The University of Southampton
University of Southampton Institutional Repository

A model of adaptive invariance

A model of adaptive invariance
A model of adaptive invariance
This thesis is about adaptive invariance, and a new model of it: the Group Representation Network. We begin by discussing the concept of adaptive invariance. We then present standard background material, mostly from the fields of group theory and neural networks. Following this we introduce the problem of invariant pattern recognition and describe a number of methods for solving various instances of it. Next, we define the Symmetry Network, a connectionist model of permutation invariance, and we develop some new theory of this model. We also extend the applicability of the Symmetry Network to arbitrary finite group actions. We then introduce the Group Representation Network (GRN) as an abstract model, with which in principle we can construct concomitants between arbitrary group representations. We show that the GRN can be regarded as a neural network model, and that it includes the Symmetry Network as a submodel. We apply group representation theory to the analysis of GRNs. This yields general characterizations of the allowable activation functions in a GRN and of their weight matrix structure. We examine various generalizations and restricted cases of the GRN model, and in particular look at the construction of GRNs over infinite groups. We then consider the issue of a GRN's discriminability, which relates to the problem of graph isomorphism. We look next at the computational abilities of the GRN, and postulate that it is capable of approximately computing any group concomitant. We show constructively that any polynomial concomitant can be computed by a GRN. We also prove that a variety of standard models for invariant pattern recognition can be viewed as special instances of the GRN model. Finally, we propose that the GRN model may be biologically plausible and give suggestions for further research.
Wood, J.
65587872-7126-469a-851a-d60195d39058
Wood, J.
65587872-7126-469a-851a-d60195d39058

Wood, J. (1995) A model of adaptive invariance. University College London, : Department of Computer Science, Royal Holloway University of London, Doctoral Thesis.

Record type: Thesis (Doctoral)

Abstract

This thesis is about adaptive invariance, and a new model of it: the Group Representation Network. We begin by discussing the concept of adaptive invariance. We then present standard background material, mostly from the fields of group theory and neural networks. Following this we introduce the problem of invariant pattern recognition and describe a number of methods for solving various instances of it. Next, we define the Symmetry Network, a connectionist model of permutation invariance, and we develop some new theory of this model. We also extend the applicability of the Symmetry Network to arbitrary finite group actions. We then introduce the Group Representation Network (GRN) as an abstract model, with which in principle we can construct concomitants between arbitrary group representations. We show that the GRN can be regarded as a neural network model, and that it includes the Symmetry Network as a submodel. We apply group representation theory to the analysis of GRNs. This yields general characterizations of the allowable activation functions in a GRN and of their weight matrix structure. We examine various generalizations and restricted cases of the GRN model, and in particular look at the construction of GRNs over infinite groups. We then consider the issue of a GRN's discriminability, which relates to the problem of graph isomorphism. We look next at the computational abilities of the GRN, and postulate that it is capable of approximately computing any group concomitant. We show constructively that any polynomial concomitant can be computed by a GRN. We also prove that a variety of standard models for invariant pattern recognition can be viewed as special instances of the GRN model. Finally, we propose that the GRN model may be biologically plausible and give suggestions for further research.

This record has no associated files available for download.

More information

Published date: October 1995
Organisations: Electronics & Computer Science

Identifiers

Local EPrints ID: 250471
URI: http://eprints.soton.ac.uk/id/eprint/250471
PURE UUID: 4557225e-2c6d-44a9-ad48-ef1364332e07

Catalogue record

Date deposited: 01 Jun 1999
Last modified: 26 Feb 2024 18:03

Export record

Contributors

Author: J. Wood

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×