensional image space to
a single point in low-dimensional canonical space. A walking sequence becomes a trajec-
tory in this new space and the recognition of human gait becomes much simpler and more
accurate.

In this paper we incorporate temporal information from optical-flow changes between
two consecutive spatial templates into three kinds of temporal templates and use them
as additional features for gait recognition. Firstly, spatial and temporal templates are ex-
tracted from each sequence. Secondly, training template sequences are projected into
individual canonical space by EST and CST after training. Thirdly, recognition of test
sequences is achieved in canonical space after projection. Finally, the recognition perfor-
mance of the four kinds of template features is shown in experimental results.

2 Feature Template Extraction

Intuitively, recognizing humans by gait depends on how the silhouette changes for in-
dividual subjects. According to this hypothesis, here we use spatial templates in [6] and
three kinds of temporal templates to recognize humans by gait. Before training and recog-
nition, each gait sequence is separately converted into four template sequences in which
spatial templates and three kinds of temporal templates are extracted from each original
sequence.

2.1 Spatial Templates

For the extraction of spatial templates, we choose the preliminary process from Murase’s
approach [10] in which the silhouette is fitted in a64�64 image template by normalizing
its position and size with constant aspect ratio. Naturally, to isolate the human silhouette,
we can simply subtract the background from each image. However, the difference image
thus obtained is not binarized. To simplify the representation, a binary image is obtained
by region growing [4]. Figure 1(a) shows an image from a gait sequence and Figure 1(b)
is a binary(thresholded) version.

The centroid and silhouette window of each template in the original image can be ob-
tained simultaneously and are used later for the extraction of temporal templates. Sample
spatial templates are illustrated in Figure 2 from a gait sequence.

2.2 Temporal Templates

For the extraction of temporal templates, Little and Boyd’s [8] technique which based on
the algorithm of Bulthoffet al. [2] is used to generate optical flow fields between two
consecutive images. Instead of isolating the moving figure manually, as in [8], we use the
information of centroid and silhouette window from the extraction of spatial templates to
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(a) A walking person (b) thresholded version

Figure 1: Sample images of a walking person

(a) (b) (c) (d) (e) (f)

Figure 2: Sample spatial templates of a walking person

extract each temporal template which contains the flow within a moving window. Fig-
ures 3(a) and 3(b) show two consecutive images from a gait sequence.

Unlike other methods, Little and Boyd [8] used dense optical flow fields, generated
by minimizing the sum of absolute differences between image patches [2]. However, this
algorithm is sensitive to brightness change caused by reflections, shadows, and changes
of illumination. Therefore, the images are firstly processed by computing the logarithm
of brightness and converting the multiplicative effect of illumination change into an ad-
ditive one. Secondly, each processed image is filtered by a bandpass filter (Laplacian of
Gaussian) to remove the additive effects.

Basically, the algorithm [2] searches for the displacement of each pixel among a lim-
ited set of discrete displacements by minimizing the sum of absolute differences between

(a) Current image (b) Next image

Figure 3: Two consecutive images
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 4: Sample temporal templates of a walking person

a patch in one image and the corresponding displaced patch in the other image. After a
best matching patch in the second image is found for each patch in the first, the algorithm
is run a second time and the roles of the the two images are switched. For a correct match,
the results will likely agree. In order to remove invalid matches, Little and Boyd compare
the results at each point in the first image with the result at the corresponding point in
the second. The second point should match to the first: the sum of displacement vec-
tors should be approximately zero. Only those matches that pass this validation test are
retained. The results could be interpolated to provide sub-pixel displacements but only
integral values are used here. In effect, the minimum displacement is1:0 pixels per frame;
points that are assigned non-zero displacements form a set ofmoving points.

Three kinds of temporal templates are adopted in this paper and they areu-flow tem-
plates which are horizontal components of flow,v-flow templates which are vertical com-
ponents of flow andj(u; v)j-flow templates which are the magnitudes of(u; v). They are
shown in Figures 4. Figure 4(a)-(f) areu-flow templates, Figure 4(g)-(l) arev-flow tem-
plates and Figure 4(m)-(r) arej(u; v)j-flow templates from a gait sequence, respectively.
For display purposes, stationary pixels are represented by gray-value 0, positive compo-
nents are offset by 128 and negative components by subtracting its absolute value from
255.
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. . .
sequence
template image

Figure 5: Projection of template images

3 Transformation and Training

Four kinds of basic feature templates from each training sequence are used during train-
ing, they are spatial templates,u-flow templates,v-flow templates andj(u; v)j-flow tem-
plates, respectively. They will be individually projected into four different canonical
spaces by for further recognition after training stage. Figure 5 illustrates the projec-
tion steps that generate feature vectors by eigenspace transformation and canonical space
transformation for different kinds of template images.

Adopted from previous work [6], we use the transformation which combined EST and
CST for feature extraction. Template images in high-dimensional image space are con-
verted to low-dimensional eigenspace using EST. Obtained vectors thus are further pro-
jected to a smaller canonical space using CST. Recognition is accomplished in canonical
space. Patently, the reduced dimensionality results in concomitant decrease in computa-
tion cost.

Givenc classes for training and each class represents a template sequence of a single
person.xi;j is thej-th template in classi, andNi is the number of templates ini-th class,
the total number of training templates isNT = N1 +N2 + � � �+Nc. This training set is
represented by

[x1;1; � � � ;x1;N1
;x2;1; � � � ;xc;Nc

] (1)

where each samplexi;j is an template image withn pixels. By subtracting the meanmx

of full image set from each image, the image set can be described by an�NT matrixX,
with each imagexi;j forming one column ofX, that is

X = [x1;1 �mx; � � � ;x1;N1
�mx; � � � ;xc;Nc

�mx]: (2)

3.1 Eigenspace Transformation

LetR be an� n matrix and represented by

R = XXT: (3)

Based onsingular value decompositiontheory [9], eigenvalues and associated eigen-
vectors ofR can be recovered from a much smaller matrix,

~R = XTX; (4)
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by the relationships �
�i = ~�i

ei = ~�i
�

1

2X~ei
; (5)

wherei = 1; : : : ;K, ~�1; : : : ; ~�K and ~ei; : : : ; ~eK are eigenvalues and eigenvectors of
~R. Suppose obtained eigenvalues and associated eigenvectors ofR are�1; : : : ; �K and
ei; : : : ; eK . According to the theory of PCA, each image can be approximated by taking
only thek � K largest eigenvaluesj �1 j�j �2 j� � � � �j �k j and associated eigenvec-
torse1; : : : ; ek. This partial set ofk eigenvectors spans an eigenspace in whichyi;j are
the points that are the projections of the original imagesxi;j by the equation

yi;j = [e1; � � � ; ek]
Txi;j ; (6)

wherei = 1; : : : ; c andj = 1; : : : ; Nc.

3.2 Canonical Space Transformation

Based on the theory of canonical analysis [5], CST is presented as follows. Suppose
f�1;�2; � � � ;�cg represents the classes of transformed vectors by eigenspace transfor-
mation andyi;j is thej-th vector in classi. The mean vector of the entire set is given
by

my =
1

NT

cX
i=1

NiX
j=1

yi;j ; (7)

and the mean vector of thei-th class is represented by

mi =
1

Ni

X
yi;j2�i

yi;j : (8)

LetSw denotewithin-class matrixandSb denotebetween-class matrix, then

Sw =
1

NT

cX
i=1

X
yi;j2�i

(yi;j �mi)(yi;j �mi)
T

Sb =
1

NT

cX
i=1

Ni(mi �my)(mi �my)
T

The objective is to minimizeSw and maximizeSb simultaneously, that is to solve the
generalized eigenvalue equation

Sbw
�

i = �iSww
�

i : (9)

After equation (9) is solved, we will obtain(c � 1) nonzero eigenvalues and their cor-
responding eigenvectors[v1; : : : ;vc�1] that create another orthogonal basis and span a
(c�1)-dimensional canonical space. By using this basis, each point in eigenspace can be
further projected to another point in this canonical space by

zi;j = [v1; � � � ;vc�1]
Tyi;j ; (10)
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wherezi;j represents the new point and[zi;1; : : : ; zi;Ni
] is the new trajectory in canonical

space. By merging equation (6) and equation (10), each image can be projected into one
point in the new(c� 1)-dimensional space by

zi;j = [v1; : : : ;vc�1]
T[e1; : : : ; ek]

Txi;j : (11)

Thecentroidof each training sequence in canonical space is given by

Ci =
1

Ni

NiX
j=1

zi;j (12)

4 Recognition

Let a test gait sequence beg(t), in which t = 1; :::; T . Before recognition, four differ-
ent kinds of templates are extracted from this test sequence and projected into individual
trained canonical space by equation (11), given four vector sequences after projection,
h1(t), h2(t), h3(t) andh4(t), representing spatial,u-flow, v-flow andj(u; v)j-flow tem-
plates, respectively.

To recognize a human walking sequence from a trained database in each canonical
space, theaccumulated distance to each centroidis used. This will eliminate matching
problems caused by velocity changes and phase shifts. The accumulated distance between
test vector sequences,hk(t), in which k = 1; :::; 4 and six centroids,Ci;k, in which
i = 1; :::; 6 is

d2i;k =

TX
t=1

khk(t)�Ci;kk
2; (13)

whereCi;k is the centroid of classi in canonical spacek. To match a test sequence
hk(t) to a training sequencei in canonical spacek can be accomplished by choosing the
minimumd2i;k.

5 Experimental Results

The sample human gait data came from the Visual Computing Group, University of Cali-
fornia, San Diego. There are 6 people and 7 sequences of each. One walking sequence is
selected from each person as the training sequence and remaining 36 sequences served as
test sequences. Results in Figures 6(a), 6(b), 6(c) and 6(d) show that six classes of train-
ing sequences using spatial templates,u-flow templates,v-flow templates andj(u; v)j-
flow templates are greatly separated in each canonical space. For visualization purposes,
we only show the first three of five dimensions. Linear re-scaling [1] has been applied
to each vector to set the average of each data set to zero and to normalize the standard
deviation to unity.

Figures 7(a) and 7(b) show relative accumulated distances of one training and one
test sequences from subject 1. Here, thev-flow template has lower distance and hence
poorest discriminatory ability. Conversely, the spatial template offers best discriminatory
ability, associated with greatest distance. Figures 7(c) and 7(d) show relative accumulated
distances of two misclassified sequences, one from subject 4 and one from subject 5. Here,
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(b) u-flow templates
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(c) v-flow templates
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(d) j(u; v)j-flow temporal templates

Figure 6: Distributions of 6 training sequences in four canonical spaces

the distance by thev-flow template leads to confusion in classification, in Figure 7(c),
where the fifth sequence of subject 4 can be classified as subject 1 and, in Figure 7(d),
subjects 1 and 2 appear close to the target subject 5. Conversely, the spatial template again
offers best performance, again there is little difference between thej(u; v)j-flow template
and theu-flow template and both perform better than thev-flow template measures.

The comparison of recognition performance using four different templates is shown
in Table 1. Clearly, the feature vectors generated by the combination of EST and CST
yield high recognition rates. Using template matching, the poor performance achieved by
v-flow templates can be explained by the reduced information of optical flow from the
extracted templates in Figure 4(g)-(l). Vertical movements of gait usually have smaller
changes than horizontal movements, thus have less discriminatory power in distinguish-
ing different gaits. Spatial templates,u-flow templates andj(u; v)j-flow templates make
better performance in recognition. Although promising results have been shown here, fur-
ther comparison of the three templates still needs a larger database to better assess their
performance.
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Figure 7: Relative accumulated distance of training and test sequences

6 Conclusions

In this paper we use our previous approach which combined EST with CST for feature
extraction with new motion data. EST ans CST can be used to reduce data dimension-
ality and to optimize the class separability of different classes simultaneously, greatly
improving the performance of eigenspace approach. Apart from the feature of spatial
templates used in previous work, we propose three more features by temporal templates.
These new features incorporate temporal information into each template. The analysis and
comparison of recognition performance for each individual feature shows that the spatial
templates, the horizontalu-flow templates and the magnitudej(u; v)j-flow templates are
better than the verticalv-flow templates for gait recognition. We are currently working on
extension of the test environment. In addition to testing on larger database, the extended
features by different combinations of four kinds of templates will be also evaluated. For
extended feature vectors, it has been also suggested in [7] that orthogonal feature sets
should be chosen to reduce the variance of a final match measure. The combined fea-
ture of spatial and temporal templates incorporates spatial and temporal information into
one single feature, its robustness is worthy of further investigation. Future work will also
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feature used recognition rate

(1) spatial templates 100%

(2) u-flow templates 100%

(3) v-flow templates 95:2%

(4) j(u; v)j-flow templates 100%

Table 1: recognition using different template features

concentrate on looking for more precise and robust features, whilst aiming to develop the
technique still further.
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