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Abstract— A method for calculating genetic drift in terms
of changing population fitness variance is presented. The
method allows for an easy comparison of different selection
schemes and exact analytical results are derived for tra-
ditional generational selection, steady-state selection with
varying generation gap, a simple model of Eshelman’s CHC
algorithm, and (u + A) evolution strategies. The effects
of changing genetic drift on the convergence of a GA are
demonstrated empirically.
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I. INTRODUCTION

ENETIC drift is a term borrowed from population ge-

netics where it is used to explain changes in gene fre-
quency through random sampling of the population. It is
a phenomenon observed in genetic algorithms (GA) due
to the stochastic nature of the selection operator, and is
one of the mechanisms by which the population converges
to a single member. Analysis of genetic drift is often per-
formed by calculating the Markov chain transition matrices
and hence finding the time for the system to reach an ab-
sorption state where all population members are identical.
Comparisons in the genetic algorithm literature are often
performed numerically in this fashion [1], [2]. In population
genetics some work has been to done to solve this analyt-
ically [3], [4], [5] however the results are approximations
and are difficult to generalise to other cases.

Analysis of selection schemes such as those by Priigel-
Bennett and Shapiro [6], [7], [8], Rattray [9] and
Miihlenbein [10] show that the change in mean fitness at
each generation is a function of the population fitness vari-
ance. At each generation this variance is reduced due to
two factors. One factor is selection pressure producing mul-
tiple copies of fitter population members whilst the other
factor is independent of population member fitness and is
due to the stochastic nature of the selection operator —
genetic drift. The loss in population fitness variance due
to genetic drift thus has a direct effect on the performance
of the genetic algorithm. By considering neutral selection
we decouple the effect of selection pressure and can see the
effect of genetic drift directly.

This paper presents a method of calculating the rate of
genetic drift in terms of this change in population fitness

variance. Unlike calculations in terms of convergence time,
this approach lends itself to an exact analytical solution.
We are able to derive a general expression for the change in
population fitness variance due to genetic drift and apply
it to the range of selection schemes used in evolutionary al-
gorithms. We first consider the generational GA and then
compare it to steady-state selection where one member is
drawn from the population, replicated, and replaces an-
other population member chosen at random.

To generalise between these two extremes, De Jong [1],
[11] introduced the term generation gap, G, which describes
the percentage of the population selected from the initial
population at each time step. For generational selection
G =1 and for steady-state selection G = 1/P. We follow
this generalisation and calculate the change in variance for
any value of generation gap.

The formalism can also be extended to other non tradi-
tional selection schemes such as that used in Eshelman’s
CHC algorithm [12]. Here we confirm analytically an ob-
servation made by Schaffer et al. [2] that shows using a
numerical Markov chain analysis that a simple model of
CHC style selection exhibits half the rate of genetic drift
of the traditional genetic algorithm. The simple model of
the CHC algorithm is equivalent to selection schemes in
evolution strategies and we can generalise the approach for
these selection schemes.

In Section II we derive the result which enables us to
calculate the rate of genetic drift. In Section III we present
the analytical results for different selection schemes and
compare them to simulation results. Section IV contains
details of the calculations and in Section V we discuss the
results and their implications on the performance of genetic
algorithms.

II. POPULATION FITNESS VARIANCE

If we consider an initial population of P discrete mem-
bers each with fitness F,, the variance (k2) of the popula-
tion fitness distribution is simply given by,
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We can separate out terms that are not independent to
give,
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We now apply some selection scheme to this population
and draw from it a new population of P individuals. In
this new population there are now n, copies of population
member F,, and the variance of the new population fitness

distribution is given by,
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Again we can separate out terms that are not independent,
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To consider the average case, we average over all ways of
performing selection. In the case of neutral selection, n,,
is independent of F, and these terms may be taken out-
side the summation and the expected population fitness
variance considered,
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To simplify this result further, we use the fact that popu-
lation size is kept constant and thus E [n] = 1. We can use
this to derive the identity,
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Averaging over all possible selections gives,
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P? = PE [n?] + P (P —1)E[nang], (7)
and thus,
E[nang] = %_[f] (8)

Substituting this expression into eqn. (5) gives,
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The term within the square brackets is simply the fitness
variance of the initial population given in eqn. (2) and thus,
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We can find the change in population fitness variance for
any selection scheme simply by calculating E [n2] — the
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expected square of the number of times any population
member is selected. This is related to the variance in the
number of times any member is selected — V [n]. AsV [n] =
E[n?] —E [n)?, we can rewrite eqn. (10) in these terms,

cig= (1- 20,

This expression is the basis for the results derived in this
paper. It describes the change in population fitness vari-
ance due to selection, genetic drift, in terms of the variance
in the number of times any individual is selected.

(11)

III. RESULTS

The change in the population fitness variance due to se-
lection, genetic drift, is dependent only on the variance of
the number of times any individual population member is
selected - V [n]. If we select each population member once
and only once then V [n] = 0 and our expression in eqn. (11)
is equal to one. As expected we see no change in population
variance — indeed the population has not changed.

To compare each selection scheme we need only calcu-
late V [n]. To allow direct comparison between traditional
generational selection we normalise the results to one gen-
eration — we apply steady-state selection P times and se-
lection with generation gap G, 1/G times. We define the
ratio r as the change in variance after one generation,

(12)

This gives a very simple picture of the change in genetic
drift for differing selection schemes. We present the calcu-
lations in more detail in the next section but give the results
here. Whilst the first expression for generational selection
is exact, the other expressions are approximations that are
accurate to terms in 1/P.
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The rate of genetic drift in generational selection is well
known as the result of sampling P times with replacement
from a finite population.

(9)The rate of genetic drift in steady state selection is twice
that of generational selection. This result has previously
been shown by the authors [13] in an analysis of steady
state selection using Boltzmann selection. Varying the gen-
eration gap produces a smooth progression between these
two limits.

The simple model of the CHC algorithm shows half the
genetic drift of the generational selection scheme. This is
in agreement with the empirical observation and numerical
Markov chain comparison by Schaffer et al. [2].
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Fig. 1. Population fitness variance for five different selection
schemes. Solid lines are analytical results and error bars
are simulation results averaged over 10,000 runs. Curves
presented are steady-state (SSGA), generation gap G=0.2,
generation gap G=0.5, generational (GA), and a simple
model of the CHC algorithm (CHC). Population size is
100.

Figure 1 shows a comparison of these analytical results
with simulation data. A population of 100 was initially
drawn from a normal distribution (ke = 1) and selection
repeatedly performed. The plot shows the decreasing pop-
ulation fitness variance for five different selection schemes
— steady-state selection (SSGA), generation gap G = 0.2,
generation gap G = 0.5, traditional generational selection
(GA), and CHC style selection (CHC). Simulation data
were averaged over 10,000 runs.

IV. PERFORMING THE CALCULATIONS

To calculate V [n] for each selection scheme is an exercise
in probability. We use two results from standard probabil-
ity theory regarding binomial and hypergeometric distri-
butions [14].

Selecting from a population with replacement gives rise
to a binomial distribution B (N, p) where we select N times
with probability of success p. In this case, the expected
number of times any individual is selected and its variance
are given by,

V[n] = Np(1-p).

When we are selecting without replacement, the result is a
hypergeometric distribution H (M, m, N). Here M is the
size of the population, N is the number of times we select
and m is the number of copies of each individual in the
initial population. This gives the known result,
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In each case we calculate E [n] to check that population size
is conserved, as expected, and then use V [n] in eqn. (11)
to give the expected change in population fitness variance
and thus the rate of genetic drift.

A. Generational Selection

In a generational selection scheme under random sam-
pling, we are drawing P members from a population with
replacement. This gives rise to a binomial distribution,
B (P,1/P) and thus,

Eln] = 1
1-1/P.

As required E[n] = 1 and we can thus substitute V [n]
directly into eqn. (11) to give,

1
E[xy] = <1 — P) Ka- (13)
Using the definition of r in eqn. (12),
1
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B. Steady-State Selection

In the steady-state genetic algorithm we select one mem-
ber at random, replicate it, and replace another random
member with the copy in each time step.

We can calculate this by dividing the population into
two. We draw one member with replacement into subpop-
ulation A and then draw P — 1 members without replace-
ment into subpopulation B. We then combine these two to
form the next population. For subpopulation A we have a
binomial distribution B (1,1/P) and hence,

E [nA} ==
Vina] =

1/P
(P—1)/P%

For subpopulation B we have a hypergeometric distribution
H (P,1,P — 1) and hence,

E [TLB] =
Ving] =

1-1/P
(P—-1)/P

Since the two populations are independent, we can simply
sum for the final population,

E[n] = E[na]+ERng]=1
V [n] V[nal +Vng] = 2(P —1)/P>.
As required E[n] = 1 and we can thus substitute V [n]

directly into eqn. (11) to give,
(15)

It is often more convenient to compare P of these selections
to one generational selection so using the definition of r as



the change after one generation,
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It is clear that the rate of genetic drift is twice that of the
generational case.

C. Varying Generation Gap

To generalise between these two cases we use the con-
cept of generation gap (G). We select GP members with
replacement from the original population and delete GP
members at random to make room.

Again we can consider two subpopulations. We draw G P
members with replacement from the original population
into subpopulation A and then draw P(1 — G)) members
without replacement into subpopulation B.

For subpopulation A we have a binomial distribution
B (GP,1/P) and hence,

E[TLA] =G
Vnal=G(1-1/P).

For subpopulation B we have a hypergeometric distribution
H (P,1,P — GP) and hence,

E[’I’LB]:l—G
Vng] =G —G?

Again we simply sum these for the final population,

E[n]
Vn] =2G -G*-G/P.

As required E[n] = 1 and we can thus substitute V [n]
directly into eqn. (11) to give,

(17)
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To compare this to one generation we apply the selection
operator 1/G times. Thus approximating to first-order
terms in 1/P we get,

26 -G G/P\®
P-1
1_ﬂ.
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Thus there is a gradual transition between the two rates of
genetic drift as generation gap changes.

D. CHC Algorithm and Evolution Strategies

Eshelman’s CHC algorithm uses another non traditional
form of selection whereby crossover is performed amongst
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the initial population and then selection is performed with-
out replacement from the combined population of parents
and offspring.

A simple model of this used by Schaffer et al. [2] in
a numerical genetic drift comparison is to duplicate each
member of the population and then draw P members from
the population of 2P without replacement. In terms of
evolution strategies this is (u 4+ \) selection with A = p.

This selection gives rise to a hypergeometric distribution
H (2P, 2, P) where we select P times from an initial popu-
lation of 2P which consists of two copies of each individual.

Eln] = 1
V [n] (P-1)/(2P-1).

As required E[n] = 1 and we can thus substitute V [n]
directly into eqn. (11) to give,

E (] = (1 - 2P17 1) .

As we draw P members from the population, we can com-
pare this directly to the generational case and simply make
a first-order approximation,

(19)

1
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Thus genetic drift in this model of CHC selection is at half
the rate of that of the traditional generational algorithm.

Whilst we have only considered the case here equivalent
to CHC selection, the technique presented is immediately
applicable to other evolution strategy selection schemes.
When X is a whole number multiple of u, the above ap-
proach gives the correct expression. However the more
common and more interesting case where \ is some fraction
of p is more complicated due to the need to average over
the population.

We consider a (u+ A) evolution strategy where yu = P
and A = sP where s is some fraction, 0 < s < 1. When we
apply selection, we are selecting from two subpopulations,
one consisting of P(1 — s) individuals and the other of size
2sP containing sP pairs. If n; is the number of individuals
and ny the number of pairs in the final population, the
variance in the number of times any population member is
selected can be shown to be simply,

(20)

277/2

P
as PE[n] = ny + 2no, PE[n?] = ny + 4ns, E[n] = 1 and
V[n] = E [n?] —E[n]>. If we draw X times without replace-
ment from the subpopulation of pairs, the number of pairs

drawn and thus the number of pairs in the final population
is given by,

Vin] = (21)

X2 - X

2(2sP — 1) (22)

ng =
Substituting eqn. (22) into eqn. (21) and averaging over X
gives,
E[X?] - E[X]

Vinl P(2sP — 1)

(23)
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The expectations of X are described by the hypergeomet-
ric distribution H (P(1 + s),2sP, P), as we are drawing P
times without replacement from a population of P(1 + s).
Using V [X] = E [X?] — E[X]® and the standard results
for the hypergeometric distribution given earlier, gives the
result,

2s(P —1)
(1+s)[P(1+s)—1]

Vin] = (24)
As before, we can substitute V [n] directly into eqn. (11)
and normalise the expression by applying the selection 1/s
times to give the final rate of genetic drift,

(1 28 > 1/8
(I+9)[P(Q+s)—1]
2
- ——. (25)
(I+s)°P
The rate of genetic drift covers the same range as that
seen for the genetic algorithm selection schemes. Figure 2
shows a plot of these analytical result against simulation
data. Four different values of s are considered and the
population size is again 100.
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Fig. 2. Population fitness variance for (u+ su) selection for

varying s. Solid lines are analytical results and error bars

are simulation results averaged over 10,000 runs. Popula-

tion size is 100.

V. DISCUSSION

Analysing genetic drift in terms of the change in popula-
tion fitness variance allows exact analytical expressions to
be derived for any selection scheme. From these expressions
we can make some comparisons of the effect that genetic
drift has on the convergence of a GA under varying gener-
ation gap. If we consider a GA using a small population
and weak selection, these effects will be most pronounced.

Figure 3 shows the population fitness mean and variance
for steady state, generational, and varying generation gap

(G = 0.2 and 0.5) implementations of GA on the ONE-
MAX problem. All use a population size of 50 with prob-
abilistic tournament selection (s = 0.1), string length 96,
point mutation rate 1/96, and uniform crossover. CHC is
not included in the comparison as the other features of the
algorithm lead to more significant differences than genetic
drift alone.

Selection pressure is the same in each case as evidenced
by the identical initial gradients of the mean fitness curves.
As variance decreases through selection, the change in
mean fitness decreases. For the steady state GA, variance
decreases fastest due to the higher rate of genetic drift and
thus the mean fitness evolves to a lower final value.
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Fig. 3. Population mean fitness and variance for four dif-
ferent selection schemes. Simulation results are averaged
over 10,000 runs and the error bars are the thickness of the
lines. Curves presented are (in order) steady-state (SSGA),
generation gap G=0.2, generation gap G=0.5, and genera-
tional (GA).

These results illustrate how genetic drift can influence
the convergence of a GA. It is not always detrimental, how-
ever. In another paper analysing steady-state Boltzmann
selection [13], the authors show that in the weak selection
limit, rescaling the parameters of a steady-state GA enable
it to reproduce the dynamics of a generational GA but at
half the computational cost. Definitive statements about
the performance of different selection schemes are difficult
to make. However it is clear that genetic drift is another



factor, alongside more commonly understood factors such
as selection pressure, which affects the convergence of the
GA and can be controlled by the choice of selection scheme.
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