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Abstract. Dynamic binding, which traditionally has always been associated with Lisp, is still
semantically obscure to many. Even though most programming languages favour lexical scope,
not only does dynamic binding remain an interesting and expressive programming technique in
specialised circumstances, but also it is a key notion in formal semantics. This article presents a
syntactic theory that enables the programmer to perform equational reasoning on programs using
dynamic binding. The theory is proved to be sound and complete with respect to derivations
allowed on programs in “dynamic-environment passing style”. From this theory, we derive a se-
quential evaluation function in a context-rewriting system. Then, we further refine the evaluation
function in two popular implementation strategies: deep binding and shallow binding with value
cells. Afterwards, following the saying that deep binding is suitable for parallel evaluation, we
present the parallel evaluation function of a future-based functional language extended with con-
structs for dynamic binding. Finally, we exhibit the power and usefulness of dynamic binding in
two different ways. First, we prove that dynamic binding adds expressiveness to a purely func-
tional language. Second, we show that dynamic binding is an essential notion in semantics that
can be used to define exceptions.
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1. Introduction

Dynamic binding has traditionally been associated with Lisp. It appeared in Mc-
Carthy’s Lisp 1.0 [38] as a bug and became a feature in all later implementations,
such as MacLisp [42], Gnu Emacs Lisp [37]. Even modern dialects of the language
favouring lexical scope provide some form of dynamic binding, with special decla-
rations in Common Lisp [64], or even simulate dynamic binding by lexically-scoped
variables as in MIT Scheme’s fluid-let [29].

Let us here and now define the notions of binding and scope as we use them in
this article. A binding is an association between a name (or a variable) and a value.
The scope of a name binding is the text where occurrences of this name refer to the
binding. In most programming languages, the scope of a name can be determined
statically; these languages are said to be lexically or statically scoped. According to
lexical scope, a variable in an expression refers to the innermost lexically-enclosing
construct declaring that variable. This rule implies that nested declarations follow
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a block structure organisation. Variables following the lexical scope rule are said
to be lexically-scoped variables or lexical variables.

On the contrary, if the scope of a name cannot be determined statically, the scope
is said to be indefinite [64] as references to the name may occur anywhere in the
program. Program execution introduces the notion of dynamic extent. The dy-
namic extent of an expression is the lifetime of this expression, starting and ending
when control enters and exits this expression. A dynamic binding is an association
that exists and can only be used during the dynamic extent of an expression. A
dynamic variable refers to the latest active dynamic binding that exists for that
variable [1]. We shall also refer to dynamic binding as the act of creating bindings
for such dynamic variables. The expression dynamic scope is convenient to refer to
the indefinite scope of a variable with a dynamic extent [64].

Lexical scope has now become the norm, not only in imperative languages, but
also in functional languages such as Scheme [56], Common Lisp [64], Standard ML
[40], or Haskell [33]. However, we observe that some programming languages still
offer dynamic binding. Not only does dynamic binding remain an interesting and
expressive programming technique in specialised circumstances, but also it is a key
notion in formal semantics.

Dynamic binding was initially defined by a meta-circular evaluator [38] and was
later formalised using a denotational semantics by Gordon [21, 22, 23, 24]. Tt is also
part of the folklore that there exists a translation, the dynamic-environment passing
translation, which translates programs using dynamic variables into programs using
lexical variables only [52, p. 180]. Like the continuation-passing transform [51,
63], the dynamic-passing translation adds an extra argument to each function, its
dynamic environment, and every reference to a dynamic variable is translated into
a lookup in the current dynamic environment.

The late eighties saw the extension of syntactic techniques to theories allowing
equational reasoning on programs using non-functional features such as first-class
continuations and state [15, 16, 17, 66]. Those frameworks were later extended to
take into account parallel evaluation [14, 19, 43, 44]. The purpose of this article is
to present a syntactic theory that allows the user to perform equational reasoning
on programs using dynamic binding. Our contribution is fivefold.

1. From the dynamic-environment passing translation, we construct an inverse
translation. Using Sabry and Felleisen’s technique [58, 59], we derive a set
of axioms and define a calculus, which we prove to be sound and complete
with respect to the derivations accepted in dynamic-environment passing style
(Section 3).

2. We devise a sequential evaluation function, i.e., an algorithm, which we prove
to return a value whenever the calculus does so; the evaluation function relies
on a context-rewriting technique [16] (Section 4).

3. We refine our evaluation function in two different strategies commonly used to
implement dynamic binding: deep binding facilitates the creation and restora-



tion of dynamic environments, while shallow binding with value cell allows access
to dynamic variables in constant time (Section 5).

4. We extend our framework to parallel evaluation, based on the future construct
[19, 28, 44]. We define a parallel evaluation function which also relies on the
deep binding technique (Section 6).

5. In order to strengthen our claim that dynamic binding is an expressive pro-
gramming technique and a useful notion in formal semantics, we give a formal
account of its expressiveness and use it to define exceptions. On the one hand,
we define a relation of observational equivalence using the evaluation function,
and we prove that dynamic binding adds expressiveness [12] to a purely func-
tional programming language, by establishing that dynamic binding cannot be
macro-expressed in the call-by-value lambda-calculus (Section 7). On the other
hand, we use dynamic binding as a semantic primitive to formalise two different
models of exceptions: non-resumable exceptions as in ML [40] and resumable
ones as in Common Lisp [50, 64] (Section 8).

This article is an extended version of a preliminary report [45]: it contains the
proofs of the different theorems and it describes shallow binding with value cell.
Before deriving our calculus, we introduce dynamic binding intuitively, and we
further motivate our work by describing three broad categories of use of dynamic
binding: conciseness, control delimiters, and distributed computing.

2. Motivation

Let us insist here and now that our purpose is not to denigrate the qualities of
lexical scope, which is the origin of the block structure organisation. However, we
observe that a number of concepts can be explained in terms of dynamic binding.
Therefore, our goal is to present a theory that allows equational reasoning on dy-
namic binding. As a corollary, we are able to claim that dynamic binding is an
expressive programming technique if used in a sensible manner; we also show that
dynamic binding can be used to define the semantics of other constructs elegantly.

2.1. Dynamic Binding vs. Lexical Binding

A majority of programming languages have adopted lexical scope. The scope of a
name binding is the text where occurrences of that name refer to the binding; lexical
(or static) scope can be determined statically, as we illustrate on the program given
in Figure 1. The variable y is bound at line 1 and the scope of this binding for y
is the whole program, except the body of the let block (line 10) where the new
binding for y shadows the binding at line 1. In particular, the free occurrence of y
in showy at line 6 refers to the binding at line 1, and its value is always 0. As a
result, the evaluation of this program displays the following text:



1. The value of y 1s 0.
2. The value of y is 0.
3. The value of y is 0.

The value of a lexical variable i1s given by the binding created by the innermost
lexically-enclosing construct declaring that variable.

However, some programming languages still offer dynamic binding. The most
widespread ones are Perl [67], TEX[36], Common Lisp [64], and Unix™ shells
such as Bash [55]. As opposed to a lexical variable, which refers to the innermost
lexically-enclosing construct declaring it, a dynamic variable refers to the latest
active dynamic binding that exists for that variable.
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fun showy (n : int) =
( print n;
print ". The value of y is ";
print y );

showy (1);
let val y = 1
in showy (2)
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end ;
showy (3);

.
e

Figure 1. Lexical Scope in Standard ML

Figure 2 illustrates the behaviour of dynamic variables by rewriting the program
of Figure 1 into Perl, TEX, Common Lisp, and Bash. All these examples display:

1. The value of y is 0.

2. The value of y is 1.

3. The value of y is 0.

The value of y can no longer be determined statically, but it is given at runtime
by the latest active binding for y. For instance, the second printed value of y is
the value of y given by the dynamic binding created in lines 20, 27, 35, or 40. The
examples also show that when the dynamic binding to the value 1 is no longer
active, the value displayed for y is again (. In other words, the dynamic binding
to the value 1 is only active during the extent of the expression that created this
binding. Finally, let us note that, by default, Perl and Common Lisp feature lexical
variables: dynamic variables are declared by the local and special keywords, at
lines 20 and 35, respectively.



13 $y = 0;

14

15 sub showy {

16 printf("%s. The value of y is %d", €_, $y);
17 %

18

19 showy (1);

20 {local $y=1; showy(2);}

21 showy(3);

22 \def\y{0}

23

24 \def\showy#1{#1. The value of y is \y\par}
25

26 \showy{1}

27 {\def\y{1}\showy{2}}

28 \showy{3}

29 (defvar y 0)

30

31 (defun showy (n)

32  (format t ""D. The value of y is "D7%" n y))
33

34 (showy 1)

35 (let ((y 1)) (declare (special y)) (showy 2))
36 (showy 3)

37 Y=0;

38

39 showy () { echo "$1. The value of y is $Y" ; }
40 showy2 () { local Y=1 ; showy 2 ; }

41

42 showy 1 ;

43 showy2

44 showy 3 ;

Figure 2. Languages with Dynamic Binding: (1) Perl (2) TEX(3) Common Lisp (4) Bash



2.2. Conciseness and Modularity

A typical use of dynamic binding is a printing routine print-number which re-
quires the basis in which numbers should be displayed. One solution would be to
pass an explicit argument to each call to print-number. Repeating such a pro-
gramming pattern across the whole program, however, is a source of programming
mistakes. In addition, this solution does not scale up, because if later we require
the print-number routine to take an additional parameter indicating in which font
numbers should be displayed, we would have to modify the whole program again:
an extra argument would have to be passed to each call to print-number, and also
to functions that may be far removed from the printing routines. This violates the
basic tenet of modular design.

Scheme I/0 functions take an optional port argument, whose default value may be
changed by the procedures with-input—-from-file or with-output-to-file [56].
These procedures simulate dynamic binding, because they change a port default
value during their extent. Similarly, pipes and I/O redirection operators in Unix
shells essentially dynamically bind the stdin, stdout, and stderr for the duration
of a program execution.

Gnu Emacs [37] is an example of a large program using dynamic variables for the
current buffer, the current window, the current cursor position, etc. Such dynamic
variables ensure a modular organisation by avoiding us to pass these parameters to
all the functions that refer, directly or not, to them.

These examples illustrate Felleisen’s conciseness thesis [12], according to which
sensible use of expressive programming constructs can reduce programming pat-
terns in programs. In order to strengthen this observation, we prove that dynamic
binding actually adds expressiveness to a purely functional language in Section 7.

2.3. Control Delimiters

Even though languages such as Standard ML [40] or Java [25] have adopted lexical
scope, their handling of exceptions has a dynamic nature. In Figure 3, an exception
foo is declared, and the function bar raises this exception in the lexical scope of a
handler for foo. However, the returned value is "dynamic" because the exception
foo is caught by the latest active dynamic handler for foo, installed by gee.

Usually, programmers install exception handlers for the extent of an expression,
i.e., the handler is dynamically bound during this extent. MacLisp [42] and Com-
mon Lisp [64] catch and throw, and Eulisp let/cc [50] are other examples of
exception-like control operators with a dynamic extent. More generally, control
delimiters are used to create partial continuations whose semantics allow various
degrees of dynamicness [8, 32, 47, 54, 62].



exception foo;

fun gee f = £ () handle foo => "dynamic";

let fun bar () = raise foo
in gee bar

end

handle foo => "lexical";

Figure 3. Exception Handlers with a Dynamic Extent in Standard ML

2.4.

Parallelism and Distribution

Parallelism and distribution are usually considered as a possible means of increasing
the speed of programs execution. However, another motivation for distribution,
intensified by the WWW/ is the quest for new resources: a computation has to
migrate from a site s; to another site so, because s holds a resource that is not
accessible from s;. For our explanatory purpose, we consider a simple resource
which is the host name. Below we consider several solutions to model the name of
the running host in a language; only the last one is entirely satisfactory.

1.

A lexical variable hostname could be bound to the name of the computer when-
ever a process is created. Unfortunately, this variable, which may be captured
in a closure, will always return the same value, even though it is evaluated on
a different site.

A primitive (hostname), defined as a function of its arguments only (by a ¢
function as in Plotkin’s [51] call-by-value A-calculus), cannot return different
values in different contexts unless 1t is defined as a non-deterministic function,
which would prevent equational reasoning.

A special form (hostname) could satisfy our goal, but it is in contradiction
with the minimalist philosophy of Scheme, which avoids adding unnecessary
special forms. Furthermore, since we would have to define such a special form
for every resource, it would be natural to abstract them into a unique special
form, parameterised by the resource name: this introduces a new name space,
which is exactly what dynamic binding offers.

Our solution is to dynamically bind a variable hostname with the name of the
computer at process-creation time and to rebind it when the process migrates.
Every occurrence of such a variable would refer to the latest active binding for
the variable.

There are other examples where the notion of dynamic binding appears in the

presence of parallelism. The Posix thread model [34] defines thread-specific op-



erations, which essentially provide dynamic binding for each evaluation thread.
Besides, control of tasks in a parallel or distributed setting usually relies on a no-
tion of dynamic extent: for example, sponsors [49, 53] allow the programmer to
control hierarchies of tasks.

2.5. Summary

We observe that some programming languages still provide a notion of dynamic
binding. In this introduction, we have identified a number of situations where
dynamic binding can be an expressive programming technique if used in a sensi-
ble manner. We have also shown that this notion underlies several programming
constructs. For these reasons, we believe it is important to establish a theoretical
framework that allows us to reason about programs using dynamic binding. In the
next Section, we define a syntactic theory of dynamic binding.

3. A Calculus of Dynamic Binding

Definition 1 displays the syntax of Ay, a language with constructs for dynamic
binding. Let us observe that the purpose of A4 is to capture the essence of dynamic
variables and not to propose a new syntaz for them. We refer to [52] for a discussion
of the pro and cons of special forms vs. functions for dynamic-binding related
constructs.

Definition 1 (The Language Ag4)

M e Ay n= Vol @ | (M M) | (dletd M) (Term)
VeValueg m= x| de.M | Ae.M (Value)
dEBindg == ()| d§((zV)) (binding list)
re€SVar = {z,y,2,...} (Static Variable)
z€DVar = {#,9,%,...} (Dynamic Variable)

O

The language A4 is based on two disjoint sets of variables: the dynamic and
static (or lexical) variables. Dynamic variables are represented with an explicit
hat, e.g. 2,y. As a consequence, the programmer can choose between lexical
abstractions Axz. M, which lexically bind their parameter when applied, and dynamic
abstractions Az.M, which dynamically bind their parameter. The former represent
regular abstractions of the A-calculus [4], while the latter model constructs such as
Common Lisp abstractions with special variables [64], or dynamic-scope [10].

The construct Az.M can be used by the programmer to create dynamic bind-
ings, whereas there exists another construct that internally represents bindings of
dynamic variables z; to values V;. Such a construct, called “dynamic let”, is writ-
ten as (dlet ((z; Vi) ...) M). In Definition 1, a list of bindings is defined with
a concatenation operator §, instead of a list constructor; later, this will allow us



to concatenate two lists of bindings into a single one. The concanetation operator
satisfies the following property.

(@1 V1) - (@ Vi) § (#0421 Vaga) - )
= (21 V1) ... (2, Vi) (Zrg1 Viep1) --)

It is essential to clearly state the naming conventions that we adopt for such a
language. Following Barendregt [4], we consider terms that are equal up to the
renaming of their bound static variables to be equivalent. On the contrary, two
terms that differ by their dynamic variables are not considered as equivalent. A
static variable is said to occur bound in a term if it does not occur free. The set of
static variables occurring free in a term 1is defined as follows.

Definition 2 (Free Static Variables)

FV(Ax.M) = FV(M)\ {x} FV((dlet § M)) = FV(M) U FV(3)
FV(\i.M) = FV(M)
FV(z) = {x} FV(3§((2 V) = FV(§) U FV(V)
FV(z) = 0 FV(()) = 0
FV((My Ms)) = FV(My) U FV(My)

We shall see that the dynamic-let construct, in the set of terms Ay, is used
internally by the calculus that we are going to define. We define A, as the subset
of terms available to the user: it is formed by the set of terms of A4 that do not
contain any dynamic-let subterm. The set of programs, i.e., the set of user terms
without free static variables, is written as A.

In Definition 3, the dynamic-environment passing translation, which we call D,
translates a term of Ay and a dynamic environment into the target language
deps(Aq), an extended call-by-value A-calculus based on lexical variables only (Fig-
ure 4). In order to transform a program of A2, we apply D on the program and the
empty environment ().

Definition 3 (Dynamic-Environment Passing Translation)

DAz M,E] = Xe,y). D[M, (extend e z y)] with y & FV (M)
D[z M,E] = Xe,z). D[M,€]
D[(My M), E] = (Ayr-((Ay2-(y1 (E,32))) P[My, E])) D[My, F]
with yo ¢ FV(E), 1 & FV(D[Ms, E])
D[z, E] = (lookup & E)
Dz, E] = =
D[(dlet § M), E] = D[M, B[4, ET]
Bl(), £] = £
B[ § (2 V), E] (extend B[[d, E] & D[V, €])

Il
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Intuitively, each abstraction (static or dynamic) of A, is translated by D into an
abstraction taking an extra dynamic environment in argument; the target language
contains a variable e which denotes a dynamic environment. As a result, the appli-
cation protocol in the target language is changed accordingly: operator values are
applied to pairs composed of an argument value and a dynamic environment. In
the translation of the application (M; Ms), the dynamic environment F is made
available to evaluate M; and My; in addition, it is also passed when applying the
value of M on the value of Ms. Therefore, as we must be able to distinguish a
term of the target language from its value, the target language has to be regarded
as a call-by-value calculus. Dynamic abstractions are translated into abstractions
which extend the dynamic environment. Dynamic variables no longer appear in
the target language, but are represented by constants: each dynamic variable is
translated into a lookup for the corresponding constant in the current dynamic
environment. An auxiliary function B is used for translating a list of bindings into
an explicit data-structure representing a dynamic environment.

The Language deps(Aq):

P € deps(Aa) =W | (W(E,W)) | (lookup & E) | (Ay.P)P (Term)
W € deps(Valueq) = x | Ae,y).P (Value)
E = e | (extend EZ W) | () (Dynamic Environment)
e (Env. Variable)
z € SVars = {zx,y,2,...} (Static Variable)
% € Const = {#,9,%,...} (Constants)
Axioms:

(Me, y).P)(E,W) = Ple E]ly — W] (B)

(P = Plyos W] (3.)

(lookup Z (extend £ & W)) = W (lk1)

(lookup & (extend E &1 W)) = (lookup & E) if #1 # & (lk2)

(Me,y).Wiey)) = Wife,yg FV(W) ()

Figure 4. Syntax and Axioms of the deps()4)-calculus

Evaluation in the target language is based on the set of axioms displayed in
the second part of Figure 4. Similarly as the store-passing calculus [58], deps(Aq)
is based on the call-by-value beta-reduction. Applications of binary abstractions
require a double 3,-reduction as modelled by rule (3), and environment lookup is
implemented by (lk1) and (lks); the latter rule traverses the environment structure
recursively.

Following Sabry and Felleisen, our purpose in the rest of this Section 1s to de-
rive the set of axioms that can perform on terms of A; the reductions allowed on
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terms of deps(A4). More precisely, we want to define a calculus Az on terms of Ay
that equationally corresponds to the calculus deps(Aq) on terms of deps(A4). The
following definition of equational correspondence is taken verbatim from [58].

Definition 4 (Equational Correspondence) Let R and G be two languages
with calculi AXz and AXg. Also let f: R — G be a translation from R to G, and
h:G — R be a translation from G to R. Finally let »,71,72 € R and ¢,91,92 € G.
Then the calculus AXr equationally corresponds to the calculus A Xg if the following
four conditions hold:

1. AXg Fr=(h o f)(r).

2. AXgFyg=(f o h)(g)

3. MXr b ri=roifand only if AXg F f(r1) = f(ra).

4. MXg F g1 = g2 if and only if AX% F h(g1) = h(g2)-
O

Definition 5 is an inverse dynamic-environment passing transform mapping terms
of deps(A4) into terms of A4. The first case is worth explaining: a term of the form
(Wi (E,Ws)) represents the application of an operator value Wj on a pair composed
of a dynamic environment £ and of an operand value Ws; its inverse translation is
the application of the inverse translations of W; and W5, in the scope of a dlet with
the inverse translation of F. For the other cases, the inverse translation removes
the environment argument added to abstractions, and translates any occurrence
of a dynamic environment into a dlet-expression. The auxiliary function B~! is
used to translate the dynamic environment structure into a list. In particular, the
translation of the environment variable e is (), which marks the end of the list of
bindings of a dlet construct.

Definition 5 (Inverse Dynamic-Environment Passing Translation)

DTHWyL (B, Wo)] = (dlet BTH[E] (D~'[Wi] D~ [Wa]))
D_]'[[(lookup )| (dlet B! [E] @)

D (A\y.Pr) P] = (M. D' [A]) DT[P]

D™ H(Me, z).P)] = Az D™[P]

Dz = &

B[] = ()
BTHO1 = 0
B~ [(extend 15 & W)] = (B~'[E]§ ((z D~'[W])))

0

If we apply the dynamic-environment passing transform D to a term of Ay, and
immediately translate the result back to Ay by DP~', we find the first six primary
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State Space:

M € Aq
V e Valueq ::
6 € Bindy
x € SVar
z € DVar

Primary Axioms:
Az M)V

Az.M

(dlet § ((Ay.M1) Mz))
(dlet 51 (dlet 6o M

Derived Axioms:

(A& M)V = (dlet (& V)) M)

(dlet ) (M1 Mg))

Compatibility

My, = M,

Vi|z | (MM)]| (dleté M) (Term)
z | Ae.M | A& M (Value)
01 d8((&V)) (binding list)
{z,9,2,...} (Static Variable)
{#,9,2,...} (Dynamic Variable)
= Mz — V] (8.)
= Ay.(dlet ((z y)) M) if y g FV(M) (dlet intro)

=

(Ay.(dlet & My)) (dlet & M) if y & FV(5) (dlet propagate)

(dlet (61 § 62) M) (dlet merge)
1% (dlet elim 1)
M (dlet elim 2)
(dlet (6 § ((£ V))) V) (lookup 1)
(dlet 6 &) if &1 #2 (lookup 2)
(My M) if . ¢ FV (M) (8a)
vV ifeg FV(V) ()

(dlet intro")

= (Ay1.(Ayz2.(dlet & (y1 y2))) (dlet § M2)) (dlet & M;)(dlet propagate’)

(M1 M)= (M2 M) forany M € Aq
(M My)=(M My) forany M € Aq
(A& My) = (Ai. M)

(dlet & M) = (dlet § M)

Figure 5. Syntax and Axioms of the \g-calculus

axioms of Figure 5. The call-by-value S-reduction relies on a substitution operation

on terms of Ay.

Definition 6 (Substitution) The substitution of V' for a static variable « in M,
noted M[z — V], is defined as follows:

Ay M)z — V]
(Ay.M)[z— V]
gz — V]

AyMlz —V]) withy g FV(V) (%)
Ay M[z—V])
y
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ylr—= V] = y withy#=
ze—V] =V
[ ]

(dlet 6§ M)[z+— V] = (dlet §[z — V] Mz — V])

The substitution is also extended to dynamic environments as follows:

Olz = V] = 0
0§ (g Vi))le = V] = [z = V]§ (g Vilz = V]))

O

Note that the hygiene condition (%) only concerns static variables. Therefore,
dynamic variables may become “captured” after a [3,-reduction:

(AyAz.(y 2)) (Az.2) = Az.((Az.2) z) = Az.2.

For explanatory purpose, we prefer to present the derived axioms (dlet intro’) and
(dlet propagate’). The axiom (dlet intro’) is the counterpart of (3,) for dynamic
abstraction: applying a dynamic abstraction on a value V' creates a dlet-construct
that dynamically binds the parameter to the argument V' and that has the same
body as the abstraction. Using (let (z M;) Ms) as syntactic sugar for (Az.Msy) My,
we rewrite rule (dlet propagate’) below; it tells us how to transform an application
appearing inside the scope of a dlet.

(dlet (5 (M1 Mz)) = (let (yl (dlet (5 Ml))
(let (y2 (dlet § M)
(dlet & (y1 v2))))

The operator and the operand can each separately be evaluated inside the scope
of the same dynamic environment; the application of the operator value on the
operand value also appears inside the scope of the same dynamic environment.
The interpretation of (dlet merge), (dlet elim 1), (dlet elim 2) is straightforward.

Now, by applying the inverse translation D~' to each axiom of deps(\q), we
obtain the four last primary axioms of Figure 5. Rules (lookup 1) and (lookup
2) are the immediate correspondents of (lk1) and (lks) in deps(Ag), with (lookup
2) proceeding recursively on the list of bindings except the last one. The axioms
(B,) and (1,) were also discovered by Sabry and Felleisen by applying the same
technique to calculi for continuations and assignments [58]; they are required to
prove the correspondence property.

The intuition of the set of axioms of A4 can be explained as follows. In the absence
of dynamic abstractions, Aq behaves as the call-by-value A-calculus. Whenever a
dynamic abstraction is applied, a dlet construct is created. Rule (dlet propagate’)
propagates the dlet to the leaves of the syntax tree, and replaces each occurrence
of a dynamic variable by its value in the dynamic environment by (lookup 1) and
(lookup 2). Rule (dlet propagate’) also guarantees that the dynamic binding re-
mains accessible during the extent of the application of the dynamic abstraction,
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i.e., until it is deleted by (dlet elim 7). Let us also observe here and now that par-
allel evaluation is possible because the dynamic environment is duplicated for the
operator and the operand, and both can be reduced independently. This property
will be used in Section 6 to define a parallel evaluation function.

In order to illustrate the Ag-calculus, we can show that a dynamic abstraction
that returns its parameter is provably equal to the identity on static variables.

Ay.(dlet ((# y)) #) by (dlet-intro)

Ay.(dlet ((2 v)) y) by (lookup 1)
Ay.y by (dlet elim 1)

Az.x

The correctness of the derived axioms of Figure 5 is proved in the next Lemma.
Lemma 7 (Derived Axioms)
Aa F (dlet é (M1 Mz)) = ()\yl.()\yQ.(dIet 0 (y1 y2))) (dlet ) MQ)) (dlet 6 Ml)

(dlet propagate’)
M F (ABMV = (dlet (2 V) M) (dlet intro')

0O
Proof: We establish the derived axioms by equational reasoning:

o (dlet propagate’). The right-hand side can be reduced as follows:

(Ay1.((Ay2.(dlet & (y1 ya))) (dlet & M2))) (dlet & M)

Aya-(dlet 6 ((Ay2.(y1 y2)) M>))) (dlet 6 My) by (dlet propagate)
dlet § (Ayr.((Ay2.(y1 y2)) M3)) My) by (dlet propagate)

dlet § (Ay1.(y1 M2)) My) by (n,)

dlet § (M1 Ms)) by (85)

N N N

o (dlet intro'): immediate, by (dlet intro) and (53,).

The relationship between a term and its translation to dynamic-environment pass-
ing style followed by an inverse translation is defined in Lemma 8.

Lemma 8 For any term M € Ay, any value V € Valuey, any list of bindings
81 € Bindg, for any environment E € deps(Ag), let § = B~'[E], the following
equation hold:

1. Ak (dlet § M) = D='[D[M, E]].
9. Ak V = DDV, E]].
3. )\d ) § (51 = B_l[[B[[(Sl,E]]]]
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0

Proof: We proceed by induction on the structure of M, V', and §. First we prove
the first proposition for the following cases of M:

o If M = «, then:

D7D« ]

D a] = = (dlet § ) by (dlet elim 1)

e If M =z, then:

D D[z, E]] = D~ '[(lookup & E)] = (dlet B~'[E] &) = (dlet § #)

because BL[E] = 4.
o If M = Ae. My, then:

D7D .My, F]]
= D'\ e, ). D[My,€]]
= \e. D7 [D[My,€]]
Az.(dlet () M) by induction
Ax. My by (dlet elim 2)
= (dlet 0 (Az.M;)) by (dlet elim 1)

o If M = A&. My, then:

DD z. My, F]]

D™ [ Me, y). DMy, (extend e z y)]]
Ay D™D My, (extend e & y)]]
Ay.(dlet ((z y)) My) by induction

= A&. My by (dlet intro) as y & FV (M)
= (dlet § (Az.M7)) by (dlet elim 1)

o If M = (M; M), then:

DTHDI(M: M), E]]

= D' (A ((Awe- (01 (B, 32))) DMz, E])) DMy, £]]
(a2 D4 (wn (5, ua))]) D [DP[Ms, BT])) D~ [P[My, F]]
O (Oe-(dlet & (u1 1)) D~ [P[Ma, FT) D[P My, F]
because § = B[ E]
= (Ay1.((Aya.(dlet & (y1 y2))) (dlet 6 M>))) (dlet § A7) by induction
= (dlet § (M My)) by (dlet propagate’)
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o If M = (dlet §; M), then:

DHD[(dlet 6, M), E]]
= DH[DP[M:, B[4y, ]I
= (dlet B~'[B[é1, E]] M1) by induction
(dlet (6 § 1) M) by (3) by induction as d; is a subterm of M
= (dlet § (dlet §; My)) by (dlet merge)
(dlet & M)

As we dealt with values o, Ae. M, Az. M, we also proved proposition (2). Propo-
sition (3) is proved by induction on the structure of the list of bindings d; and by

o If &, = (), then: B=L[B[(), E]] = B~[E] = ¢ = 4§,
o If 63 =d2§((2 V)), then:
BTHB6:5(( V), £1]
= B !(extend B[é2, E] & D[V, ¢])]
= B[BI&:, E]] § (& D™DV, e]l)
3§025((x DDV, e]]))

= d§d:28((2 V) by (2)
— 356,

The next Lemma states the conditions under which we can interchange substitu-
tion and translation to dynamic-environment passing style.

Lemma 9 (Substitution)
1. D[M,E] [y~ DIV, E]] = P[M[y — V], E]
9. D[M, €] [e = E] = D[M, E]

O

Proof: Similar to Plotkin’s [51] or Sabry and Felleisen’s [59] proofs. ]

Lemma 10 is complementary to Lemma 8; it defines the relationship between a
term in dynamic-environment passing style and the term obtained by composition
of the two translations.

Lemma 10 For any term P € deps(Ay), any value W € deps(Valuey), any dy-
namic environments E, By € deps(Ag),



1. deps(Ay) F P[P~ P], E] = Ple = EJ;
2. deps(Xq) F D[D~L[W], E] = W;
3. deps(Xqg) & B[B~Y[F1], E] = Ei[e — E].

0

17

Proof: We proceed by induction on the structure of the program P and by cases.
e If P =z then:

DD '[z], E] = Pz, E] = = = z[e = E]
o If P=Xe,y). P then:

D[P~ '[P], £]

|| T T

DD~ [Me, y).P1], E]
DAy D '[P]), E]

Me, y). D[P~ [P1], €]
Xe,y).Pile — €] by induction
Xe,y).Py

(Me, y).Pr)[e — E]

o If P = (Ay.Py)Ps, then:
D[D~'[P], E]

DD~ '[(\y.P1) P2], E]

D[y D [ADD[P], E]

Ay1-((Ay2-(91 (B, 92))) DID™'[P:], ED) DLy P~ [P1]), E]
Ayi-((Ay2-(1 (£, 92))) DIDT[P2], D)) (e, »)- P[P [P1], €])
(Ay2-(Me, ) DIDTH[P1], €]) (£, 32))) DID™H[P2], £] by (8y)
Ay.(P[P[A], E]) P[P~ [P2], E]

by (8), a-conversion, and Lemma 9

(Ay.(P1le = E])) Pale — E]

((Ay.Pr) Py)[e — E]

o If P = (lookup & Fy) then:
DID~[P], E]

| | | | T

D[P~ (lookup z E1)], E]

D[(dlet B~'[E1] 2), E]

D[z, B[B~'[E.], E]]

(lookup 2 B[B~'[FE1], F])

(lookup & E4[e — E]) by (3) and by induction of £
Ple — E|
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o If P= (W, (E,Ws,)) then:
D[D~'[P], E]

= DD '[(W1 (E1, Wa))l, E]

= D[(dlet B[E] (D~H[Wi] P~H[WR])), E]

= DD~ W] D~ [W2), BIB~'[F1], F1I

= DD~ WAl (BIB~'[£1], E], P[P~ [W-]])
Wy (Ei[e — E], W)
= (Wy (Er, Wa))[e — E]

(l

Since we dealt with values @, A(e, y).P;, we proved proposition (2). Proposition
(3) is proved by induction on the structure of the dynamic environment E;.

o If By = e then B[B™[E1], F] = B[B~[e], E] = B[(), E] = E = ele = E]
o If Ey = (extend E} & W) then

BIB~'[E1, E]]

= B[B~'[(extend Ef & W), E]

BIB TR § (¢ D~ [WI))), 7]
(extend B[B~[E], E] # P[D~[W], €])
(extend Fi[e — E] & W) by induction
= (extend Ej & W)le — E]
= El[e — E]

We obtain the following soundness result.

Lemma 11 (Soundness) For any terms M, My € Ay, such that Ay - My = Mo,
and for any E € deps(Aq), we have: deps(Ag) b D[My, E] = D[M», E]. O

Proof: The proofis by induction on the structure of the derivation Ay - M; = M.
We consider two cases only; other cases are similar.

1. (8)

Dl(Ax.M) V, E]

= Our (O (5, ))) DIV, ED)PI( M), 2]

Dl(Az. M), E] (E, D[V, E]) by (By) twice
(Xe,z).D[M, €]) (E, D[V, E])
= DM, ] [e = Elle s DIV, E]] by (5)
= D[M,E] [x+ — D[V, E]] by Lemma 9 (2)
= D[M[z — V], E] by Lemma 9 (1)
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. (dlet intro)

Dl[(Az. M), E]

= Me,y).D[M, (extend e z y)]
DAy.(dlet ((& y)) M), E]
Xe,y). D[(dlet ((z y)) M), €]
Me, y). D[M, (extend e & y)]

(dlet merge)

D[(dlet §; (dlet §, M)), E]

= D[(dlet 8y M), B[4, ET]

DM, B[é2, B[é1, ET]]

DM, B[61802, E]] because B[01§d2, E] = B[[d2, B[d1, £]]
(Proof is by induction on the size of d5.)

D[(dlet 61§62 M), E]

(dlet elim 1)

D((dlet 6 V), E]
DIV, BIY, FI]
D[V, E] because E does not appear in the translation

n o |

(dlet elim 2)
D[(dlet () M), E]
= DM, B[(), E]]
- DM, E]
(dlet propagate)
D[(dlet § (A\y.M1)M>), F]
Dl(A\y.M1)M>, E1] with Ey = B[4, E]
Ayr-((Ayz- (y1 (B1,y2))) P[My, Er])) D[(Ay.My), E1]
Ayr-((Aya- (y1 (B1,92))) PIMs, Eu])) (Me, y) DMy, e])
(Ayz. (Me, 9).D[M, €]) (Ev,y2))) P[Ms, Er]) by (By)
(Ay2. DMy, €] [e = Eq]ly = yal) D[M2, EA]) by (5))
(Ay. D[M, E1]) D[Ms, E4]) by Lemma 9 (2) and a-conversion

(
(
(
(
(

D[(Ay.(dlet § My))(dlet § Ms), E]
(\y.D[(dlet § M), E]) P[(dlet § Ms), E]
(AyD[[Ml,El]]) D[[MQ, El]] with E1 = B[[J, E]]

(I
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7. (lookup 1)

D[(dlet §§((z V)) &), E]

= DL, BI5H(( V), E]]

D[z, (extend B[4, E] z D[V, €])]
(lookup z (extend B[4, E] & D[V, e]))
DIV,e] by (k)
DIV, E]
D[(dlet 6§((z V)) V), E] by (dlet elim 1)

)

[(dlet 85((ir V) ), 7]

DI, BISS (21 V), EI]

D[z, (extend B[d, E] 21 PV, €])]
(lookup 2 (extend B[4, E] &1 D[V, €]))
(lookup z B[4, E]) by (lks)

D[(dlet § &), E]

| | T

8. (looku

SRS
NS}

9. (Ba)
D

—

Az.xMs) My, E]

(Ay1-((Ay2-(y1 (E,y2))) D[My, E])) D[(Az.xM>), E]

(A2 (D[(Aw.xM>), E] (E,y2))) P[M1. E]) by (Bv)
Ay2.((Me, 2).Dlx M2, e]) (E,y2))) D[M:, ET)

Ay2 Dly2 M2, E]) D[My, E]) by (8;)

Ay (Ay1-(Ays-(y1 (E,93))) DMy, E])Dlys, E])) P[M, E])
Ay (Ays-(y2 (E,y3))) DI[M>, E])) D[M:, E]) by (8.)
D[(My My), £

(
((
((
((
((

10. (1)
D[

—_

Ae V), E]

Me,z). D[V, €]

Xe, 2). D[V, €] (e, z)

D[V, e] by (n.°)

11. Compatibility: if Ay b My = My then Ay F (My; N) = (M, N).
D[(M; N), E]

(Ay1-(Ay2-(y1 (E,92))) PN, ET) D[M,, E]

(Ay1-(Aya.(11 (E,y2))) D[N, E]) D[M>, E] by induction

D[(M2 N), E]

—_

(I
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12. Compatibility: if Ay = My = My then Ay F (dlet & M) = (dlet § My).

D[(dlet § M), E]
= D[My,B[s, F]]
= D[Ms, B[4, E]] by induction
= D[(dlet § M), F]

Other cases of compatibility are similar.

We can now derive the following result concerning translations of dynamic envi-
ronments.

Lemma 12 B~'[E]§B~'[E1] = B~'[Ei[e — E]] O
Proof: By Lemma 10 (3),
B[B~'[E1], E] = Eile — E].
Therefore,
B='[B[B~'[E], E]] = B~'[Eile — E]].
Hence, using Lemma 8 (3), we obtain:
BTHBIB~[#1], E]l = B~ [E]§8~ [ £,

with 6; = B~'[E,]. By transitivity, we obtain the desired result. [ |

The completeness result requires us to establish the following Lemma concerning
substitution and the translation D=1,

Lemma 13 For any terms of the appropriate sorts E, P, W,y in deps(A4),

Aa F D7Y[Plew E]] = (dlet B~[E] D~'[P])
DHP] [y = D™ W] = D[Py — W]].

O

Proof: 1In order to prove the first proposition, we proceed by induction on the
structure of the term P; a similar technique can be used for the second one. We use
the fact that there exists exactly one free dynamic-environment variable e in a term
P and in an environment £ and no free dynamic-environment variable in a value W.
For example, we consider the application of a value on a pair environment-value,
and a lookup term.
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o If P=W, then:

(dlet B~'[E] D™[P])

(dlet B~[E] D~[W])

D H[W] by (dlet elim 1) because D~1[W] is a value
D HW[e — E]] because e & FV(W)

° IfP= VVl <E1, W2>, then:

(dlet B~[E] D~[P])

(dlet B~[E] D~H[Wy (E1, W2)])

(dlet B7'[E] (dlet B~'[E1] (D~ [Wi] D [Wa])))

(dlet 6 (D~L[W1] D~1[Wa])) by (dlet merge)

with § = (B~ E]§B-[F.]) = B~![Ei[e — F]] by Lemma 12
DTH(Wh (Eile = E], Wa))]

DLWy (E1, Ws)) [e— E]] by definition of substitution
D Ple— E]]

o If P = (\y.P1)Po, then:

(dlet B-[E] D~[P])

(diet 5[] D~ [(\y.P1) Pa])

(dlet B7'[E] A\y.D~'[P])D~'[P])

(Ay. (dlet BTH[E] D7 P]))(dlet B~L[E] D~[Pa]))
by (dlet propagate)

(Ay. D7'[Pi[e = E]]) D~ '[Pafe = E]]) by induction
D[y Pile s F)Pafe v E])]

D~[Plew— E]]

o If P = (lookup & E), then:

(dlet B~'[E] P~ [(lookup z E1)])

(dlet B='[E] (dlet B~'[E41] 2))

(dlet B7[E]§B~I[FL] ) by (dlet merge)
(dlet B~'[Ei[e — E]] #) by Lemma 12

D H[Ple Ei]]

Now, we are able to derive the following completeness result.
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Lemma 14 (Completeness) If deps(A\;) b P = P, then Ay F DP] =
DL[Ps], for any terms Py, P> € deps(Aq). O

Proof: We proceed by induction on the structure of the derivation deps(Ag) F
P, = P,. We consider the different cases:

1.

Lo

Let us prove that Ay = D~[(Ae,y).P) (E,W)] = D[ Ple = E]ly — WI].

DL {(Ne, 5).P) (B, W)]

(dlet 5'[F] ((\y. D~ [P]) D [37]))

(dlet B~ [E] DT [P] [y = D™ IWT]) by (8)
(dlet B7'[E] D~ [Py~ W]]) by Lemma9 (1)
= D[Py~ W][e — E]] by Lemma 13

= D7 '[Plew Elly— W]] because e ¢ FV (W)

. Let us prove that Ay F D™L[(Ay.P) W] = D[Py — W]].

D [(A\y.P) W]
= (OwD P DUW)
= D[P ly— D IWT] by (B.)
= D7 '[P[y~ W]] by Lemma 9 (1)

Let us prove that Ay = P~ ![(lookup & (extend F & W))] = D~[W].

D~ '[(lookup # (extend E & W))]
(dlet B~ [(extend E & W)] )
(dlet (B7'[E] § ((z D [W]))) @)
D W] by (lookup 1)

Let us prove that
Mg F D™ ![(lookup z (extend E g W))] = P~ *[(lookup z E)].
D~ [(lookup # (extend E y W))]
(dlet B~ '[(extend E g W)] )
(dlet (7' [E] § (3 D™ [WD)) )
(dlet B7I[E] &) by (lookup 2)
D™ [(lookup z E)]

n o 1

Let us prove that Ay = D[\ e, y). W{e,y)] = D~ [W].

D™ [Ae, y). W (e, )]
= Ay.(dlet B~[e] (D~[W] P~L[y]))
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= Ay.(dlet () (DT [W] )
= M. (D7 [W]y) by (dlet elim 2)
= DI [W] by ()
6. Let us prove that if deps(Ag) [ Py = P, then
M E D H(Ay.P1) Pl =D '[(Ay.P) P].
D' [(Ay.P1) P]
= (Ay. D[R] PP]
= (Ay.D7[P,]) P7I[P] by induction
= D_l[[()\y-Pﬂ P]

7. Other cases of compatibility are similar.

Now, we can establish the equational correspondence of the two calculi.

Theorem 1 The calculus Ay equationally corresponds to the calculus deps(Ag). O

Proof: The Theorem is a consequence of Lemmas 8, 10, 11, and 14 since the
calculi Ay and deps(Ay) satisfy Definition 4. [ |

Within the calculus, we can define a partial evaluation relation: the set of values
of a program M contains V' if we can prove that M equals V in the calculus.

Definition 15 (evaly) For any program M € A%, V € evaly(M) if \g - M = V.
Od

This definition does not give us an algorithm, but it states the specification that
must be satisfied by any evaluation procedure. The purpose of the next Section is
to define such a procedure.

The consistency of the Agz-calculus is a corollary of the equational correspondence.

Theorem 2 (Consistency) The Ag-caleulus is consistent. O

Proof: The calculus deps(A\g) can be regarded as a Plotkin’s call-by-value A-
calculus with constants. From Plotkin [51], we know that deps();) is consistent.
By the equational correspondence of the two calculi, we conclude that Ay is also
consistent. [ ]

4. Sequential Evaluation

The calculus of dynamic binding of Section 3 defines a specification that any eval-
uation algorithm must satisfy. The purpose of this Section is to define such an
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algorithm, which we call sequential evaluation function (to distinguish it from a
parallel evaluation function in Section 6). The sequential evaluation function is
defined in Figure 6. It relies on a notion of evaluation context [16]: an evaluation
context £ is a term with a “hole” | [ ], in place of the next subterm to evaluate. We
use the notation £[M] to denote the term obtained by placing M inside the hole of
the context £.

In the Ag4-calculus, dlet constructs are propagated to the leaves of the syntax tree
using (dlet propagate) and are merged using (dlet merge); as a matter of fact, the
dynamic-let construct behaves similarly as the dynamic environment in deps(A4).
This behaviour can be paralleled with control operators [13], which are “bubbled
up” to the root of a term. In the sequential reduction, dynamic-let constructs stay
in place, where they are created. As a result, we define Ay, where the subscript s
stands for “sequential”, as a strict subset of Ay, A; C Ay. In A, a dlet-construct
contains a binding for one dynamic variable only; for the sake of simplicity, we write
(dlet (z V) M) to denote (dlet ((& V)) M).

Four transition rules only are necessary: (dlet intro) and (dlet elim) are derived
from the Ag-calculus. Rule (lookup) is a replacement for (dlet propagate), (dlet
merge), (dlet lookup 1), and (dlet lookup 2) of the A4-calculus. Rule (lookup) for-
malises the intuition that the value of a dynamic variable is given by the latest
active binding for this variable. In this framework, the latest active binding cor-
responds to the innermost dlet that binds this variable. The dynamic extent of a
dlet construct is the period of time between its introduction by (dlet intro) and its
elimination by (dlet elim).

The evaluation algorithm introduces the concept of stuck term, which is defined
by the occurrence of a dynamic variable in an evaluation context that does not
contain a binding for it. The evaluation function is then defined as a total function:
either the transition sequence terminates, in which case the evaluation function
returns a value or error, or the transition sequence is infinite, in which case the
function returns L. Let us note that eval, 1s a deterministic function because there
is always a unique transition that is applicable to a term different from a value or
a stuck term.

Lemma 16 states that rule (lookup) is also valid in the Ag-calculus.

Lemma 16 For any £ € EvCong such that & & DBV (E):
Ag F (dlet ((z V) €[z]) = (dlet ((z V) E[V]),
with £ € FvCong =[] | (V&) | (€ M) | (dlet § ), where V,M,6 € A4. O

Proof: 1In order to prove its soundness, we generalise (lookup); we prove that, for
any & € EvCong such that & ¢ DBV (E), and for any ¢ € Ag such that (z V) €4,
we have the following situation:

If \s b (dlet § &) = V, then Aq b (dlet § £[2]) = (dlet & E[V]).

The soundness of (lookup) immediately follows by taking § = ((# V')). We proceed
by induction on the size of the context &£, and by case:
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State Space:

M e As = V| 2| (MM)]| (dlet(zV) M) (Term)
VeValue, == x| da.M | \z2.M (Value)
z € SVar = {z,y,2,...} (Static Variable)
z € DVar = {#,9,3,...} (Dynamic Variable)
E€EvCon, == []] (V& | (EM) | (dlet (z V) &) (Evaluation Context)

Transition Rules:

E[(Az. M) V] —a E[M[x — V] (Bv)

E[(A2. M) V] w—q E[(dlet (2 V) M)] (dlet intro)
£l(dlet (8 V) &[E])] wsa E[(dlet (& V) E[V])] if & & DBV (&) (lookup)
El(dlet (2 V) V] —=a £V (dlet elim)

Evaluation Function: For any program M € A%,

\%4 if M3V
eval (M) = { 1 ifVy € IN,M; —q Mj41,with My =M
error if M w7} M;, with M; € Stuck(A.)
Dynamically Bound Variables: Stuck Terms:
DBV([]) = 0 M € Stuck(As) if
DBV(V &) = DBV(§) M =¢€[z] with & ¢ DBV ()
DBV(E M) = DBV(£)

DBV (dlet (& V) £) = {#} U DBV(£)

Figure 6. Sequential Evaluation Function

o IfE&=1J], then Ayt (dlet § £) =V = (dlet § V).
L[] If 8 = (V1 51), then

(dlet § (V1 &1[2]))
= (Ay1.(Aya. (dlet & (y1 y2))) (dlet § & [z])) (dlet 6 V4)
by (dlet propagate’)
= (Ay1.(Ayz. (dlet § (y1 y2))) (dlet § & [V])) (dlet 6 V1)
by induction on &;

(dlet & (Vi &1[2])) by (dlet propagate’)

o If&=(& M), then:

(dlet & (&1[z] M)
= (Ay1.(Ayz. (dlet 6§ (y1 y2))) (dlet § M) (dlet & & [2])
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by (dlet propagate’)

(Ay1-(Aya. (dlet § (y1 y2))) (dlet & M)) (dlet & &[V])
by induction on &;

= (dlet § (&1[V] M)) by (dlet propagate’)

o If &= (dlet d; &), then:

(dlet o (dlet 1 &1[2]))
= (dlet (J §31) &1[2]) by (dlet merge)
= (dlet ((5 §51) Sl[V])

by induction on & and because (dlet (§ §d1) 2) = V since & does not appear in
91 (because & ¢ DBV (£)).

In order to prove that the algorithm evaly; implements the specification given by
evaly, the evaluation relation of the calculus, we define a standard reduction in
deps(Aq) and use the equational correspondence between the two calculi.

We can regard deps(A4) as Plotkin’s call-by-value lambda-calculus extended with
constants. Indeed, we can use Church’s representation of pairs, a §-reduction for
equality of constants, and an inductive definition for lookup. Hence, the calculus
deps(Aq) has a standard reduction strategy [51]. Tt is straightforward to prove that
it is equivalent to a standard reduction defined in terms of the following notion of
evaluation context.

Definition 17 (Evaluation Context in deps(A4)) An evaluation context in
deps(Aq) is defined by the following grammar.

K € deps(EvCong) == [] | (A\y.P) K.

Sometimes, it is more convenient to use the following “context grammar” which is
equivalent to the previous context-free grammar [16].

K € deps(EvCong) == [] | K[(Ay.P) []].

O

Definition 18 (Standard Reduction in deps(A4))

K[(Xe, ). PY(E,W)] aeps K[Ple = Elly— W] (8)
Kl(Ay.PYW] =deps K[Ply— W] (Bv)

K[(lookup & (extend E & W))] —rdeps K[W] (lky)
Kl(lookup z (extend E &1 W))] —rgeps K[(lookup & E)] if &, # &. (lks)

O
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Definition 19 (evals,,) For any program P € deps(Aq),

Wit Py, W
evaldeps(P) = L if vy e IN, P; = deps P]‘_H,With Py=PF
error if Py o Py, with Py = K[(lookup z ())]
O
In order to prove that the algorithm eval; implements the specification given by
the evaluation relation of the calculus eval;, we define ¥, a dynamic-environment

passing translation that introduces less administrative redexes than D; the function
T follows a similar definition as Plotkin’s [51] “colon” definition.

Definition 20

\I’[[(Vl VZ)aE]]
\IJ[[(Vl MZ)aE]]
U[(M, M), E]

(\Il[[vlaE]] <Ea\Il[[V2’E]]>)

(Ay.(O[V1, E] {E,y))) Y[Ms, E]) with y & FV (1)
Ay1-((Ay2-(n (B, 2))) V[My, E])) V[M,, E]

if My & Values, with yo ¢ FV(E),y1 € FV(¥[M,, E])

Uz M, E] = Xe,y). U[M, (extend e & y)] with y & FV(M)
UAe. M, E] = Xe,z). V[M, €]

Uz, E] = (lookup z E)

Uz, E] = =

U[(dlet (z V) M),E] = U[M, (extend E & V[V, E])]
O

In the dynamic-environment passing style, the dynamic environment is a data
structure that can be regarded as a function mapping dynamic variables to their
values. Consequently, we define the domain of a dynamic environment as the set
of dynamic variables bound in an environment:

DOM (extend E 2 V) = {2} U DOM(E)
pOM(()) = 0
The next lemma establishes some properties of the translation W. Intuitively, if

M is a term but not a value, then the ¥-translation of a program with subterm M
reduces to the W-translation of the program with M replaced by a value.

Lemma 21 For any £ € FvCong, for any term M € A;, with M ¢ Values, the
two following statements hold:

1. for any environment £ € deps(A;), there exist an environment £y € deps(A;)
and a context K € deps(EvCon,) such that:

V[E[M], E] = K[¥[M, EA]],
with DOM (E,) = DOM(E) U DBV (£).
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2. for any V € Value,, if W[E[M], E] = K[¥[M, E1]] by application of the first

proposition, then:
deps(Aa) F K[¥[V, EAll] =55 YIEIV], E]
by a sequence of (3,) reductions.

0

Proof: We proceed by induction on the size of the evaluation context £ and by
cases on the definition of £. Note that we use the “context grammar” instead of
the context-free definition of evaluation contexts.

o If&=7J], then K=[], and E; = E.

o IfE=CE'[V[]], then:

v[EM], E]
= Y[V M], E]
= K'[¥[(V M), E1]] by induction on &’
with DOM (Ey) = DOM(E) U DBV (€.
= K'MQw(W[V, F1] (v, y)) UM, FA]]
Then take X = K'[(Ay.(Y[V, E1] (E1,v))) []], with DOM(E,) = DOM(E) U
DBV (&) since DBV () = DBV (&').
KR, el = KUy (Y[Ve, Ba] (B ) WV, )]
raeps K'[(WIVA, Eal (v, WV, EA]))] by (50)
= v[ev] E]

o If&=¢'[] Mi], with M; ¢ Values, then:

Y[e[M], E]
= Y[¢'[M Mi], E]
K'[W[(M M), E1]] by induction on &'
= KA1 -((Ay2-(y1 (Er,92))) C[My, En])) ¥[M, EA])]

Then take K = K'[(Ay1.((Ay2-(y1 (E1, y2))) Y[My, E4])) [ 1], with E; satisfying
the property.

K[¥[V, E1]]
= KAy ((Aye.(y1 (E1,y2))) Y[My, E1])) [V, E1]]
rdeps K'[(Ay2.(Y[V, E1] (E1, 92))) ¥[M, EA])] by (6u)
= V[E[V] E]
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o If&=2¢'] V1], with V] € Value,, then:

[
v[EM], E]
= Y[(&'M W), E]
[¥[(M V1), Eq]] by induction on &’
(O -(yr (B, W[V, EAD)) M, EA]))

Then take K = K'[(Ay1.(y1 (E1, ¥[V1, E1]))) [ 1], with E; satisfying the prop-
erty.

/

K
=K

K[¥[V, Eq]]
= K'[(Awn.(yn (B1,9[Vi, E1]))) OV, EA]]
Hraeps K'YV, B1] (EB1, ¥ [Vi, Eal)] by (By)
= V[E[V] E]

o If&=¢&'[(dlet (2 V1) [])], then:

V[E[M], E]
= Y[&'(dlet (z V1) M)], F]
K'[¥[(dlet (z V1) M), F1]] by induction on &’
with DOM (Ey) = DOM(E) U DBV (€.
K'[W[M, (extend Ey & W[V4, E1])]]
= K'[¥[M, E{]] with E] = (extend Ey @ ¥[V1, E1])

Therefore, DOM(E}) = DOM(E,) U {2} = DOM(E) U DBV (&) U {2} =
DOM(E) U DBV ().

Kev, £
= K[V, 2]
'_)scﬁleps \II[[g[‘/l], E]] by induction

Now, let us prove that each transition of the evaluation function corresponds to
a (sequence of) standard reduction(s) in deps(Ag).

Lemma 22 If My —4 Ms, then ¥[Mq, ()] F deps W[ Mas, ()], for any terms My, Mo
eA,. O

Proof: We proceed by case on the possible transitions 4.
o If&[(Ax.M)V]—y E[M[z — V]] then:
Y[E[(Ae. M) V], E]
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K[U[(Az.M) V, E4]]

K[U[(Az.M), E1] (E1, ¥V, E1])]

KI(Ae,2) WM, e]) (Er, W[V, Ei])

KWLM, ] [e — Fille 9V, F1]] by (57)

K[¥[M, E1] [« — Y[V, E1]]] by Lemma 9 (2)
K[U[M[z— V], E1]] by Lemma 24

Haeps Y[E[M [z — V]]] by Lemma 21 (2)

o If E[(A2.M)V] 4 E[(dlet (2 V) M)] then:
Y[E[(Ae.M) V], E]

H

o If &[(dlet
v[e

._)

deps

(z
[(dle

A

_|_
d
*
dep

K[U[(Az.M), E1] (Ey, O]V, E1])]

KI(Me, 5) BIM, (extend ¢ & y)]) (Fy, [V, B1])]

K[U[M, (extend e Z y)] [e — Ei]ly— Y[V, E1]]] by (8))
K[U[M, (extend E; & V[V, Eq])]] by Lemma 9 (2)
K[¥[(dlet (z V) M), E4]]

U[E[(dlet (£ V) M)], E] by Lemma 21 (1)

V) E'&])] —a E[(dlet (2 V) E'[V])] then:
t(z V) &), £l
K[¥[(dlet (z V) &'[2]), £l
K[¥[&'[2], E2]] with Ey = (extend Ey & W[V, F1])
KK ¥z, Es]]
K[K'[(lookup z E3)]]
. KIK'[Y[V, E7]]] by (lk1) and (lk)
KIK'Tw[V, Es]]]

K[¥[(dlet (z V) £'[V]), E1]] by Lemma 21 (2)
\II[[S[(dIet (z V) &'V])], E] by Lemma 21 (1)

o If &[(dlet (& V1) Va)] +>4 E[VA] then:
T[E[(dle

t (2 V1) V2)], E]

K[¥[(dlet (2 V1) V), E1]]
K[U[Vs, E5]] with By = (extend Ey & 17)
K[®[Va, £4]]

Heps YIE[Va], E] by a sequence of (3,) reductions

according Lemma 21 (2)

This case shows that the standard step (dlet-elim) may correspond to no tran-
sition is deps(Ag).
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As a result, we can establish that the evaluation functions of deps(Aq4) and A4
satisfy the following constraint.

Lemma 23  eval,(M) =V iff evalgep:(U[M,()]) = ¥[V,()] O

Proof: If eval, (M) = V, then we proceed by induction on the length of the reduc-
tion, and by successive applications of Lemma 22; we derive:

UM, O =eps ¥V O,

Le., evalgeps (F[M, ()]) = [V, ()] following Definition 19.
If evals (M) is not defined, two cases are possible:

1. If the computation diverges in A4, then it also diverges in deps(A4) (cf. Lemma
29).

2. If the computation is stuck, because it reaches a term &[z] with & ¢ DBV (£),
then we have:

Ve, O] = K[¥[z, E1]] with DOM(E,) = DBV (£)
= K[(lookup z E)]
aeps Kl(lookup 2 ()] by (lki) and (lks), because & ¢ DOM (E1)

So evaluation is also stuck in deps(Ag).

Knowing that evaly,, is a deterministic function, no other result is possible for

evalgeps (UM, ()]). [ |
Lemma 24 (Substitution (Continuing Lemma 9))

U[M[z— V], E]=Y[M] [z~ Y[V, E]]

Now, we are ready to prove that evaly, the algorithm to evaluate terms of AY
given in Figure 6, is a correct implementation of the specification given by evaly,
the evaluation relation of Definition 15.

Theorem 3 For any program M € A, there ewists V' such that V' € evaly(M)
iff evaly (M) =V for some value V. O

Proof: By Lemma 23, we have the following situation.

evals(M) = V lﬁ eValdeps (\IJ[[M’ ()]]) = \IJ[[V’ ()]]
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By Definition of the standard reduction [51], we deduce that:

deps(Aq) F UM, ()] = Y[V, ()], for some value V
iff W[M, ()] =55 Y[V’ (], for some value V.

The completeness of the Ag-calculus (Lemma 14) gives us:
deps(Ag) = WM, ()] = €[V*, ()] iff Aq b DTHE[M, O] = D [e[V". ()]

We can easily prove that for any M € Ay, deps(Ag) F D[M, ()] = ¥[M, ()]. By
the completeness of the Ag-calculus (Lemma 14),

A¢ = DTHDIM, ()] = D~ WM, ()]

and

Ag = DDV, 011 = P Ie V', 010
Hence,
Ag =DM, O] =DV, O iff A« FDT[PIM, ()]1= P~ [PIV', O]
Therefore, by Lemma 8, we have that:

A DDIM, O] = DRIV, O] iff Mg b (dlet () M) = (dlet () V')
iff \gFM=V'

In conclusion,

evaly (M) = V for some V iff \y+ M =V’  for some V'

eval, (M) =V for some V iff V'€ evals(M), for some V',

If we were to implement (lookup), we would start from the dynamic variable to be
evaluated, and search for the innermost enclosing dlet. If it contained a binding for
the variable, we would return the associated value. Otherwise, we would proceed
with the next enclosing dlet. This behaviour exactly corresponds to the search
of a value in an associative list (assoc in Scheme). Such a strategy is usually
referred to as deep binding. In Section 5, we further refine the sequential evaluation
function by making this associative list explicit. Furthermore, we present another
implementation technique, called shallow binding, whose purpose is to reduce the
access time for dynamic variable lookups.
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5. Two Refinements

In this Section, we present two common implementation strategies of dynamic bind-
ing. Our first refinement of the sequential evaluation function is to represent the
dynamic environment explicitly by an association list. By separating the evalua-
tion context from the dynamic environment, we facilitate the design of a parallel
evaluation function (Section 6), and we simplify the correctness proof of the next
refinement.

Figure 7 displays the state space and transition rules of the deep binding strategy.
The dynamic environment is represented by a new dlet construct that can only
appear at the outermost level of a configuration; following [19], we call this dlet-
construct a “state”. The list of bindings J can be regarded as a global stack, initially
empty when evaluation starts. A binding is pushed on the binding list, every time
a dynamic abstraction is applied, and popped at the end of the dynamic extent of
the application. In Section 4, the dlet construct was also modelling the dynamic
extent of a dynamic-abstraction application; now that the dlet construct no longer
appears inside terms, we introduce a (pop M) term playing the same role: it is
created when a dynamic abstraction is applied and is destroyed at the end of the
dynamic extent, after popping the top binding of the binding list. Let us observe
that pop and dlet are not accessible to the programmer, i.e., they are not part of
Ay, and are used internally by the reduction system.

Although the grammar of terms of A4, allows an unspecified number of pop terms,
there is a strong relationship between the number of such terms and the length of
the list of bindings J, as stated in the following Lemma.

Lemma 25 (Number of pop in Ag) Let P be a program of AY. For any §
and M such that (dlet () P) —%, (dlet 6 M), length(d) = nbr_of pop(M), with
nbr_of_pop defined as follows:

nbr_of_pop(V) = 0
nbr_of_pop(z) = 0
nbr_of _pop(V M) = nbr_of_pop(M)
nbr_of_pop(M; Ms) = nbr_of pop(M;y) if M; & Valueg
nbr_of _pop(pop M) = 1+ nbr_of pop(A)

Remark. We extend the definition to evaluation contexts: nbr_of_pop([]) = 0 so
that nbr_of_pop(&£[M]) = nbr_of _pop(€) + nbr_of pop(M).

0

Proof: We proceed by induction on the length of the reductions that lead to
(dlet § M). Initially, length(d) = 0 and nbr_of pop(P) = 0 because P € AS. We
also rely on the fact that at any moment, as reductions proceed inside an evaluation
context only, abstractions (static or dynamic) never contain a pop term.

We only consider the transitions involving a pop.

o Let (dlet § E[(Az. M) V]) — (dlet §§((z V) E[(pop M)]) by (dlet extend.
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State Space:

S € Stateqy, == (dlet 6§ M) (State)
M € Aaw = V |z | (MM)| (pop M) (Term)
VeVaueqw == x| daM | XM (Value)
6 € Binda = ()| 68((2V)) (Binding list)
x € SVar = A{z,y,2,...} (Static Variable)
# € DVar = {#,9,2...} (Dynamic Variable)
E€EvCong, == []| (V& | (EM) | (pop &) (Evaluation Context)

Transition Rules:

(dlet & E[(Ax.M) V]) +ap (dlet § E[M [z = V]]) (Bs)

(dlet & S[()\x M) V]) —a (dlet 88((2 V) [(pop M) (dlet extend)

(dlet § £[2]) —ap (dlet 6 E[V]) if V = lookup(Z,d) (lookup)

(dlet 5§((2 V)) E[(pop V)]) +av (dlet & V) (pop)

Evaluation Function:

1% if (dlet () M) —% (dlet () V)
VM € A%, evalgp (M) =<4 L if Vi€ IN, M; v—ap Mjy1,with My = (dlet () M)
error if (dlet () M) w7, M;, with M; € Stuck(Aas)

Stuck State: S € Stuck(Aap), if S = (dlet § £[2]) with & & DOM(6)

lookup(%,688((2 V))) =V
lookup (%, 6§((21 V))) = lookup(&,d) if & # 21

Figure 7. Deep Binding

We can apply the inductive hypothesis in the left-hand side:

length(d) = nbr_of _pop(E[(Az.M) V])
= nbr_of _pop(€) + nbr_of pop((Az.M) V)
= nbr_of_pop(€)
Therefore, in the right-hand side, we have:
nbr_of_pop(&[(pop M)]) = nbr_of_pop(&) + 1 4 nbr_of _pop(M)
= nbr_of pop(€) + 1
length(6) + 1 by inductive hypothesis
= length(d§((z V)))

o Let (dlet 3§((z V) E[(pop V)]) — (dlet 6 E[V]) by (pop).
Using the inductive hypothesis in the left-hand side:

length(3§((é 1)) = nbr_of pop(&[(pop V)
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nbr_of_pop(&) + nbr_of _pop(pop V)
nbr_of_pop(&) + 1

So length(d) = nbr_of _pop(£). In the right-hand side, we obtain length(§) =
nbr_of _pop(&) = nbr_of_pop(E[V]).

The soundness of the context-rewriting system of Figure 7 is established by a
simulation technique. Each term of A; can be translated into a state of Ag by the
following translation.

Definition 26 (Simulation DB) Any term of A; accessible by the evaluation
function eval; can be translated into a state of Ay, as follows:

DBIM] = DB [M,(),[]]

DB[(V M),8,&E] = PBL[M,8E[V []]
DB[(My Ms),6,E] = DPBi[My,6,&[[] Ma]] if My ¢ Valuea
DB [(dlet 61 M), ,E] = DB1[M, 6851, E[(pop [ ])]]
DBL[V,5,E] = (dlet § E[V))
DB.[2,0,E] = (dlet § £[2])

0

Let us observe that Definition 26 makes sense only for terms that are accessible
by evals for an input program. The translation of Definition 26 is the identity for
terms of A,.

Lemma 27 For any term M € Ay, for any £ € FvConyg, there exist § € Bindg
and & € EvCongy, such that: DB[E[M]] = PB1[M,d,&] = (dlet § £ [M]). O

Proof: The proof is by induction on the structure of M. [ |

Lemma 28 establishes that deep-binding based transitions can simulate transitions
of the sequential evaluation function.

Lemma 28 (Simulation) Let M;, My be terms of A; such that My —4 M.
Then, DBI[MJ] —>db DB[[Mz]] O

Proof: We proceed by cases on the different possible transitions:
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o Let My =&[(Ae. M) V] — My = E[M[z— V]] by (B,). Using Lemma 27, there
exist § and &; such that:

DB[M;] = (dlet § &[(Ax.M) V])
—db (dlet 6 & [M[:C = V]])
= DB[M,]

o Let My = E[(Ae. M) V] = My = E[(dlet (& V) M)] by (dlet extend). Using
Lemma 27, there exist § and &£ such that:
DB[M;i] = (dlet d &i[(A2.M) V])
—ap (dlet 3§((2 V) &il(pop M)])
= DB[M,]

o Let My = &[(dlet (2 V) &1[2])] = Mo = E[(dlet (2 V) & [V])] with & ¢ DBV (&)
by (lookup). Using Lemma 27, there exist 41,82, £, and & such that:
DB[Mi] = (dlet 6:§((z V))§d2 £'[(pop £1[2])])
with & ¢ DOM (d2)
—ay, (dlet 01§((2 V))§d2 &' [(pop E1[V])])
= DB[M,]

o Let My = &[(dlet (z V') V)] = Mz = E[V] by (dlet elim). Using Lemma 27,
there exist § and &; such that:
DB[M] = (dlet 6:§((z V")) &[(pop V)])
—ap (dlet 61 &[V]) by (pop)
= DB[M:]

The simulation DB preserves stuck terms as showed in the next Lemma.

Lemma 29 M is a term of stuck(A,) if and only if DB[M] is a state of stuck(Agp).
O

Proof: By Lemma 25, we know that (dlet () £[(pop V)]) is not reachable by eval,

from a program P. Therefore, if M € stuck(A;), then M is of the form &[z]

with & ¢ DBV (E). Therefore, DB[M] = (dlet § &[z]), with & ¢ DOM/(J).
|

Following Lemmas 27, 28, and 29, Theorem 4 establishes the correctness of the
deep binding strategy.
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Theorem 4 eval, = evaly O

The deep binding technique is simple to implement: bindings are pushed on the
binding list § at application time of dynamic abstractions and popped at the end
of their extent. However, the lookup operation is inefficient because it requires
searching the dynamic list, which is an operation linear in its length.

There exist some techniques to improve the lookup operation. The shallow binding
technique consists of indexing the dynamic environment by the variable names [1].
A further optimisation, called shallow binding with value cell 1s to associate each
dynamic variable with a fixed location which contains the current binding for that
variable: the lookup operation then simply reads the content of that location.

Figure 8 displays the evaluation function based on shallow binding with value
cell. The dlet construct still appears at the outermost level of a state, but § is now
a vector, represented as a finite function or set, and indexed by dynamic variables.
Each component of the vector contains a stack. The value of a dynamic variable
is given by the first element of its associated stack. When execution starts, all
the value cells are initialised to the empty stack (). When applying a dynamic
abstraction on a value, the value is pushed on the stack; as before, a pop term
delimits the extent of the dynamic variable, but now also specifies the variable. At
the end of the extent, the previous content of the cell is restored by popping the
stack. Let us observe that a stuck term is defined as a reference to a variable whose
value cell contains ().

The correctness proof is based on a simulation similarly as for deep binding,

Definition 30 (Simulation SB) Any state of Stateg, accessible by the evalua-
tion function evalg can be translated into a state of State,, as follows:

SB[(dlet § M)] = SBi[M,5,[1,6.] with & = {(& ()),& € DV(P)}

SBi[(V M), 8a,&,8:] = SBi[M, 846, EV [ 1], 0¢8]
SBi[(M1 M), 0ap,E,6] = SBi[Mi,da, E[[] M2, 8] if My & Valueas
SB1[[(pop M), (& V))§6av, £, 8] = SBi[M,dap, E[(pop & [ )], push(Se, &, V)]
SBi[V,(),£,8:6] = (dlet 6 E[V])
SB[, (),€,0s] (dlet 645 E[2])

O

Let us observe that the translation is meaningful because the number of pop forms
is equal to the length of d4 (Lemma 25).

Lemma 31 (Simulation) Let 57,52 be states of Statesq, such that S7 —4 Sa.
Then, SB[[Sl]] b SB[[SQ]] O
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State Space:

S € Statesy, = (dlet § M) (State)
M € A = V| & | (MM)]| (popt M) (Term)
VeValuesy, == =z | da.M | A\&. M (Value)
§ € Bind.p = {(£0)...} (Value Cells)
O € Content == () | O§( ) (Cell Content)
r € SVar = A{z,y,2,...} (Static Variable)
& e DVar = {z,9,%,...} (Dynamic Variable)
€ FEvCong == [] | ( E) | (EM) | (pop&[]) (Evaluation Context)

Transition Rules:

(dlet § E[(Ax. M) V]) . (dlet § E[M[z — V]]) (Bv)
(dlet 6 E[(A2.M) V]) s (dlet push(d, &, V) E[(pop & M)]) (dlet update)

(dlet 6 £[2]) o (dlet 6 E[V]) if 6(2) = O§(V) (lookup)
(diet & £[(pop & V)]) > (dlet pop(6, ) £[V]) (pop)

Evaluation Function: For any program M € A}, with &; = {(¢ {)),& € DV (M)},

Vv if (dlet 8; M) —7, (dlet §; V')
eval.y(M) =4 L if Vy e IN,M; e Mjy1, with Mo = (dlet 6; M)
error if (dlet §; M) 7%, M;, with M; € Stuck(Ass)
Set, of Dynamic Variables: Stuck State:
DV (M1 M) = DV(M1)U DV (M) S € Stuck(Asp) if S = (dlet 6 £[2])
DV(Az.M) = DV(M) with 0(%) = ()
DV(Az.M) = {2} U DV (M)
DY) = {3}
DY) = {)

Stack Operations
push(8, &, V) = §[& :=§(2)§(V)]

pop(4,2) = 6[z :=O0]if §(z) = O§(V)
5(z) = O if (z0)€é
3= 0] = 5\ 1(2 0)) U {(3 0) if 6(3) = O

Figure 8. Shallow Binding with Value Cell

Proof: We proceed by cases on the different possible transitions, and we only
consider the transitions dealing with the dynamic environment.
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o Let S; = (dlet § E[(A2. M) V]) —>ap So = (dlet 6§((2 V) E[(pop M)]). There
exist d5, and &’ such that:
SB[S1] = (dlet &5 E'[(A2. M) V])
o (dlet push(dgp, 7, V) E'[(pop # M)])
= SB[S:]
o Let S; = (dlet § £[E]) —ap S2 = (dlet § E[V]) with lookup(z,d) = V. There
exist 0,5 and &’ such that:
SB[S1] = (dlet &5 &'[2])
—sb (dlet Osp g/[V]) by (*)
= S8B[S2]
(%) If lookup(#,d) = V then 0 is of the form: 61 §((2 V))§02 with & & DOM (d5).
Therefore,
SB[(dlet § £[z])]
SBil(pop £'[2]), (& V))§d2, £1,05,]
because there is a pop term for the binding (z V)
= SBi[€'[2], 02, &1[(pop 2 [])], pushd(d,, 2, V)]
& ¢ DOM (82), then é,,(2) = push(d’,,2,V)(z) = V.

l

o Let Sy = (dlet §((2 V1)) E[(pop V)]) —ap S2 = (dlet § E[V]). There exist d
and &£’ such that:
SB[S1] = (dlet ds E'[(pop = V)])
with d5(2) = Of
s (dlet pop(dsp, 2) &
= SB[S:]

—
=
~

The simulation SB also preserves the notion of stuck term.

Lemma 32 S is a state of Stuck(Ag) if and only if SB[S] is a state of Stuck(Asp).

O
Proof: If S € stuck(Ag), then S is of the form (dlet § £[#]) with 2 ¢ DOM (9).
Therefore, SB[S] = (dlet 0, £1[2]), with d54(2) = (). ]

Now we can prove the correctness of the technique of shallow binding with value
cell.
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Theorem 5 evaly = eval,, O

Proof: Proof is by application of Lemmas 31 and 32. |

In early interpreted implementations of Lisp, variables were dynamic. In the
Maclisp interpreter [42], dynamic variables were represented as symbols, and the
value cell was a field in their representation; hence, the name of the technique.
However, in the absence of such a representation for dynamic variables, one can
allocate a unique number to each dynamic variable by pre-processing programs,
and lookup now becomes an access to a component of a vector [52]. Baker’s re-
rooting technique [3] combines the benefits of deep and shallow bindings in a single
implementation.

6. Parallel Evaluation

In Section 3, we observed that the axiom (dlet propagate’) was particularly suitable
for parallel evaluation because it allowed the independent evaluation of the operator
and operand by duplicating the dynamic environment. It is well-known that the
deep binding strategy is adapted to parallel evaluation because the associative list
representing the dynamic environment can be shared between different tasks.

As in our previous work [44], we follow the “parallelism by annotation” approach,
where the programmer uses an annotation future [28] to indicate which expressions
may be evaluated in parallel. The semantics of future has been described in the
purely functional framework [19] and in the presence of first-class continuations and
assignments [44]. In this Section, we present the semantics of future in the presence
of dynamic binding.

The evaluation state space is displayed in Figure 9. As in [19, 44], the set of
values is augmented with a placeholder variable, “which represents the result of
a computation that is in progress”. In addition, a new construct (f-let (p M) S)
has a double goal: first, as a let it binds p with the value of M in S; second, it
models the potential evaluation of S in parallel with M. The component M is the
mandatory term because it is the first that would be evaluated if evaluation was
sequential, while S is speculative because its value is not known to be needed before
M terminates.

So far, we have dealt with a language A4 that extends the call-by-value lambda-
calculus with constructs for dynamic binding. However, adding placeholder vari-
ables to the set of values has an implication on the definition of primitives. We
must distinguish primitives that can accept placeholders as argument from primi-
tives that cannot; the former are called non-strict primitives, while the latter are
said to be strict [28]. Strict primitives, such as car or cdr, require their arguments to
be proper values before being executed, whereas non-strict primitives, such as cons,
can be executed whatever their argument. As a result, in order to illustrate the
two kinds of primitives, we introduce lists in our language. They are constructed
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by the non-strict primitive cons, and are accessed by the strict operations car and
cdr; the empty list is represented by nil.

Due to pairs, error situations occur not only when we reach a stuck term, but
also when we try to apply constants or try to access the components of non-pair
values. We introduce a distinguished state error and errors are propagated using
the abort operator .4 [13].

It is important to observe that (future []) is not a valid evaluation context. Oth-
erwise, if evaluation was allowed to proceed inside the future body, it could possibly
change the dynamic environment, which would make (fork) unsound. Instead, rule
({tc), which stands for lazy task creation [11, 41], replaces a (future M) expression
by (fmark § M), which should be interpreted as a mark indicating that a task may
be created.

If the runtime elects to create a new task, (fork) creates a f-let expression, whose
mandatory component is the argument of fmark, i.e., the future argument, and
whose speculative component is a new state evaluating the context of fmark filled
with the placeholder variable, in the scope of the duplicated dynamic environment
d1. If the runtime does not elect to spawn a new task, evaluation can proceed in
the fmark argument.

Rules (ltc) and (future id) specify the sequential behaviour of future: the value of
future is the value of fmark, which is the value of its argument.

When the evaluation of the mandatory component terminates, rule (join) sub-
stitutes the value of the placeholder in the speculative state. Rule (speculative)
indicates that speculative transitions are allowed in the f-let body.

The strict nature of the primitives car and cdr appears in rules (car) and (cdr),
which can only be fired if the argument is not a placeholder variable. On the
contrary, cons is not strict because (cons 1} V3) is regarded as a value even if V}
is a placeholder. Let us also note that the operator position of applications is
strict because rule (3,) can be executed only if the operator is different from a
placeholder.

Following [19], Figure 9 defines a relation 51 ~7™ S; meaning that n steps are
involved in the reduction from S; to S3, among which m are mandatory.

The correctness of the evaluation function follows from a modified diamond prop-
erty and by the observation that the number of pop terms in a state is always
smaller or equal to the length of the dynamic environment.

Now that rule (fork) can radically change the term that appears inside a dlet
expression, we have to reformulate Lemma 25 as follows:

Lemma 33 (Number of pop in Ap) Let P be a program of A,. For any state S
of State, that can be reached from an initial program P,

o if S = (dlet § £[R]), then length(d) > nbr_of_pop(€) + nbr_of_pop(R),

o if S = (dlet § E[fmark §; M]), then length(d1) > nbr_of _pop(£),



43

State Space:

S € State, = (dlet§ M) | (dlet 6 (f-let (p M) S)) | error (State)
MeA, = V|2 | (MM)] (future M) (Term)
| (pop M) | (fmark § M) | (A error)

W € PValuey = x| XM | &M (Proper Value)

| ¢ | (cons V' V) | (consV)
V € Value, = W |p (Runtime Value)
g € AValue = f | XM | X&.M | (consV) (Applicable Value)
1) = () ]4é8(E@V) (Binding list)
c € Const = a | f (Constant)
D € SeqEvCon, == [] | (VD) | (D M) (Seq. Ev. Context)
| (pop D) | (fmark 6 D)
& € EvCony = D | (flet (p D) 5) (Ev. Context)
x € SVar = {z,y,2,...} (Static Variable)
% € DVar = {z,9,...} (Dynamic Variable)
a € BConst = {nil} (Basic Constant)
f € FConst = {cons, car, cdr} (Functional Constant)

Transition Rules:

w1 [ (dlet § E[M[w > VA])) if Vi = (Aw. M)
(diet § £[V2 V2]) = { (dlet 6 E[(A error)])  if Vi & AValue, Vi #p )
1,1 (dlet & £[V1]) if V= (cons V1 Vg)
(dlet & £[(car V)]) =, { (dlet & £[(A error)]) if V # (cons V1 Vo),V # E“’“’"
1,1 (dlet & £[V2]) if V= (cons V1 V2
(dlet & £[(cdr VI]) 1=y { (dlet § E[(A error)]) if V # (cons V1 V2),V # g;Cdr
(dlet & E[(Az. M) V]) —pt (dlet 55((& V)) El(pop M)]) (dlet extend)
v aa [ (dlet 5 [V if V= 5(2)
(dlet § £[3]) { dlet 6 £ A error]) if &g DOM(6) (lookup)
(dlet 85((& V) £[(pop V')]) b (dlet & £[V"]) (pop)
(dlet & E[(A error)]) " error (error)
(dlet § &[(future M)]) " (dlet § E(fmark & M)]) (Itc)
(dlet § E[(fmark 61 V)]) ' (dlet 61 E[V]) (future id)
(dlet 6 &[(fmark 61 M)]) —5° (dlet § (f-let (p M)(dlet 3:£[p]))) (fork)
with p & FP(E) U FP(5,)
(dlet § (f-let (p V) S)) =" Slpw V] (join)
(dlet & (f-let (p M) S1)) +3° (dlet § (f-let (p M) S2)) if Sy " Sz (speculative)
S =20 s (reflezive)
S mpte Y g i S et and ' gt S” (transitive)

Figure 9. Parallel Evaluation (part 1)
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Evaluation Function: For any program M € A,

W if (dlet () M)y (dlet () W)
1 if V5 € IN,3dn;, m; € IN such that

eval,(M) = (dlet () M) = So and S; +p?™ Sj41 with m; > 0.
error if (dlet () M) —, M;, with M; € Stuck(Aaw),

or (dlet () M)+, error

Figure 10. Parallel Evaluation (part 2)

with nbr_of_pop defined as in Lemma 25 and the following clauses:

nbr_of _pop(fmark § M) = nbr_of_pop(A)
nbr_of_pop(f-let (p M) S) = nbr_of_pop(M).

O

Proof: We proceed by induction on the length of the transition as in Lemma 25;
we consider the following cases only:
o Let (dlet § &£[(fmark 61 M)]) — (dlet & (f-let (p M) (dlet 61 E[p])) by (fork).
By inductive hypothesis, in the left-hand side:
length(6) > nbr_of_pop(&) + nbr_of _pop(fmark § M)
= mnbr_of pop(€) 4 nbr_of _pop(M)
and

length(d1) > nbr_of _pop(&)

Therefore, in the right-hand side, length(d) > nbr_of _pop(M) and length(d,) >
nbr_of _pop(€).

o Let (dlet § &[(future M)]) — (dlet § E[(fmark & M)]) by (ltc).

In the left-hand side, length(d) > nbr_of_pop(€) + nbr_of _pop(M). Therefore,
length(8) > nbr_of_pop(&), and both properties are also true in the right-hand
side.

Next, we establish that reductions in A, are preserved under placeholder-variable
substitution.

Lemma 34 (Placeholder transparency) For any placeholder p, for any value
V € Value,, and for any states S1, 5o € State,,

if Sy =" Sy, then Sy [ps V] 8o [p s V1.
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0

Proof: See Flanagan and Felleisen’s [19] Lemma 3.2. ]

Flanagan and Felleisen’s [19] modified diamond Lemma, subsequently revised for
first-class continuations and assignments [44], is now adapted to dynamic binding.

Lemma 35 (Modified Diamond Lemma)
Let Sy, 52,53 be states. If 51 —"1™1 Sy and 57 =722 S5, then there exists Sy,
and ngz, ms, ng, mq, n € IN such that S, —-"*™3 S, and Sy —"+™+ §,.

Sh =M Sy n3g < ng

Jrame Jrema ng < n

S3 —neme S5y my +n3 < myg+n
mg +ng < mzg+ny

0

Proof: We proceed by a lexicographic induction on ni, ny, and the size of S;. We
define:

(seq) = (Bv) + (ear) + (cdr)
(dlet) = (dlet extend) + (lookup) + (pop)

We proceed by a case analysis of the possible transitions S; —"v" Sy and
Sp —"2™M2 G5 ag summarised in the following table. Symmetry considerations
allows us to study one half of the table. Each case is annotated by a reference to
its proof.

(seq) | (f-id) | (lic) | (fork) | (join) | (spec) | (dlet) | (err) | (refl) | (trs)
(seq) =
(f-id) X =
(lte) X X =
(fork) 1 2 X 3
(join) X X X 4 =
(spec) 5 6 7 8 9 10
(dlet) X X X 11 X 12 =
(err) X X X 13 X 14 X =
(reﬂ) 15 15 15 15 15 15 15 15 15
(tT‘s) 16 16 16 16 16 16 16 16 15 16

x  This case 1s impossible.

= Let us assume that S; =51 Sy and S; —U! S5 by the same transition. Then

we have,
Sl —)1’1 SQ 0 S 1
\1/1,1 \1/0,0 0 S 1
S3 —0.0 Sy 140 < 041
T+0 < 0+1
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Let us assume that S; —5% Sy by rule (seq) and S; —1° S by rule (fork).

Sy = (dlet & &[(fmark 6, M)])
S1— Sy = (dlet § £[(fmark §; M")])
Sy — S3 = (dlet & (f-let (p M) (dlet §; E[p])))

Then take Sy such that S —10 Sy by (fork) and Sz —1! Sy by (seq).
Sy = (dlet & (f-let (p M') (dlet &1 E[p]))]

The indices ns, ms, ng, my satisfy the constraints.

Sl —)1’1 SQ 1 S 1

\1/1,0 J/l,O 1 S 1

Sz —=bt oS, 141 < 141
0+1 < 0+1

Let us assume that S; —U1 Sy by rule (future id) and S —50 Sy by rule
(fork). Two cases should be considered, depending on whether (future id) and
(fork) are applied to the same fmark or not.

(A) In the first case, both rules are applied to the same fmark.
S1 = (dlet & E[(fmark 6, V)])
S1 — Sy (dlet &, E[V])
S1 — S = (dlet o (f-let (p V) (dlet &1 &[p])))
with p & FP(E)U FP(41)
Then take Sy = Ss, with Sy =00 Sy by (reflexive) and S5 —1! Sy by
(join).
Sy —10 (dlet 6, E[p [pr> V]]) since p & FP(E)U FP()
= (dlet 61 E[V]) = S,

The indices ng, m3z, ng, my satisfy the constraints.

Sy —— So 0 <1

\Ll,O ~L0’0 1§1

Sz —=blog, 140 < 1+1
0+1 < 0+1

(B) In the second case, both rules are applied to different fmarks.
Si = (dlet d E[(fmark §1 &'[(fmark d» V)])])
Then proceed as in 1, with M = &'[(fmark 62 V)], M’ = £'[V]. Again, all

indices satisfy the constraints.
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Let us assume that S; —159 Sy by rule (fork) and S; —10 S3 also by rule (fork).
If rule (fork) is applied to the same fmark, than proceed as in =. Otherwise,

S1 = (dlet § & [(fmark 61 E[(fmark 62 M)])])

S1 — Sy (dlet § (f-let (p1 Ex[(fmark 62 M)]) (dlet 61 &1[p1])))
Sl — Sg = (dlet 5 (f—let (p2 M) (dlet (52 51[(fmark 51 82[])2])])))

Then take Sy such that Sy =10 Sy by (fork) and S5 —10 Sy by (speculative)
(and (fork)).

54 = (dlet (5 (f—let (pz M) (dlet 52 (f—let (p1 (‘:2[2)2]) (cllet (51 51[])1])))))

The indices ngz, mg, ng, my satisfy the constraints.

Sl —)1’0 Sg 1 S 1

\1/1,0 \1/1,0 1 S 1

53 —)1’0 S4 0—|—1 S 0—|—1
0+1 < 0+1

Let us assume that S; =51 Sy by rule (join) and S; —1° S3 by rule (fork).
The proof is similar to 1.
Let us assume that S; —%° Sy by rule (speculative) and Sy —b1 S5 by rule
(seq).
S1 = (dlet & (f-let (p M) S5))
S1 — Ss (dlet § (f-let (p M) Sg)) because Sj —ob gy
Si— Sz = (dlet § (f-let (p M') Ss))

Then take Sy such that S, —11 Sy by (seq) and Sz —%% Sy by (speculative).
Sy = (dlet § E[(f-let (p M') S6)])

The transition lengths clearly satisfy the constraints.

Sl %a,o SZ 1 S 1

\Ll’l \Ll’l a S a

S3 —a0 S4 0+1 < 0+1
l14a < 1+4a

Let us assume that S; —%Y Sy by rule (speculative) and Sy —b1 S3 by rule
(future id).
S1 = (dlet & (f-let (p &i[(fmark 67 V)]) S5))
Sp — Sy = (dlet § (f-let (p &1[(fmark 61 V)]) Ss)) because S5 —° Sg
S1 — S3 (dlet 01 (f—let (p gl[V]) 55))
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Then take Sy such that Sy —11 Sy by (future id) and S3 —*° Sy by (specu-
lative).

Sy = (dlet &; (f-let (p &1[V]) Ss))

The transition lengths satisfy the constraints.

S —,0 So 1 <1

J,l’l ~L1’1 a S a

Sg _>a,0 S4 0+1 S 0+1
l14a < 1+4a

Let us assume that S; —%° Sy by rule (speculative) and Sy —b1 S5 by rule
(lte).

S1 = (dlet & (f-let (p E[future M]) Ss))
S1 — Ss (dlet § (f-let (p E[future M]) Ss)) because S5 —** Sg
S1 — Sz = (dlet ¢ (f-let (p E[fmark & M]) S5))

Then take Sy such that Ss —11 Sy by (ltc) and S5 —% Sy by (speculative).
Sy = (dlet ¢ (f-let (p E[fmark & M]) Se))

The transition lengths clearly satisfy the constraints.

Sl %a,o SQ 1 < 1

\Ll’l \Ll,l a S a

S3 —a0 Sy 0+1 < 0+1
14a < 1+a

Let us assume that S; —%Y S, by rule (speculative) and Sy —50 Sy by rule
(fork).
S1 = (dlet o (f-let (p &1[(fmark 61 M)]) Ss))
S1 — Sy = (dlet & (f-let (p &1[(fmark 61 M)]) Se))
as a direct consequence of S5 =% Sy
S1 — S3 = (dlet & (f-let (p" M)(dlet §; (-let (p &1[p]) S3))))
Then take Sy such that Ss —1° Sy by (fork) and S5 —%° Sy by (speculative).
Sy = (dlet & (f-let (p" M)(dlet &1 (f-let (p E1[p]) S6))))

The indices ns, ms, ng, my satisfy the constraints.

Sl %a,o SQ 1 < 1

\1/1,0 \1/1,0 a S a

S3 —a0 Sy 0+1 < 0+1
0+a < 0+a
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(join).

S1

Sl — SZ

Sl —)Sg
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that S; —%% Sy by rule (speculative) and S; —1 S5 by rule

= (dlet & (f-let (p V) S5))

(dlet § (f-let (p V') Se)) as a direct consequence of
55 _>a,b S@
Ss [’p — V]

Then take Sy such that Sy ="' Sy by (join).

S4 = Sg [pHV]

In addition, from S5 —®% Ss, we deduce that S5 [p— V] =%* S5 [p +— V]
by Lemma 34 (placeholder transparency). The transition lengths clearly satisfy

the constraints.

Sl _>a,0 SQ 1§1

\Ll’l \Ll,l a S a

Sy =t 5, 041 < b+1
14a < 1+a

10. Let us assume that S; —%0 Sy and S; =20 S5 both by rule (speculative).

S1
Sl — Sz

Sl —)53

(dlet & (f-let (p V) S}))
(dlet § (f-let (p V') S5))
as a direct consequence of S| —%:b1 S
(dlet & (f-let (p V) S3))

as a direct consequence of 5§ —92:2 S%

By inductive hypothesis on (a1, as, S7) with S} strictly smaller then Sy, we have:

Si —)al’bl Sg as S as

\l/azybz \l/a(ilbli ayq S ay

Sé _>a4,b4 Sfl bl + as S b4 + as
by +ays < bs+a;

Therefore, we can take Sy = (dlet § (f-let (p V') S%)), with Sy —90 S, and
S5 —440 Sy by (speculative); we obtain the following diamond:

S1 —a0 g, az < as

gm0 e “ < m

S3 —aa0 Sq 04+as < 04 as
O+ay < 04ay
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11. Let us assume that S; —51 Sy by rule (dlet) and S; —1° S by rule (fork).

S1 = (dlet & &[(fmark d, M)])
S1 — Sy = (dlet §; E[(fmark 6; M')])
S1 — S3 (dlet § (f-let (p M) (dlet 61 E[p])))

Then take Sy such that S, —% Sy by (fork) and Sz —'! Sy by (dlet).
Sy = (dlet &5 (f-let (p M) (dlet §; £[p]))]

The indices ng, ms, ny, my satisfy the constraints.

Sl —)1’1 SQ 1 < 1

\Ll,O \LLO 1 S 1

Sz —btos, 141 < 1+1
04+1 < 0+1

12. Let us assume that S; =% S5 by rule (speculative) and Sy —b1 S3 by rule
(dlet).

S1 = (dlet & (f-let (p M) Ss))
Sp — Sy = (dlet & (f-let (p M) Se)) because S5 —° Sg
S1 = Sy = (dlet 6, (f-let (p M') S5))

Then take Sy such that Sy —11 Sy by (dlet) and Sz =% Sy by (speculative).
Sy = (dlet &y E[(f-let (p M"Y S5)])

The transition lengths clearly satisfy the constraints.

Sl _>a,0 SQ 1 S 1

i«l’l \Ll’l a < a

S3 —a0 Sy 0+1 < 0+1
l14a < 1+4a

13. Let us assume that S; —1 Sy by rule (error) and S; —1% Sz by rule (fork).

S1 = (dlet § & [(fmark &1 &[A error])])
S1 — Sy = error
S1 = Ss = (dlet & (Flet (p &[A error]) (dlet &1 £1[p])))

Then take Sy = Sz, with S3 =11 Sy by (error), and we have:

Sl —)1’1 SQ 0 S 1

\1/1,0 \1/0,0 1 S 1

Sz —btos, 140 < 1+1
04+1 < 0+1
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14. Let us assume that S; —11 Sy by rule (error) and 51 —° S3 by rule (specu-

lative).
S1
S1 — Ss
S1 —+ 53

error

(dlet § (f-let (p &1[A error]) S))

(dlet & (f-let (p £1[A error]) S7)) because S —ab g

Then take Sy = Sz, with S3 =11 Sy by (error), and we have:

11

St Sy 0 <a

\La,O \L070 1 S 1

Sz —bt gy 140 < 1+a
0+1 < 0+1

15. If S; =90 S, then take Sy = Ss, with ng = ny and ms = m..

16. If S; —"v™1 Sy by rule (transitive), there exists Se such that S; —@b

Sg =22 5.

Since a1 < ni, we can apply the inductive hypothesis. There exists a state S7
and as, b3, a4, by € IN, such that:

51 _>a1,b1 Se az < na (dl)
Jraima ot a < a (d2)
S3 —aaba St b1 +as < by+no (d3)

my +ag < bz+ay (d4)

Since as < nq, we can also apply the inductive hypothesis. There exists a state
S4 and as, bs, n4, my € IN, such that:

56 _)az,bz Sg as S as (d5)
poabs yrama ny < az (d6)
St —asbs G, by+ny < bs+as (d7)
bs+as < ma+az (d8)
Therefore, we have the following diagram.
Sl _)al,bl S6 _)azybz S2
T \Laayba rama
Ss —yaa,ba S7 —as,bs S

Let Ng = Ay + a5, mz = b4 + b5.

ng

a4 + as

by +ba+n4
ma + aq + as

So, the constraints are also satisfied:

< ng by (d6,d1)
< ai+as by (d2, db)
S b4 + b5 + nso by (d3, d7)
< mg+ay + az by (d4,d8)
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The correctness of the evaluation relation eval, is established in the following
theorem.

Theorem 6 evaly = eval, O

Proof: Proof is similar to Flanagan and Felleisen’s [19] proofs for Theorems 3.6
(Consistency) and 3.7 (Correctness). The modified Diamond Lemma 35 is used
to prove the consistency of the transitions by establishing that a term can reduce
to at most one normal form, after a finite number of mandatory transitions.
|

As far as implementation is concerned, rule ({tc) seems to indicate that the dy-
namic environment should be duplicated. A further refinement of the system shows
that it suffices to duplicate a pointer to the associative list, as long as the list re-
mains accessible in a shared store.

A similar reduction system could be defined for the shallow binding strategy.
However, duplicating the dynamic environment is no longer a cheap copy of pointer
but requires copying all the cells of the dynamic environment.

Rule (lte) adds an overhead to every use of future, by duplicating the dynamic
environment even if dynamic variables are not used. Feeley [11] describes an imple-
mentation that avoids this cost by lazily recreating a dynamic environment when
a task 1s stolen.

Due to the orthogonality between assignments and dynamic binding, our previ-
ous results [44] with assignments can be merged within this framework. Adding
assignments permits the definition of mutable dynamic variables (with a construct
like dynamic-set! [50]). Due to the purely dynamic nature of the semantics, the
presence of mutable dynamic variables offers less parallelism as observed in [44].
The interaction of dynamic binding and continuations is however beyond the scope

of this article [30].

7. Expressiveness

In Section 2.2, we stated that dynamic binding was an expressive programming
technique that, when used in a sensible manner, could reduce programming patterns
in programs. In this Section, we give a formal justification to this statement,
by proving that dynamic binding adds expressiveness [12] to a purely functional
language. First, we define the notion of observational equivalence.

Definition 36 (Observational Equivalence) Given a programming language £
and an evaluation function eval., two terms My, My € L are observationally equiv-
alent, written My =, Mo, if for any context C' € £, such that C[M;] and C[M;] are
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both programs of £, evalz (M) is defined and equal to V if and only if eval (Ms)
is defined and equal to V. O

We shall denote the observational equivalences for the call-by-value A-calculus
and for the Ag-calculus by =2, and =4, respectively. In order to prove that dynamic
binding adds expressiveness [12] to a purely functional language, let us consider the
following lambda terms, where (let (z M7) M>) is syntactic sugar for ((Az.Ms) My).

My = Mf. (Au.(f (Az.(2 0)))) (¢ 0)
My = Mf. (let (v (¢t 0)) (f (A\zv)))

The terms My, M5 are observationally equivalent in the A,-calculus, i.e., My =2, Ms.
(The second occurrence of (¢ 0) in M; guarantees that, if (¢ 0) diverges, then M;
and My both diverge when applied.) However, they are not equivalent in the A4-
calculus, i.e., My %4 Ms. Indeed, M; and M> use a subterm (¢ 0), which potentially
may be evaluated in two different dynamic environments: (¢ 0) is evaluated in the
same dynamic environment as the body of My, but potentially in a new dynamic
environment created by f in M;. The following context of Ay uses this idea to
distinguish M; from Ms:

C =i ([] Qi) (M. (Ai. (£ 0)) 1)) 2.

Then,

] = (A (AL (h(f (et 0)) (2 0)) () (M. (A (£ 0)) 1)) 2
= (Az. (Au.((M. (Az. (£ 0)) 1) (Az.((Ay.z) 0)))) ((Ay.z) 0))) 2
= (Az. (Au.((M. (Az. (1 0)) 1) (Az.2))) 2)) 2
= (Az. ((Au.((Az. (Nz.2) 0)) 1)) 2)) 2
= (Az. (Au.((Az. 2) 1)) 2)) 2
= (Az. ((Au.l) 2)) 2
=1

M) = (A (M (et (v (£0)) (7 (Ae)))) () (M. (A (1 0)) 1)) 2
= (Az. (let (v ((Ay.2) 0)) ((At. (Az. (2 0)) 1) (Az.v)))) 2
= (Az. (let (v &) ((Az. (Az.v) 0)) 1)) 2
= (Az. (let (v &) ((Az.v) 1))) 2
= (dlet (& 2) (let (v &) ((Az.v) 1)))
= (dlet (z 2) (let (v 2) v))
= 2

The difference between My and M5 can also be explained in terms of the hostname
example of Section 2.4. The dynamic variable & represents the hostname dynamic
variable, and we can imagine that the function f creates a remote task, which binds
z to a new value. So, terms M; and M» are not equivalent because they evaluate
(t 0) on two different hosts.
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This example shows that dynamic binding enables us to distinguish terms that the
call-by-value A-calculus cannot distinguish. As a result, we can state that the ob-
servational equivalence relation of A does not extend the observational equivalence
relation of A, i.e., =, ¢=,.

We use Felleisen’s [12] definition of expressiveness and the following theorem:

Theorem 7 (Felleisen’s Theorem 3.14) Let £, = Lo+ {F1,...} be a conser-
vative extension of Lo. Let =y and =, be the operational equivalence relations of
Lo and L1, respectively.

1. If the operational equivalence relation of L1 does not extend the operational
equivalence relation of Lo, i.e., Zo¢=4, then Lo cannot macro-express the

facilities {Fy, .. .}.
2. The converse of 1 does not hold.
O
Following Theorem 7, we conclude that:

Theorem 8 A, cannot macro-express dynamic binding relative to Ay. O

The practical implications of this expressivity result are elucidated by the follow-
ing thesis.

Programs in more expressive programming languages that use the additional
facilities in a sensible manner contain fewer programming patterns than
equivalent programs in less expressive languages (Felleisen [12]).

The thesis applies to dynamic binding as follows. In the absence of dynamic
binding, the programmer would have to simulate the dynamic-environment passing
style, which requires that an extra argument be passed to each function referring
to the “dynamic state”. As discussed in Section 2, such a code is prone to errors,
and it also hampers scalability.

8. Semantics of Exceptions

First-class continuations and state can be used to implement exception handling
mechanisms [18]. We show here that the same is true for first-class continuations
and dynamic binding.

In Standard ML, exceptions are raised by an operator raise, and are caught by
handlers installed with handle. In the semantics of ML [6, 40], a raised exception
returns an exceptional value, distinct from a normal value, which has the effect of
pruning its evaluation context until a handler is able to deal with the exception.
By merging the mechanism that aborts the computation and the mechanism that
fetches the handler for the exception, the handler can no longer be executed in
the dynamic environment in which the exception was raised. As a result, such an
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approach cannot be used to give a semantics to other kinds of exceptions, such as
resumable ones [64].

In order to model the abortive effect, we extend the sequential evaluation function
of Figure 6 with Felleisen and Friedman’s abort operator .4 [16].

MeAg = ... | (AM) (Terms)
E[AM] —a M (abort)

For the sake of simplicity, we assume that there exists only one exception type
(discrimination on the kind of exception can be performed in the handler). We
also assume the existence of a distinguished dynamic variable z.. In Figure 11, we
give the syntax and the semantics of operators for handling and raising ML-style
exceptions. The operator handle dynamically binds a function Av. AE[(f v)] to &.
and evaluates its second argument in this new dynamic environment. When raise is
called on a value V| the latest active handler is retrieved from the dynamic variable
Z.; it is applied on V| escapes, reinstates the dynamic context that existed when
handle was called, and then applies f.

E[(handle f M)] —4 E[(Az2e. M) (Av. A E[(f v)])] (handle)
El(raise V)] —q E[(z. V)] (raise)
M == ... | (raise V) | (handle f M)

Figure 11. ML-style exceptions

The usage of a first-class continuation appears here as rule (handle) duplicates
the evaluation context £. Let us also observe that the continuation is only used in
a downward way, which amounts to popping frames from the stack only.

On the other hand, there also exist resumable exceptions, such as Common Lisp
resumable errors [64], or Eulisp resumable conditions [50]. They essentially offer
the opportunity to resume the computation at the point where the exception was
raised. We next present a variant of Queinnec’s monitors [52, p. 255], which give
the essence of resumable exceptions. The primitives monitor/signal play the role
that handler/raise do for ML-style exceptions. Let us note that signal is a binary
function, which takes not only a value, but also a boolean r indicating whether the
exception should be raised as resumable.

Like handle, monitor installs an exception handler for the duration of a computa-
tion. If an exception is signalled, the latest active handler is called in the dynamic
environment of the signalled exception. If an exception is signalled by the handler
itself, it will be handled by the handler that existed before monitor was called: this
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E[(monitor f M)] —4 E[ (A2 M) (let (old ) (monitor)
(Ar v, (let (z (Aze.(f r v)) old))
(if r o (A &[z])))))]
El(signal 7 V)] —q (2. r V)] (signal)

M == ... | (signal r V) | (monitor f M)

Figure 12. Resumable exceptions

is why &, 1s shadowed for the duration of the execution of the handler f, but will
be again accessible if the “normal” computation resumes. If the exception was sig-
nalled as resumable, 1.e., if the first argument of signal is true, the value returned
by the handler is returned by signal, and computation continues in exactly the
same dynamic environment. Otherwise, computation aborts as in the case of ML-
style exceptions. The semantics of resumable exceptions assumes that evaluation
proceeds in the scope of an initially installed handler.

This approach to defining the semantics of exceptions has at least two advantages.
First, as we model each effect by the appropriate primitive (abortion by .4 and
handler installation by dynamic binding), we are able to model different kinds
of semantics for exceptions. Second, defining the semantics of exceptions with
assignments weakens the theory [17] because assignments break some equivalences
that would hold in the presence of exceptions. Thus our definition provides a more
precise characterisation of a theory of exceptions.

9. Related Work

In the conference on the History of Programming Languages, McCarthy [39] re-
lates that they observed the behaviour of dynamic binding on a program with
higher-order functions. The bug was fixed by introducing the funarg device and
the function construct[39, 48].

Cartwright [5] presents an equational theory of dynamic binding, but his language
is extended with explicit substitutions and assumes a call-by-name parameter pass-
ing technique. The motivation of his work fundamentally differs from ours: his goal
is to derive a homomorphic model of functional languages by considering A as a
combinator. His axioms are derived from the Ac-calculus axioms, while ours are
constructed during the proof of equational correspondence of the calculus.

T'wo recent publications refer to the notion of dynamic binding. Dami [7] presents
a A-calculus for dynamic binding: AN, the A-calculus with names, is an extension
of the A-calculus in which arguments are passed to functions along named channels.
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An embedding of the A-calculus is given as a translation into AN. An application
of the AN calculus that is relevant to this article is a formalisation of the behaviour
of quoted expressions used by an explicit eval: Dami specifies how free variables
become bound within an explicit passed environment, represented as a record. His
encoding addresses the issue of binding free variables within a program, but does
not deal with undefined scope and dynamic extent as studied in this article. In the
object-oriented language Eiffel [2], there exists some polymorphism as the dynamic
type of an object is always a descendent of its static type. As a result, there is
a form of dynamic binding because the dynamic type determines which routine is
actually executed on a given object. Again, by dynamic binding the authors refer
to the ability of determining the value associated with a name at runtime, but they
do not deal with dynamic scope as in this article.

The authors of [10] discuss the issue of tail-recursion in the presence of dynamic
binding. They observe that simple implementations of fluid-1let [29] are not tail-
recursive because they restore the previous dynamic environment after evaluating
the fluid-let body. Therefore, they propose an implementation strategy, which
in essence is a dynamic-environment passing style solution. Programs in dynamic-
environment passing style are characterised by the fact that they do not require a
growth of the control state for dynamic binding; however, they require a growth
of the heap space. An analogy is the continuation-passing translation, which gen-
erates a program where all function calls are in tail position although it does not
mean that all cps-programs are iterative. Feeley [11] and Queinnec [52] observe
that programs in dynamic-environment passing style reserve a special register for
the current dynamic environment. Since every non-terminal call saves and then
restores this register, such a strategy penalises programs that do not use dynamic
binding, especially in byte-code interpreters where the marginal cost of an extra
register is very high. Both of them prefer a solution that does not penalise all
programs, at the price of a growth of the control state for every dynamic binding.
Consequently, we believe that implementors have to decide whether dynamic bind-
ing should or should not increase the control state; in any case, it will result in a
non-iterative behaviour. Greussay [26] and Saint-James [61] have also investigated
implementation techniques yielding such an iterative behaviour for Lisp interpreters
with dynamic binding.

10. Conclusion

In the tradition of the syntactic theories for continuations and assignments, we
present a syntactic theory of dynamic binding. This theory helps us in deriving a se-
quential evaluation function and two refinements implementing two strategies (deep
binding and shallow binding with value cell). Finally, we integrate dynamic-binding
constructs into our framework for parallel evaluation of future-based programs.
Besides, we prove that dynamic binding adds expressiveness to purely functional
language and we show that dynamic binding is a suitable tool to define the se-
mantics of exceptions and related notions. Furthermore, we believe that a single
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framework integrating continuations, side-effects, and dynamic binding would help
us in proving implementation strategies of £luid-1let in the presence of continua-

tions [30].
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