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This paper presents the results of the EFOOL project. EFOOL
(Evaluation of Functional and Object-Oriented Languages) is a quan-
titative evaluation of the functional and object-oriented paradigms.
The aim of the project is to investigate whether or not the quality
of code produced using a functional language is significantly different
from that produced using an object-oriented language.

During the EFOOL project, 12 sets of algorithms were developed,
together with a number of utility functions, in both SML and C++.
The algorithms were all taken from the image analysis domain. Strict
constraints were imposed during the development cycle in order to
improve the reliability of the results.

The statistical tests did not reveal any significant differences for
the development metrics used which are associated with quality, such
as the number of known errors, the number of modification requests,
a subjective complexity assessment and so on. Significant differences
were found for various code metrics, including the number of dis-
tinct functions called, the number of distinct library functions called,
and the ratio of these, which is a measure of code reuse. Finally, a
significant difference was also found for the time taken to test the
programs, due to different compilation techniques and a difference in
the number of test cases executed.

1 Introduction

This paper presents the results of the EFOOL project. EFOOL is a quantitative
evaluation of the functional and object-oriented paradigms. The aim of the
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project is to investigate whether or not the quality of code produced using a
functional language is significantly different from that produced using an object-
oriented language.

Prior to undertaking this analysis we performed a preliminary investigation
to establish a baseline of quality indicators to determine whether the suggested
indicators could be used as metrics for the remainder of the project. The results
of these preparatory studies are reported in detail in [?, ?], and are discussed
briefly in the following section.

The aim of the research presented here was to investigate the following:

Does the quality of code produced using a functional language differ
from that produced using an object-oriented language ?

This paper reports on the results of performing a quantitative analysis of
certain internal attributes which reflect various quality-type properties for a set
of object-oriented and functional programs.

2 Method

During the EFOOL project, 12 sets of algorithms were developed, together with
a number of utility functions, in both SML and C++. The algorithms were all
taken from the image analysis domain. Strict constraints were imposed during
the development cycle in order to reduce the confounding effects of the experi-
mental variables, as described later in this section. The project team adhered
to industrial practices as much as possible, adopting quality assurance methods
from industry for the production of requirements, design, and testing documen-
tation, as well as following standard techniques from industry for walkthroughs
and code reviews.

Defining and measuring software quality is extremely difficult. The classifi-
cation, validation and application of metrics has aroused much debate. Fenton
[?] proposes a classification system for software measurement which has three
main headings for entities whose attributes may be measured: product, process
and resource. In addition, attributes of entities (such as size, modularity, reuse,
etc.) may be either internal (meaning that they can be measured in terms of
the product, process or resource itself) or external (in which case they can only
be measured by considering their relationship with the environment).

In this project our aim was to quantify the quality of the delivered code. Of
particular interest to us were the external product attributes of the code such as
reliability, usability, maintainability, testability, reusability and so on. However,
these external attributes are extremely difficult to quantify. Instead of trying
to measure these external attributes directly, we performed an experiment in
which two sets of measurements were collected during the software development
process. The first set consisted of a number of development metrics which were
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assumed to be indicative of the external quality-type attributes of the code
[?, ?].

• the number of known errors found during code reviews, testing and main-
tenance (KE)

• the time to fix known errors (TKE)

• the number of modifications requested during code reviews, testing and
maintenance (MR)

• the time to implement modifications (TMR)

• a subjective assessment of complexity, provided by the system developers
(SC).

The second set consisted of measures of certain internal attributes of the
code, such as length, the number of functions called, the number of functions
declared etc., which can be easily measured by examining the delivered code.
These measures of internal attributes, which we will refer to as suggested in-
dicators or code metrics were collated and tested for correlation against the
development metrics listed above.

Using Fenton’s classification system, the development metrics would be clas-
sified as internal process measures whereas the code metrics would be classified
as internal product measures.

Thus EFOOL has addressed 2 questions within one project :

1. is there any correlation between this set of development metrics (known
errors, modification requests, subjective complexity, etc.) and the set of
chosen suggested indicators (non-comment source lines, number of distinct
domain-specific functions called, number of function declarations etc.) ?

2. is there any significant difference between the quality of the code for the
2 different languages ?

If a significant correlation is found between the development metrics and the
suggested indicators in (1), then:

a) in future projects we can use static analysis of delivered code to determine its
quality as far as modules which are prone to faults, changes, or subjective
complexity are concerned. Noting known errors etc. during development
then becomes unnecessary.

b) existing code could be assessed for such features very simply.

c) both the development metrics and the suggested indicators could be used to
answer question (2).
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Significant correlations were detected for many of the suggested indicators;
full details are given in [?, ?]. In particular, the number of non-comment source
lines and the number of function definitions were found to be closely correlated
to the development metrics for both paradigms. Also, the number of distinct
functions called and the number of domain-specific functions called were found
to be correlated to the number of known errors for both paradigms. Further
discussion of this research is given in section 6 (Analysis and results).

An answer to question (2) will enable us to offer guidelines to software devel-
opers who face a choice of languages when implementing particular applications.
If no significant difference is found then other considerations, such as a subjec-
tive preference, may become an important factor in the decision.

The result of the investigation may be confounded by a number of variables:

• the experience of the developers with the application

• the experience of the developers with the programming languages

• the application domain

• the development environment

In order to try to reduce the impact of these variables, only one developer
was employed for the entire project. Both the application domain, image anal-
ysis, and the development environment were kept constant throughout, except
for a C++ compiler upgrade which occurred halfway through the project. This
necessitated one minor modification which was included in the recorded statis-
tics. The developer implemented a number of utility functions and nine image
analysis algorithms in SML during the first three months of the project; during
the second three months the same algorithms were implemented in C++. For
the second half of the project, two more substantial image analysis algorithms
were implemented in C++ and then in SML. It was hoped that switching the
order of development in this way would help to reduce the confounding effects
which may occur due to the developer’s increased knowledge of the application
domain and of the programming languages. The programs developed during
the second half of the project were fairly complicated, and relied on some of
the software developed earlier. Consequently it was necessary to maintain the
programs developed early on in the project life cycle for the duration of the
project.

The developer was assigned full time to the project, and worked in con-
junction with application domain experts who acted as customers by specifying
requirements and providing acceptance test data. The expected test output was
produced, wherever possible, by testing the developed programs against exist-
ing programs written in imperative languages (back-to-back testing). Where
imperative programs were not available, expected output was derived from first
principles. Progress was monitored very carefully to ensure that the collec-
tion of the metrics could be done in a controlled and accurate manner: the
project began with a period of analysis prior to the language specific parts of
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the project (design, implementation, testing and maintenance). All documenta-
tion and code was reviewed on a fortnightly basis. Language specific test scripts
were developed for all of the programs during the design stages.

The method used for this experiment was influenced by [?] and by the guide-
lines provided by the DESMET project [?].

3 The application domain

The EFOOL project has developed twelve algorithms taken from the image anal-
ysis domain. Restricting the domain in this way reduces the number of variables
in the experiment and should help to produce more reliable results. A range of
algorithms were specified, designed and implemented, varying from low level al-
gorithms which operate on an image array and produce image arrays as output
(for example, convolution algorithms) to intermediate level algorithms which
operate on image arrays and produce symbolic output (for example, curvilinear
feature extraction algorithms).

4 Data collection

The following development metrics (DMs) were collected for every program.

• the number of known errors found during code reviews, testing and main-
tenance (KEs).

• the time to fix the known errors (TKEs), measured in minutes.

• the number of modifications requested (MRs) during code reviews, testing
and maintenance. This represents the number of changes which were
requested excluding changes for fault clearance.

• the time to implement modifications (TMRs), measured in minutes.

• a subjective assessment of complexity (SC), provided by the system de-
veloper. This is based on an ordinal integer scale from 1 to 5, where 5
represents the most complex code.

These attributes were measured quantitatively: timings were measured in
minutes, and a note was kept of each known error and modification request
which occurred. The subjective complexity was given by the developer using
an integer from 1 to 5. The programming languages were used during the
design, implementation and testing of the programs. The development metrics
were collected during implementation, testing and maintenance of the code, and
were used in correlation analyses to determine the utility of the code metrics
listed later in this section.

In addition to the above, the following development metrics were also col-
lected:
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• the time taken to develop the programs, measured in minutes (DT)

• the time taken to test the programs, measured in minutes (TT)

These times refer to connect time, that is, actual elapsed time.
The code metrics collected are listed below:

• ncsl: the number of non-comment, non-blank source lines (referred to as
non-comment source lines). This was collected automatically after deliv-
ery of the source code.

• the number of distinct functions, N* which are called by the program.
Each function is only counted once, no matter how many times it is called.

• the number of distinct library functions, L which are called by the pro-
gram. In this context, a library function is a general purpose function
whose application is not restricted to the image analysis domain

• the number of distinct domain-specific functions, D, where D = N* - L,
called by the program.

• the depth of the function hierarchy chart.

• the number of function declarations, dec, which are specified within a
program. This represents the size of a program’s public interface.

• the number of function definitions, def, which are coded within a program.
This represents the number of functions which have been implemented
specifically for one program.

The code metrics were collated after testing, acceptance and maintenance
of the programs. The code was tested rigorously through the use of test scripts
with assertions. Only when all known errors were fixed was the code accepted
as finished. The suggested indicators were produced by static analysis of the
source code following final acceptance testing and a period of maintenance.

Twelve sets of image analysis algorithms were developed, together with a
set of general purpose library functions. During the SML development, 176
functions were defined, consisting of a total of 3,525 non-comment source lines;
this required 72 hours of connect time (staff hours) for the implementation and
39 hours for testing. The C++ development produced 109 functions, consisting
of 3001 non-comment source lines. Implementation took just over 60 hours of
connect time and testing required a further 19 hours. Full details of the results
are given in Tables 1 and 2.

5 Analysis and results

The aim of this analysis was to determine whether or not there is a significant
difference in the quality of code produced using functional and object-oriented
languages.
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Earlier investigations [?, ?] used box plots to consider the distributions of
the data sets and found them to be skewed. This was to be expected, as data
collected from software development is rarely distributed normally [?, ?].

The Kruskal-Wallis one-way analysis of variance by ranks can be used to
analyse data which is not normally distributed. [?, ?]. The values from the
data sets are ranked and the averages for each data set are calculated. The test
assesses whether the difference between the averages of the ranks is significant.

The results of the Kruskal-Wallis analysis of the corresponding SML and
C++ programs are shown in Tables 3 and 4.

The significant differences (at the 5% level) are listed below, together with
the percentage increase which the SML programs demonstrated over the C++
ones:

• the time taken to test the programs, 105% more

• the number of known errors per 1,000 non-comment source lines, 118%
more

• the number of functions called, N*, 58% more

• the number of library functions called, L, 281% more

• L/N*, a measure of reuse, 142% more

Testing time showed a significant difference: the SML code took 39 hours to
test compared with 19 hours for the C++ code. This can partly be explained
by the fact that the C++ compiler produces executable object code which can
be run from the command line, whereas the complete SML system must be
reloaded in order to run the tests written in SML; although executable object
code can be produced by the SML compiler used for this project, the procedure
for doing so is not straightforward, and so this facility was not utilised. Another
reason for the longer SML testing time is the number of tests which were run:
253 test cases were run for the SML code, compared with just 158 for the C++
programs. This may be due to the larger number of functions called by the SML
programs.

The number of known errors per 1,000 non-comment source lines was higher
for the SML code than for the C++ code (107 compared with 49), a difference
which is significant at the 5% level. Values of 20 to 40 errors per one thousand
lines of code [?] are typical of software development projects which use struc-
tured programming techniques and formal inspections, and 50 to 60 errors per
thousand lines are cited for software developed with unstructured designs and
informal testing. The high values reported here were due at least in part to
the decision to record all errors, including syntactical ones. An analysis of the
errors reported is currently underway.

There were no significant differences in the following development metrics:
the number of known errors, the number of modification requests, the times
taken to fix faults and make changes, development times and subjective com-
plexities.
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Turning to the code metrics, there were no significant differences in 5 of the
7 suggested indicators (ncsl, D, depth, dec and def). Of these, ncsl and def had
been found previously to be closely correlated to the development metrics for
both paradigms, confirming the lack of difference in the quality-type attributes
measured by the development metrics.

Both N* and D had previously been found to be correlated to the number
of known errors for both paradigms. The difference in the number of distinct
functions called, N*, was found to be significant, whereas the number of distinct
domain-specific functions called, D, was not. From this we conclude that the
difference in N* does not necessarily imply a difference in the number of known
errors: this is confirmed by the statistics for the number of known errors.

There is a significant difference in the number of library functions called; this
showed no sign of being correlated with the quality-type development metrics
in our previous work.

The metric L/N*, the ratio of the number of distinct library functions called
to the total number of distinct functions called, shows a significant difference due
to the difference in the number of library functions called. The metric, which
should lie between 0 and 1, will be equal to 0 only if no reuse has taken place, but
will tend towards 1 as the amount of reuse increases. In this study the SML code
exhibited greater potential for reuse than the C++ code. However, it should
be noted that these figures are affected by the large number of list processing
functions (such as map, fold, hd, tl, take, drop, length and so on) which are
routinely used by SML programmers. Such functions are commonly used in the
composition of functional programs. This should be contrasted with the C++
libraries which are usually used to provide more specialised functionality, such
as the iostream, string and maths libraries.

In conclusion we may state that in this investigation only a few differences
in the quality-type attributes of code written in functional and object-oriented
languages have been detected. Further research is planned to determine whether
these results would be repeated in a large scale experiment.

6 Conclusions

In this investigation we have compared both development metrics and code met-
rics for sets of programs developed using languages from 2 different paradigms.
Using algorithms taken from the image analysis domain we performed the entire
life cycle for a suite of 12 programs, using both a functional and an object-
oriented language.

We found no significant differences in the development metrics except for
the length of testing time, where it was discovered that the code written using
SML took twice as long to test as that written using C++, and the number of
known errors per 1,000 non-comment source lines. Turning to the code metrics,
we again found very few significant differences; no significant difference was
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found in the number of non-comment source lines nor was there any significant
difference in the number of function definitions, and both of these had previously
been found to be correlated with quality-type attributes for both paradigms.
However, 60% more functions were called in the SML code than in the C++,
and nearly four times as many library functions. These statistics are reflected
in a metric for reuse, which showed that the SML code exhibited one and a
half times as much reuse as the C++ code. These results suggest that the use
of functional programming languages may encourage a greater degree of reuse
than does the use of object-oriented languages. It must be stressed that this
is due (at least in part) to the large number of list processing functions which
were utilised in the SML programs.

More significant, however, are the differences which were not found; no sig-
nificant differences were found in the following process metrics: the numbers of
known errors, modification requests, the times to attend to these, a subjective
measure of complexity, and the total development time.
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Development
Metrics SML C++
KE 170 109
(KE/ncsl)*1000 107 49
MR 164 122
SC 34 35
TKE 971 1167
TMR 687 473
DT 4324 minutes 3629 minutes
TT 2349 minutes 1148 minutes

Table 1: SML and C++ results: development metrics

Suggested
Indicators SML C++
ncsl 1595 2223
N* 339 214
L 100 26
D 239 188
L/N* 0.29 0.12
depth 51 35
dec 52 57
def 176 109

Table 2: SML and C++ results: code metrics

Development
Metrics Kruskal-Wallis probability
KE 2.37 0.12
(KE/ncsl)*1000 11.98 0.00*
MR 0.48 0.49
SC 0.06 0.81
TKE 0.24 0.63
TMR 0.29 0.59
DT 1.11 0.29
TT 4.32 0.04*
* significant at the 5% level

Table 3: Kruskal-Wallis test results for the development metrics
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Suggested
Indicators Kruskal-Wallis probability
ncsl 1.22 0.27
N* 6.87 0.01*
L 12.92 0.00*
D 1.52 0.22
L/N* 5.76 0.02*
depth 0.07 0.79
dec 3.29 0.07
def 2.71 0.10
* significant at the 5% level

Table 4: Kruskal-Wallis test results for the code metrics
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