
UNIVERSITY OF SOUTHAMPTON

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

THE COMMUNICATION ROUTINES

— A NETWORK LAYER

COMMUNICATION MODEL

Jonathan Dale

University of Southampton

Technical Report No. 95-2

January 1995

ISBN: 0-854-325-786

The Communication Routines - A Network Layer
Communication Model

Jonathan Dale

Multimedia Research Group

Department of Electronics and Computer Science

University of Southampton

UK

jd94r@ecs.soton.ac.uk

1. Introduction
The Communication Routines are a small set of C function calls that provide stream (reliable, connection-
oriented) and datagram (best-try, connection-less) communication within the Transmission Control
Protocol/Internet Protocol (TCP/IP) communication stack. They are based around the Inter-Process
Communication (IPC) mechanism called sockets, which provide both stream and datagram oriented
services.

The design criteria for the Communication Routines were based upon the following considerations:

• To provide a suitable application interface to the sockets IPC which would allow a certain level of
abstraction between the networking layer (TCP/IP and sockets) and the application layer (client-
server software).

• To allow client-server software to be built rapidly and easily.

• To be available across UNIX and Winsock compatible (PC) platforms.

2. Network Communication
In the TCP/IP networking environment, communication generally takes place between clients and
servers, hence the term client-server relationships. A server is a network entity which provides a set of
services to a range of clients. Clients can connect to various servers to take advantage of services, which
the servers undertake on their behalf. It follows, then, that some form of message exchange (that is,
communication) must take place between the client and the server, and vice-versa.

TCP/IP supports two essential modes of network communication:

• Streams are a connection-oriented form of communication, which means that there is a persistent
connection between the client and the server for the duration of the communication (rather like a
telephone conversation). Figure 1 illustrates that the client and the server are synchronised during
their communication.

• Datagrams are a connection-less form of communication, which means that there is not a persistent
connection between the client and the server. Each message between the client and the server is a
separate connection, containing its own addressing information (this is analogous to the postal mail
service). With datagram client-server relationships, the client is not tied to the server for the duration
of the request, nor is the server tied to the client after is has completed the work for that client; they
are both said to exist asynchronously. The essential difference between stream and datagram
communication is that streams are persistent for the entire communication and require set-up,
whereas datagrams are transient and do not require any set-up. This is shown in figure 2.

A third communication exists, called broadcasting, which is a variation of the datagram communication.
Broadcasting allows a client or a server send the same message to every network entity within the local
network (called the subnet). This can be useful for a number of reasons, for example, propagating
common data to an entire network, searching for a particular service within the network, etc. Each
network entity receives the broadcasted message and either passes it onto an appropriate software
1

entity which it is running or discards it as unwanted. Broadcasting, however, should be kept to a
minimum since it can flood the network and reduce performance.

For datagram and broadcast communication channels, the maximum amount of data that can be
transmitted at a time is 8192 bytes. For streams, any amount of data can be written to the communication
channel but it is the responsibility of the receiving network entity to read the data in a sensible fashion.

Figure 1 : Client-Server Communication Pattern in a Stream Communication

CLIENT SERVER

Send request and data

Receive request

Process request and generate results

Send results

Receive results

More requests and results...

TIME

(possibly from other clients)

Figure 2 : Client-Server Communication Pattern in a Datagram Communication

CLIENT SERVER

Open connection request

Respond to connection request

Receive open connection request

Receive response

Send request and data

Receive request

Process request and generate results

Send results

Receive results

More requests and results...

Close connection request

Receive close request

TIME
2

3. Communication Handles
From the point of view of client and server software using the Communication Routines, the key
element to network communication is the network communication handle, or just handle, which is a
pointer to a communication session. Before any communication can take place between clients and
servers, each needs to register for a communication session, the semantics of which are determined by
the communication type selected (stream, datagram or broadcast).

For a stream connection, the roles of the client and the server are well defined; the client initiates a
connection with the server, an amount of two-way dialogue takes place and then the client closes the
connection. The client is always a client and the server is always a server. This means that during
registration, the server must register its session first (getting a primary handle) and then, when the client
registers its session, the server accepts this connection (getting a secondary handle). The primary handle is
used to allow the server to offer a server (to say “Here I am”) and the secondary handle is used to
actually allow the client and server to communicate. Secondary handles are unaccepted when the
communication between the client and the server has finished, and primary handles are unregistered
when the server wishes to terminate.

This is demonstrated by the code fragment given in table 1 (most of the function parameters have been
omitted for simplicity).

However, with datagram (and broadcast) communication, a server is classed as a server when it receives
data from a client. When a server needs to send data back to a client, it must temporarily become a client
and register a new communication session. Thus, the terms client and server in datagram
communication depend upon what action the network entity is performing.

The corresponding functions calls for a datagram connection are given in table 2.

CLIENT SERVER

/* Make the server available */

PrimaryHandle = CR_RegisterServer;

/* The client registers with the server */ /* The server accepts this registration */

Handle = CR_RegisterClient; SndaryHandle = CR_Accept;

/* The client sends some data */ /* The server receives some data */

CR_Send (Handle, some_data); CR_Receive (SndaryHandle,
some_data);

/* The client receives the results */ /* The server sends the results */

CR_Receive (Handle, some_results); CR_Send (SndaryHandle,
some_results);

... etc etc ...

/* The client ends the communication */ /* The server unaccepts from the client */

CR_Unregister (Handle); CR_Unaccept (SndaryHandle);

/* The client can connect to another server */ /* The server can accept a connection from a
 another client */

Table 1 : Client-Server Function Calls in a Stream Communication
3

4. Network Abstraction
The Communication Routines provide a layer of network abstraction above the transport layer of the
TCP/IP protocol stack (figure 3) which affords many advantages to the network programmer when
compared with standard socket programming:

• Network programming is simplified since most of the network structures and functions are hidden
behind the Application Programming Interface (API). An application needs only to know the
network address of another network entity to make a connection and only needs to quote the handle
of the communication channel to be able to send or receive data. This information hiding allows the
programmer to concentrate on writing the application and not on the intricacies of network
programming. Additionally, the task of porting the code to another network stack is made easier
since it only means rewriting the Communication Routines for the new protocol and altering the
network address naming in the application.

• Time-out control is provided for reading from and writing to communication channels. In order to
provide resilient and fault-tolerant systems, it is important to introduce the concept of deadlines, or
time-outs, so that an application can not only determine if systems are busy or unavailable, but also
if and when an error has occurred. The time-out controls for reading and writing within the
Communication Routines permit an application to be sure that it has either sent or received all of its
data. If an error did occur, then the application knows how far through the communication it was
and can either resend the remaining portion of data or request a retransmission.

• Service selection is available through a single API. With sockets programming, there are different
function calls for different services, for example, streams use some different and extra functions than
datagrams for the same operations. The Communication Routines unify network programming into
a single and consistent API that supports all services that are available in the TCP/IP protocol stack.

• The shared libraries are available on UNIX and Winsock compatible platforms. The Communication
Routines are written using ANSI-compliant C, which means that they can be compiled under any

CLIENT SERVER

/* Make the server available */

RecvHandle = CR_RegisterServer;

/* The client registers for communication */

SendHandle = CR_RegisterClient;

/* The client sends some data */ /* The server receives some data */

CR_Send (SendHandle, some_data); CR_Receive (RecvHandle, some_data);

/* The client becomes a server to receive the
 results */

/* The server becomes a client to return the
 result */

RecvHandle = CR_RegisterServer; SendHandle = CR_RegisterClient;

/* The client receives the result */ /* The server sends the result */

CR_Receive (RecvHandle,
some_result);

CR_Send (SendHandle, some_result);

/* The client reverts back to a client */ /* The server reverts back to a server */

CR_Unregister (RecvHandle); CR_Unregister (SendHandle);

/* The client can now send data to other servers
*/

/* The server can receive data from other
 clients */

Table 2 : Client-Server Function Calls in a Datagram Communication
4

platform that supports ANSI C and networking sockets.

5. Function Reference

5.1. API Summary
1. int CR_RegisterServer (int nLocalPort, int nConnectionType)

Registers a server-style communication channel.

2. int CR_RegisterClient (LPSTR szRemoteIPAddress, int nRemotePort, int nConnectionType)
Registers a client-style communication channel.

3. int CR_Accept (int nReceivingHandle)
Completes a client-server stream communication channel.

4. INT CR_Send (int nHandle, LPHSTR lphszData, INT IBytesToSend, int nTimeout)
Sends data to a communication channel.

5. INT CR_Receive (int nHandle, LPHSTR lphszData, INT IBytesToRead)
Reads data from a communication channel.

6. INT CR_ReceiveN (int nHandle, LPHSTR lphszData, INT IBytesToRead, int nTimeout)
Attempts to read data from a communication channel until all of the required amount of bytes have
been read or the timeout has been reached.

7. int CR_GetInfo (int nHandle, LPINT lpiPort, LPSTR lpszIPAddress, int nInfoType)
Obtains information about the local or remote machine attached to a given communication channel.

8. int CR_GetIPAddress (LPSTR lpszHostName, LPSTR lpszIPAddress)
Obtains the Internet address for a given hostname.

9. int CR_GetLastError (void)
Returns the error code associated with the last communication routine error that occurred.

10. int CR_Unaccept (int nSecondaryHandle)
Disassociates the server from a client in a stream communication channel.

11. int CR_Unregister (int nPrimaryHandle)

Figure 3 : Network Abstraction through an Intermediate Layer

Network Abstraction Layer

Application Layer

Ethernet
Ethernet

Network Layer

Physical Layer

Data

Streams

Packets

Communication
Routines

Programming
Language

TCP/IP

Network
Independent

Network
Dependent
5

Unregisters a communication channel.

12. int CR_UnregisterAll (void)
Unregisters all registered communication channels.

5.2. int CR_RegisterServer (int nLocalPort, int nConnectionType)
Purpose
Registers a server-style connection for either stream or datagram communication. A server-style
connection is characterised by the fact that the server typically ‘listens’ on the specified port, awaiting
data from a client.

Parameters
nLocalPort
The local port number to use for the connection. If this value is 0, then any local port is used (use
CR_GetInfo to determine which port has been chosen).
nConnectionType
The type of connection to make. It can be either STREAM for a duplex virtual circuit connection,
DATAGRAM for a datagram connection, or BROADCAST for a datagram broadcasting connection.

Return values
The primary handle onto the communication channel. If there was a communication problem, then
COMM_ERROR is returned, else if there was a problem adding the registration details, then
LINK_ERROR is returned.

Error codes
CECANTBCAST
A server cannot make a broadcast connection.
LECANTADDHANDLE
The handle associated with this registration could not be created.

See also
CR_Send; CR_Receive; CR_GetInfo; CR_Unregister

5.3. int CR_RegisterClient (LPSTR szRemoteIPAddress, int
nRemotePort, int nConnectionType)
Purpose
Registers a client-style connection for either stream or datagram communication. A client-style
connection is characterised by the fact that the client typically writes data through a port to a waiting
server, hence the need to specify a remote Internet address and port number.

Parameters
szRemoteIPAddress
The remote Internet address of the server.
nRemotePort
The remote port number of the server.
nConnectionType
The type of connection to make. It can be either STREAM for a duplex virtual circuit connection,
DATAGRAM for a datagram connection, or BROADCAST for a datagram broadcasting connection.

Return values
The primary handle onto the communication channel. If there was a communication problem, then
COMM_ERROR is returned, else if there was a problem adding the registration details, then
LINK_ERROR is returned.

Error codes
CECANTCONNECT
The client could not connect correctly with the specified server.
LECANTADDHANDLE
The handle asscoaited with this registration could not be created.
LECANTALLOCMEM
6

Memory allocation failed.
LECANTADDINFO
The registration information associated with this communication channel could not be added.

Notes
CR_RegisterClient allocates any local port number (use CR_GetInfo to determine which port has been
chosen).

See also
CR_Send; CR_Receive; CR_GetInfo; CR_Unregister

5.4. int CR_Accept (int nReceivingHandle)
Purpose
Accepts a stream-style connection from a client. This function should be issued by the server in response
to a CR_RegisterClient function that has been issued by the client. A communication channel must have
been established on both the server and the client beforehand.

Parameter
nReceivingHandle
The handle onto the communication channel.

Return values
A secondary handle if the communication was accepted successfully. If there was a communication
problem, then COMM_ERROR is returned, else if a communication channel has not been previously
registered, then LINK_ERROR is returned.

Error codes
CESTREAMONLY
This function can only be used with stream communication channels.
CECANTACCEPT
The server could not accept correctly with a client.
LECANTADDHANDLE
The secondary handle to be associated with this communication channel could not be created.
LECANTGETHANDLE
The primary handle associated with this communication channel could not be located.
LECANTADDINFO
The registration information associated with this communication channel could not be added.

Notes
This function should only be used on stream-style connections. A server can only accept on one
connection at a time for each primary handle.

See also
CR_Unaccept

5.5. INT CR_Send (int nHandle, LPHSTR lphszData, INT
IBytesToSend, int nTimeout)
Purpose
Sends data to a communication channel.

Parameters
nHandle
The handle onto the communication channel.
lphszData
The data to send to the communication channel.
IBytesToSend
The amount of data to send to the communication channel.
nTimeout
The amount of time (in seconds) before the connection will timeout.
7

Return values
The number of bytes sent if the data was written successfully. If there was a communication problem,
then COMM_ERROR is returned, else if the communication channel has not been previously registered,
then LINK_ERROR is returned.

Error codes
CECANTWRITEDATA
The data could not be send to the communication channel.
CECANTREADDATA
The protocol between the client and the server could not be established.
CETIMEOUT
The timeout period has expired.
CEDATATOOBIG
The data to be sent is too large for the communication channel (for datagram and broadcast
communication channels only).
LECANTALLOCMEM
Memory allocation failed.
LECANTGETHANDLE
The primary or secondary handle associated with this communication channel could not be located.

Notes
A timeout is not considered to be an error, even though CR_GetLastError will return CETIMEOUT.

See also
CR_Receive; CR_ReceiveN

5.6. INT CR_Receive (int nHandle, LPHSTR lphszData, INT
IBytesToRead)
Purpose
Reads data from a communication channel.

Parameters
nHandle
The handle onto the communication channel.
lphszData
The resultant data that has been read from the communication channel.
IBytesToRead
The amount of data to read from the communication channel.

Return values
The number of bytes read if the data was read successfully. If there was a communication problem, then
COMM_ERROR is returned, else if the communication channel has not been previously registered, then
LINK_ERROR is returned.

Error codes
CECANTREADDATA
The data could not be read from the communication channel.
CECANTWRITEDATA
The protocol between the client and the server could not be established.
LECANTALLOCMEM
Memory allocation failed.
LECANTGETHANDLE
The primary or secondary handle associated with this communication channel could not be located.
LECANTADDINFO
The registration information associated with this communication channel could not be added or
updated.

Notes
If there is no data waiting at the communication channel, then this function will block until it arrives.
However, it will not block until all of the requested data arrives (see CR_ReceiveN for a fully blocking
8

receive function). Additionally, this function can only send stream data of a maximum size of 32767
bytes (use CR_ReceiveN to send data that is over this limit).

See also
CR_Send; CR_ReceiveN

5.7. INT CR_ReceiveN (int nHandle, LPHSTR lphszData, INT
IBytesToRead, int nTimeout)
Purpose
Attempts to read data from a communication channel until all of the required amount of bytes have been
read or the timeout has been reached.

Parameters
nHandle
The handle onto the communication channel.
lphszData
The resultant data that has been read from the communication channel.
IBytesToRead
The amount of data to read from the communication channel.
nTimeout
The amount of time (in seconds) before the connection will timeout.

Return values
The number of bytes read if the data was read successfully. If there was a communication problem, then
COMM_ERROR is returned, else if the communication channel has not been previously registered, then
LINK_ERROR is returned.

Error codes
CECANTREADDATA
The data could not be read from the communication channel.
CECANTWRITEDATA
The protocol between the client and the server could not be established.
CETIMEOUT
The timeout period has expired.
LECANTALLOCMEM
Memory allocation failed.
LECANTGETHANDLE
The primary or secondary handle associated with this communication channel could not be located.
LECANTADDINFO
The registration information associated with this communication channel could not be added or
updated.

Notes
If there is no data waiting at the communication channel, then this function will block until it arrives. A
timeout is not considered to be an error, even though CR_GetLastError will return CETIMEOUT.

See also
CR_Send; CR_Receive

5.8. int CR_GetInfo (int nHandle, LPINT lpiPort, LPSTR lpszIPAddress,
int nInfoType)
Purpose
Interrogates either the local or remote address structure of a registered communication channel,
yielding the port number and Internet address.

Parameters
nHandle
The handle onto the communication channel.
lpiPort
9

The resultant port number of the remote machine.
lpszIPAddress
The resultant Internet address of the remote machine.
nInfoType
The type of information to return. If this is CR_LOCAL, then the details of the local host are returned,
else if this is CR_REMOTE, then the details of the currently connected remote host are returned.

Return values
TRUE if the remote address structure was interrogated successfully. If there was a problem retreiving
the local or remote machine information, then COMM_ERROR is returned, else if there is no complete
remote address structure associated with the communication channel, then LINK_ERROR is returned.

Error codes
LECANTQUERYHNDL
The communication channel could not be interrogated to determine additional registration information.
LECANTGETINFO
The registration information associated with this communication channel could not be located.

Notes
The remote address structure for a stream-style connection is completed when a CR_Accept function has
been issued (and the connection is made). For a datagram-style connection, the remote address structure
is updated each time a CR_Receive is issued (since many different clients can connect to one server). This
means that until the first client sends data, the remote address structure for a datagram-style connection
will be incomplete.

5.9. int CR_GetIPAddress (LPSTR lpszHostName, LPSTR
lpszIPAddress)
Purpose
Looks up the Internet address of a machine within the local name server or local hosts file.

Parameters
lpszHostName
The host name of the machine to look-up.
lpszIPAddress
The resultant Internet address of the specified machine

Return values
TRUE if the Internet address of the machine was looked-up successfully. If there was a problem
obtaining the Internet address, then LINK_ERROR is returned.

Error code
LECANTQUERYHOST
The local host could not be queried for relevant information.

5.10. int CR_GetLastError (void)
Purpose
Returns an error code that is associated with the last error that occurred.

Return value
CEOKAY if no error occurred, else the error code associated with the last error.

Notes
Two types of errors can be returned by the Communication Routine functions; communication errors
(COMM_ERROR) and link errors (LINK_ERROR). A communication error indicates that the
communication subsystem has failed and a link error means that there was a problem setting up the
local registration information within the link handler. Error codes preceded with CE detail a
communication error and error codes preceded with LE represent a link error.
10

5.11. int CR_Unaccept (int nSecondaryHandle)
Purpose
Disconnects the server from a stream-style connection with the client. The server is now free to accept
another stream-style connection from another client or to unregister its primary handle.

Parameter
nSecondaryHandle
The secondary handle to disconnect.

Return values
TRUE if the secondary handle was disconnected successfully. If there was a communication problem,
then COMM_ERROR is returned, else if the secondary handle does not exist, then LINK_ERROR is
returned.

Error codes
CESTREAMONLY
This function can only be used with stream communication channels.
CECANTCLOSEHNDL
The communication channel could not be unregistered or closed.
LECANTGETHANDLE
The secondary handle associated with this communication channel could not be located.
LECANTDELHANDLE
The secondary handle associated with this communication channel could not be removed.

Notes
A secondary handle should be unaccepted before its corresponding primary handle is unregistered.

See also
CR_Accept; CR_Unregister

5.12. int CR_Unregister (int nPrimaryHandle)
Purpose
Unregisters a communication channel and closes the connection with the attached remote machine.

Parameter
nPrimaryHandle
The primary handle to disconnect.

Return values
TRUE if the primary handle was disconnected successfully. If there was a communication problem, then
COMM_ERROR is returned, else if the primary handle does not exist, then LINK_ERROR is returned.

Error codes
CECANTCLOSEHNDL
The communication channel could not be unregistered or closed.
LECANTGETHANDLE
The primary handle associated with this communication channel could not be located.
LECANTDELHANDLE
The primary handle associated with this communication channel could not be removed.

Notes
A secondary handle should be unaccepted before its corresponding primary handle is unregistered.

See also
CR_Unaccept

5.13. int CR_UnregisterAll (void)
Purpose
Unregisters all communication channels and closes the connections with all attached remote machines.

Return values
11

TRUE if all of the connections were unregistered and closed successfully. If any remote machine could
not be unregistered, then LINK_ERROR is returned.

Error codes
LECANTDELHANDLE
A primary or secondary handle could not be removed.

Notes
All secondary handles should be unaccepted before this function is called. CR_Unregister should be used
to unregister individual connections.

See also
CR_Unaccept; CR_Unregister
12

	The Communication Routines - A Network Layer Communication Model
	1. Introduction
	2. Network Communication
	Figure 1 : Client-Server Communication Pattern in a Stream Communication
	Figure 2 : Client-Server Communication Pattern in a Datagram Communication

	3. Communication Handles
	Table 1 : Client-Server Function Calls in a Stream Communication
	Table 2 : Client-Server Function Calls in a Datagram Communication

	4. Network Abstraction
	Figure 3 : Network Abstraction through an Intermediate Layer

	5. Function Reference
	5.1. API Summary
	5.2. int CR_RegisterServer (int nLocalPort, int nConnectionType)
	5.3. int CR_RegisterClient (LPSTR szRemoteIPAddress, int nRemotePort, int nConnectionType)
	5.4. int CR_Accept (int nReceivingHandle)
	5.5. INT CR_Send (int nHandle, LPHSTR lphszData, INT IBytesToSend, int nTimeout)
	5.6. INT CR_Receive (int nHandle, LPHSTR lphszData, INT IBytesToRead)
	5.7. INT CR_ReceiveN (int nHandle, LPHSTR lphszData, INT IBytesToRead, int nTimeout)
	5.8. int CR_GetInfo (int nHandle, LPINT lpiPort, LPSTR lpszIPAddress, int nInfoType)
	5.9. int CR_GetIPAddress (LPSTR lpszHostName, LPSTR lpszIPAddress)
	5.10. int CR_GetLastError (void)
	5.11. int CR_Unaccept (int nSecondaryHandle)
	5.12. int CR_Unregister (int nPrimaryHandle)
	5.13. int CR_UnregisterAll (void)

