
UNIVERSITY OF SOUTHAMPTON

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

UNIFYING DISTRIBUTED PROCESSING
AND OPEN HYPERMEDIA THROUGH A

HETEROGENEOUS COMMUNICATION MODEL

Stuart Goose, Jonathan Dale, Gary J. Hill,
David C. DeRoure and Wendy Hall

University of Southampton

Technical Report No. 95-6

November 1995

ISBN: 0-854-325-824

Unifying Distributed Processing and Open
Hypermedia through a Heterogeneous Communication

Model
Stuart Goose, Jonathan Dale, Gary J. Hill, David C. DeRoure and Wendy Hall

Multimedia Research Group

Department of Electronics and Computer Science

University of Southampton

UK

{sg93r, jd94r, gjh, dder, wh}@ecs.soton.ac.uk

A successful distributed open hypermedia system can be characterised by a scaleable architecture
which is inherently distributed. While the architects of distributed hypermedia systems have
addressed the issues of providing and retrieving distributed resources, they have often neglected to
design systems with the inherent capability to exploit the distributed processing of this information.
The research presented in this paper describes the construction and use of an open hypermedia
system concerned equally with both of these facets.

1. Introduction
It is now widely accepted that hypermedia functionality can perform a useful role as an underlying
component, or “link service” of an information system. This type of system, which is closer to the
original perception of hypermedia envisioned by Nelson [20], has been described by various authors
[24,9,13], and the applicability of such an approach illustrated [17]. Our own work at Southampton with
the Microcosm system [9,15] uses the following criteria as requirements for such a link service:

• Size. It should be possible to import new nodes, links, anchors and other hypermedia objects without
any limitation upon the size of the objects or the maximum number of such objects that the system
may contain.

• Data Formats. The system should allow the import and use of any data format, including temporal
media.

• Applications. The system should allow any application to access the link service in order to participate
in the hypermedia functionality.

• Data Models. The hypermedia system should not impose a single view of what constitutes a
hypermedia data model, but should be configurable and extensible so that new hypermedia data
models may be incorporated. It should thus be possible to inter-operate with external hypermedia
systems and to exchange data with other external systems.

• Platforms. It should be possible to implement the system on distributed platforms.

• Users. The system must support multiple users, and allow each user to maintain their own private
view of the objects in the system.

In general, Microcosm meets these requirements, but is weak in its support for distributed operation.
Hill [16] describes initial experimentation with a networked version of Microcosm. This paper reports
significant advances upon Hill’s contribution through the provision of a distributed framework that
exhibits the desirable qualities of scaleability and efficiency, above which an open hypermedia system
is layered.

2. Flexible Distributed Operation
The Microcosm system is based upon a set of autonomous communicating processes, which together
1

can provide the functionality required of a hypermedia service. The aim is to maximise the flexibility
and extensibility of the system to allow each user to customise the facilities available.

Although a number of current hypermedia systems support distributed operation, few are truly open
systems and are unable to provide the degree of flexibility offered by the Microcosm model. The
majority of these systems are also strongly tied to strict client/server configurations, which restrict the
degree with which users may build a system from diverse resources. With the widespread increase in
the use of networks, such as the Internet, for information dissemination, contemporary systems must be
flexible enough to incorporate resources from a wide range of sources.

Many existing systems, such as the World Wide Web (WWW) [3], although open in terms of the
platforms and protocols supported and the ability to handle distributed operation, does not explicitly
support an open hypermedia model. The WWW in particular suffers due to its reliance on the Hypertext
Mark-up Language (HTML) [4] for the provision of linking. This prevents hypermedia navigation from
taking place within documents stored in other formats. In addition, the lack of a separate link
management subsystem forces the user to move continuously from server to server as they navigate
through documents. Minimal consideration has been afforded to users wishing to incorporate their own
hypermedia tools with this system.

The Hyper-G system [1] whilst superficially similar to the WWW, is an advance due to the separation of
link information into link databases. This facilitates the application of links to a wider range of document
formats, for example images or word-processor documents, in a common manner. However the Hyper-
G server only offers a simple hypermedia model and does not provide general extension facilities.

Hyperform [29], goes further by providing a fully extensible hypermedia server, or hyperbase. This
provides a set of object classes to allow the hypermedia services provided to be tailored to particular
requirements, and facilities to integrate external tools into the system. The integration facilities suggest
that inter-operation between Hyperform servers would also be possible, but this is not explicitly
supported.

The Virtual Notebook System (VNS) [25,6], provides an open hypermedia architecture based on the use
of underlying database routines, thus allowing the development of custom programs that utilise the
hypermedia facilities. The system also supports interaction between different VNS servers, allowing
workgroups to be supported by dedicated servers whilst still permitting the sharing of information
between individual workgroups.

Although all these systems support some form of a distributed model, none currently provide the
degree of flexibility which a distributed version of Microcosm could provide. As described previously,
the aim of the initial distributed Microcosm model offers a system which allows finely granulated
distribution of hypermedia functionality, utilising the modular nature of the Microcosm model to
deliver maximum flexibility to users. These extensions to the Microcosm model allow hypermedia
functionality to be shared amongst users.

The prototype system described by Hill addressed some weaknesses in the system architecture of the
stand-alone version of Microcosm in order to allow efficient distributed operation, and demonstrated
the feasibility of fine-grained distribution of services. However, there was neither explicit support for
distributed processing nor provision for handling large, complex configurations.

The following sections trace the development of a generic communication layer for the support of
distributed systems, and describe how it provides the foundation for a new version of the distributed
Microcosm system. We believe that this system should offer greater scaleability, better process
management and more efficient communication.

3. Heterogeneous Communication Model
Wilkins and Heath [30] propose a scaleable message passing solution, called the Direct Communication
Model (DCM), above which Microcosm could be layered. It provides several mechanisms by which peer
entities executing on a single machine may communicate with one another. Whilst retaining much of the
flexibility enjoyed by previous communication architectures for Microcosm, the scaleable topology of
the DCM provides a speed increase due to the more efficient routing of messages. This model has been
adapted and enhanced to function effectively within a distributed heterogeneous multi-user
2

environment.

3.1. Process addressing scheme
For direct communication to take place, one process must be able to uniquely identify or address the
process to which it wishes to send a message. This rudimentary requirement gave rise to a novel process
addressing scheme using a familiar metaphor borrowed from computer filing systems [12].

The process addressing scheme forms the foundation upon which the support for message passing
between processes executing on different machines is based. The first major benefit of the addressing
scheme is that it can be customised by the architects of the host system to reflect the context in which it
operates. This means that a process can send a message identifying the intended recipients using terms
that have meaning within that context. The second key benefit is the wildcard attribute, which aids a
process in disseminating a message to a wider audience. By placing a wildcard in one or more positions
within the destination process address, a message can be targeted at a specific community of processes.

For example, one host system may require all process registrations to conform to the following custom
addressing template:

/ProcessName/UniqueProcessID/Document/Service

Using this template, two link database processes could each register two service entries in the following
style:

/linkbase/152.78.64.64.13/lion.raw/follow.link
/linkbase/152.78.64.64.13/lion.raw/create.link
/linkbase/152.78.64.48.11/tiger.raw/follow.link
/linkbase/152.78.64.48.11/tiger.raw/create.link

A viewer process could then direct a message to all link database processes that service follow link
requests by quoting the following destination process address, where asterisk represents a wildcard:

/linkbase/*/*/follow.link

3.2. Architecture of the HCM
One of the key principles of distributed computing is that any processing need not be performed locally,
but on the most appropriate machine. It was decided that the design of the HCM would embody this
principle from the outset.

The DCM is implemented as a shared library to which all participating processes dynamically link. As
this solution is clearly inappropriate for processes wishing to pass messages across machine boundaries,
the central module through which communication is directed needed to be a process in its own right.
This process is referred to as a router.

The router (figure 1) acts as a bureau where processes, using the addressing scheme as the vehicle, can
dynamically advertise and withdraw their services and also post messages to other registered service
providers.

A process manager is also started with each session to govern load balancing across the network and the
distributed invocation of processes. Through its user interface, processes can be remotely configured
and managed.

For the router and participating processes to dynamically configure their network connections, a
supporting piece of infrastructure proved necessary. A single daemon process to serve the local network
domain1, providing the sole fixed point of contact, helped achieve this.

3.3. Scaleable topology
The linear chain topology of Filter Management System (FMS) within Microcosm is not suitable for
distributed operation. Due to the simple message routing algorithm employed, excessive
communication overheads are incurred which would restrict the construction of a scaleable system

1 A domain is purely an administrative measure for specifying a list of machines that HCM processes may execute on.
3

A crucial characteristic of a scaleable architecture is that the addition of processes to the system has
minimal impact upon efficiency. Another vital scaleability issue specific to the communication
architecture is that the number of intermediate steps travelled by a message remains constant regardless
of the number of processes present within the system. Both of these properties are exhibited by the
HCM; the latter can be appreciated in figure 2, as all of the processes are satellites of the router, resulting
in a message only ever travelling two steps to its destination.

3.4. Insulation from network dependencies and complexities
For inter-process communication to occur between two distributed processes, one process must initiate
the request by contacting the other. This requires that the initiating process is aware of the location of
the remote process. Considering this scenario within the context of TCP/IP1, the initiating process
would have to know both the IP address of the machine where the remote process is executing and the
port number on which it is listening for network activity. The customisable addressing mechanism
mentioned above affords a degree of process location transparency. Using the HCM as a communication
layer, the initiating process can then identify and target the services of a remote process in a meaningful
context, as opposed to first determining and then supplying the network addresses of remote processes.

Processes interact with the HCM through an API2, which was developed for a number of reasons. Many

1 The de facto networking protocol used by the Internet
2 Application Programming Interface

Figure 1 : Logical Model of the HCM Architecture

Domain

User

Session

Router

Process
2

Process
1 Daemon

Process
Manager

Figure 2 : Physical Model of the HCM Architecture

Machine 1

Router

Machine 3

Process
2

Machine 2

Process
1

Network

Daemon

Process
Manager
4

application programmers would not be receptive when faced with the prospect of developing network
aware HCM processes. The API insulates the programmer from explicitly managing any interaction
with the network. The fundamental transport mechanism employed by the HCM is concealed beneath
the Network Abstraction Layer [7]. The advantages of this layered approach are two fold: subsequent
modifications and improvements can be made without affecting the modules that rely upon those
services, and supporting another transport mechanism or protocol could be achieved transparently. The
layered construction of the HCM API can be seen in figure 3.

3.5. Alternative configurations
The HCM can be configured as a:

• Single user environment.

• Multi-user environment, whereby processes belonging to one user may communicate with the
processes of another user within a single domain.

• Multi-user environment, whereby processes belonging to one user may communicate with the
processes of another user across widely distributed domain boundaries.

The logical view of the last configuration is presented in figure 4. User 1 in domain 1 initiates an action
causing the daemon of domain 2 to be contacted, requesting a connection between their router and the
router belonging to user 2. This currently means that the daemon in domain 1 must have previously
obtained the network address of the machine in domain 2 where the daemon is located. Once a virtual
connection has been established, negotiation between the two routers occurs. The process registration
entries declared as published (that is, applications that are available to other users) are then exchanged
between the two routers. This activity alleviates superfluous message passing between routers. The
scaleable framework providing widely distributed, peer-to-peer communication can now be exploited.

The following two sections describe how this framework has been used as a foundation on which to
build an open, distributed hypermedia system, known as Microcosm: The Next Generation (Microcosm
TNG).

4. Heterogeneous User Interfaces
When a process is designed for a single processor machine, it is generally written with a specific
platform and user interface environment in mind, for example, a Silicon Graphics ELF executable, a PC

Figure 3 : Layered HCM API

Network Abstraction Layer

Distributed Communication
Layer

Distributed System Layer

Ethernet
Ethernet

Network Layer

Physical Layer

Messages

Streams

Packets

Messages

Communication
Routines

Heterogeneous
Communication
Model API

Host Distributed
System

TCP/IP

Network Independent

Network Dependent
5

Windows executable, etc. Generally, these types of processes are not written with any form of
distribution in mind, so the code to handle the user interface of a process and the code to handle the
functionality of a process are written together, side-by-side.

Yet, even if good programming practices are employed to ensure that the user interface environment
code remains separate from the functionality code of a process, this still means that the user interface
part of a process must be rewritten for each user interface environment (Windows, X-Windows,
Macintosh, etc.). It would be desirable, therefore, if a process could retain a portable functionality
segment and adopt a user interface environment segment dependent upon the user interface
environment it was to be executed within. This would allow the process to execute on a wide range of
machines within the distributed environment.

The X Windows system [21] attempts to alleviate this problem somewhat by allowing user interfaces to
be redirected over the network to other X-supporting servers. A more heterogeneous and wider solution
is required to allow all of the user interfaces belonging to a specific user to be redirected to their display
regardless of the user interface environments within the distributed environment.

To give a distributed process the flexibility required to dynamically select new user interfaces to suit a
specific user interface environment and to allow user interfaces to be directed across a distributed
system, a process needs to be split into three separate but communicating physical processes [8]; a
Process Handler (PH) to manage the functionality of the process, an Interface Handler (IH) to manage the
user interface of the process and an Interface Viewer (IV) to render user interfaces and process user input
data (figure 5).

When the PH forwards a new interface, the IH extracts the language type from the communication and
refers to an internal look-up table to determine which IV will handle the rendering. This IV is invoked
on the user’s local display with the specified user interface. When the user performs an action on the
user interface that causes data to be returned, the IV passes raw input data back to the IH, which
converts it into a format that the PH can understand (that is, it becomes ‘cooked’). The PH performs
appropriate processing upon the data and decides what actions to perform in response (for example,
quitting or forwarding a new interface). All data that is communicated between the IH and the PH uses
the Microcosm message format [14], which allows it to be free-form and dynamically extensible.

Figure 4 : Widely Distributed Multi-user Environment

Domain 1

User 1

Session 1

Router

Process
2

Process
1

Daemon

Domain 2

User 2

Daemon

Session 2

Router

Process
3

Process
4

Process
Manager

Process
Manager

Figure 5 : Process and Interface Handler Interactions

Process
Handler

Interface
Handler

HTML

Cooked Input Data Local
Data

Interface
Viewer

HTML

Raw Input Data
Processed

Data

User Interface
Independent

User Interface
Dependent Messages
6

To prevent the PH from becoming too involved in user interface details of a platform, a user interface
environment independent display description language must be used. This will enable the PH to build
and subsequently communicate new user interfaces to the IH in terms that are both descriptive but
abstract. HTML [4] is such a language that is currently in wide-spread use within the WWW. HTML was
created to allow user interfaces to be rendered in a GUI independent manner, and, by subsuming a core
subset of the windowing metaphor (buttons, text boxes, list boxes, etc.), it provides a flexible and
consistent set of display components. When the user interface is to be displayed, a HTML viewer (such
as Netscape or Mosaic) can be invoked to render the interface into GUI-dependant terms. This means
that only the HTML viewer needs to be GUI-dependant; both the PH and the IH can remain interface
independent. The use of HTML means that processes can be developed much more rapidly, since less
programming effort is required in producing the user interfaces.

Another requirement that was identified whilst developing the HCM was the idea of remotely
configuring processes. Each PH may need to present an external and programmable “interface” to other
processes, so that their state and, maybe, behaviour can be altered. By using the HCM, each process can
be contacted and configured through this interface. By extending this concept slightly, it is very easy to
see how certain control processes could perform tasks on a user’s behalf, similar in concept to agents.
Additionally, this configuration “interface” could be used to keep processes in a consistent and
informed state. A language such as the Knowledge and Query Manipulation Language [10] would be
suitable for this task.

Unfortunately, although HTML is versatile enough to be able to describe a wide range of interface types,
it is not suitable for handling other media formats and display orientations, for example, three-
dimensional models or the description of an interface in terms of pixels or spatial relations between
interface gadgets. However, such GUI-independent protocols do exist (Virtual Reality Modelling
Language [2], for example) and can easily be incorporated into the model by adding a naming tag and
appropriate viewer to the IH.

5. Distributing Open Hypermedia

5.1. Encapsulating closely related hypermedia resources
In the rapidly expanding global information space a mechanism is essential for encapsulating closely
related documents. The notion of a hypermedia application was sought to limit the scope of a resource base
to a defined and manageable entity.

We define a hypermedia application (figure 6) as a binding of a suite of processes (with associated
preferences and configurations), a collection of documents and an arbitrary amount of link data. Such
an application can now be considered as a self-contained, publishable entity.

The author of a hypermedia application is now afforded a level of abstraction beneath which any
configuration issues may be concealed. Users of published applications need not be concerned with any
of these issues, but can simply augment their current environment with another logical entity. This
definition means that a hypermedia application exhibits the property of reflexivity, since one
application may, in turn, comprise many other applications:

application ::= {process} x {link data} x {document} x {application}

A session acts as a container for one or more hypermedia applications:

session ::= infrastructure x {application}

Figure 6 : Application Encapsulation and Sharing between Users

User 2

Session 2

Application
5

Application
6

User 1

Session 1

Application
1

 Session 2

Application
2

 Session 1

Application
4

Application
3

7

A user can assemble a session from arbitrary hypermedia applications. While the applications in a
particular session are likely to be related, a user is free to combine any applications to produce a session
that meets their current needs. For example, a commercial user might include applications relating to
various different projects to compare their progress.

Each user may have a number of sessions open, each containing related applications that provide a
logical context in which to work:

user ::= {session}

5.2. Microcosm: The Next Generation Prototype
As proof of concept, a prototype was developed to address two main areas:

• That the HCM system was suitable and appropriate for distributing a given open hypermedia
system.

• That such a hypermedia system should embody the application encapsulation outlined in section 5.1.

The Microcosm model was chosen as the system to attempt to distribute, since it exhibits the majority of
the requirements for open hypermedia and its modular nature lends itself well to distribution.

Within the Microcosm hypermedia model there are a number of core elements that work together to
provide a minimum level of functionality:

• External link storage. The concept of link separation is well documented and its advantages clear when
applied to open hypermedia [11,26,1]. A linkbase process maintains the link database and handles all
link queries and creations. Multiple linkbases can exist to break document link connectivity into
logical groupings.

• Presentation and browsing. Displaying links and allowing users to browse through links is handled by
a range of viewers, primarily one for each class of media (text, bitmap, sound, etc.). Viewers provide
the first-level interface to the user and let the user follow links and submit link queries.

• Link selection. The results of link queries that have been submitted by a user are handled by the
available links process. This presents the links to the user for selection and then invokes the
appropriate viewer to render the document.

• Link authoring. To allow links to be created within a link database, an intermediary process (the linker)
performs pre-processing on the new link to determine its details (for example, the start and end
anchor positions, the type of the link, the description of the link, etc.). Once this information has been
collected, the completed link is forwarded to the relevant linkbases for creation.

• Document organisation. The document database (or docuverse) was introduced to provide a layer of
abstraction between the documents themselves and the filing systems upon which they reside. By
referencing each document as a unique identifier, an identifier only needs to be resolved to an actual
filename when it is to be rendered (typically by a viewer).

The Microcosm TNG prototype developed using the HCM took the core concepts identified previously
and modelled them as discrete, distributed processes. These processes (linkbases, viewers, available
links, linkers, docuverses, etc.) were described in terms of the messages that they send and receive and
the processing that they perform. Processes are considered to be peer entities due to the fact that they
can communicate with other processes asynchronously. The distribution of both processes and
messages is handled by the HCM subsystem. In this way, the naming of a process is kept independent
to the location of the process.

Resources are distributed through the application entity to which they belong. Once a user has authored
an application, they can publish it to the world at large. The Microcosm TNG system provides a
mechanism for allowing remote applications to be transparently included within a user’s session. Also,
since an application can comprise both data and processes, this inclusion not only increases the
functionality of the user’s session, but also increases their available dataspace; all actions (for example,
link queries) will be automatically forwarded to all of the user’s local and remote applications.

These concepts are illustrated in figure 7. In this diagram the two users, User 1 and User 2, both have
sessions running in their respective domains. In a strict local session, all link queries and link creations
8

only apply to the applications that are bound to a particular session (for User 1, this is the “Tigers”
application). User 1 and User 2 can create their applications in isolation, importing documents and
media, and making links between them.

However, imagine that User 2 wishes to create a new application, called “Cats”, which is composed of
both the “Tigers” and “Lions” applications. This new application exists in his local session, and he
makes a connection to the “Tigers” application through User 1’s domain address (which he obtained
previously). Once connected, User 2 has access to both applications and he can create links between
them and import new documents as appropriate.

Upon completion, the “Cats” application can then be published for other people to connect to and used
in a similar fashion as indicated previously. It is important to note that when users access this
application, connection to the “Tigers” and “Lions” applications and hypermedia links are handled
transparently.

To facilitate the heterogeneity of the user interfaces, all of the processes in the prototype were split into
a Process Handler and an Interface Handler (see section 4). To provide a consistent and central interface
to the processes, the Process Manager (PM) of the HCM was extended to allow each process to be
configured and manipulated through it. As the PH of each process executes, a launch message is
received by the PM. The initial display on the PM is a list of processes in the system, which is updated
dynamically. A user can select a particular process, which instructs the PH of the selected process to
display its top-level interface. From here, all data from the user interface is passed directly to the selected
PH and the user can alter or interrogate the state of that process. This gives the user and other processes
the ability to call forward the interfaces of both local and remote processes.

This prototype has demonstrated that distributing an open hypermedia system above the HCM shows
great promise for the future. The implementation demonstrated wide-scale distribution of users, data
and processing, open hypermedia functionality and integration capabilities for co-operative working
environments. The next phase of development will reinforce and extend the system described here to
produce an industrial-strength, distributed open hypermedia system.

6. Future Work
The heterogeneous user interfaces described earlier suffer from the numerous limitations of the HTML
viewers. The future direction of this work lies in exploring the virtues of Java [28] for developing more
flexible, heterogeneous and portable hypermedia processes. These processes would essentially be
lightweight, but would take advantage of Java’s object-oriented nature to provide dynamic data type
support across multiple platforms.

At the time of writing a docuverse exists in a primitive form, but further work is necessary to incorporate
caching, proxies and extensible support for network protocols, for example, FTP, HTTP, etc.
Additionally, approaches such as Uniform Resource Identifiers (Uniform Resource Names [27] and
Uniform Resource Characteristics [18]) and Harvest [5] could be integrated to aid with hypermedia

Figure 7 : Instances of Microcosm TNG Communicating across a Widely Distributed Environment

Domain 2

Daemon

User 2’s Session

"Lions"
Application

LinkbaseRouter

Linker
Avail
Links

Docu-
verse

Domain 1

Daemon

User 1’s Session

"Tigers"
Application

Router

Linker
Avail
Links

Docu-
verse

Linkbase

Viewer
"Cats"
Appli-
cation

Docu-
verse

Linkbase
Process
Manager

Process
Manager
9

application discovery on a global scale.

The HCM was designed to accommodate collaboration and as such broadcasts notification events upon
users beginning and terminating sessions. This information was subsequently used to build an
awareness utility, showing users within the domain. Current research examining the potential of
Microcosm to support advanced CSCW features [19] will undoubtedly impact upon the future
development of the Microcosm TNG system.

When disclosing resources for remote users to peruse, security becomes a genuine consideration.
Authentication mechanisms are also required if users are to be charged for the time/resources they use.
Preliminary work in this area has been conducted but further effort is required to develop these ideas.

Wilkins et al. [31] discuss how communities of co-operating intelligent agents can greatly assist with a
variety of tasks within Microcosm. The role of agents within an open hypermedia system can be sub-
divided into three categories:

• Resource location and discovery.

• Maintaining information integrity.

• Navigation assistance.

It has been recognised that the HCM and Microcosm TNG provide an ideal framework for further
experimentation with agent technology and the Internet.

Technologies such as Common Object Request Broker Architecture (CORBA) [22] and Distributed
Computing Environment (DCE) [23] are showing great promise for distributed application inter-
operability. As part of our ongoing commitment to integrate with existing and emerging standards,
these developments are among those under current investigation to evaluate their applicability to the
Microcosm TNG system.

7. Conclusions
Distributed systems have an inherent reliance upon an underlying communication substrate, and it is
crucial to overall performance that this component is reliable, efficient and scaleable. It is clear that the
benefits afforded through the flexibility of these systems owe much to the relative strengths of the
communication layer.

A modular design based on co-operating processes can provide the extensible functionality afforded by
such distributed systems. The self-contained nature exhibited by these processes predisposes them to
being distributed over a heterogeneous network of machines thus promoting concurrent processing,
and hence the promise of achieving greater efficiency.

The design of the HCM has embraced many of the requirements of a distributed communication layer
and provides an open framework for the rapid development of powerful distributed systems.

The client/server model, the predominant architecture among systems using the Internet, can restrict
the development of truly distributed systems. This paradigm makes it very difficult for current
information services to take the initiative in delivering fresh information to the user. Furthermore, some
processes need to act as both client and server depending upon whom they are interacting with. The
open model of the HCM allows systems to benefit from a more flexible peer-to-peer based alternative.

The rapid development of the HCM-based hypermedia system described in this paper illustrates the
ease with which the HCM allows distributed systems to be built, and as such enables Microcosm TNG
to provide a degree of flexibility not found in other distributed hypermedia systems. As one would
expect, collaboration between users is promoted together with strong support for the sharing of
information. In particular, the ability to encapsulate a group of distributed processes with their
respective resources and publish them as a single entity provides a welcome degree of abstraction. The
hypermedia application conceals configuration details and provides a scaleable mechanism for building
and composing new applications.

In addition, the heterogeneous nature of the hypermedia system promotes efficient use of available
resources. Processes may easily be allocated to machines with the most suitable facilities, or which are
being under-utilised at any specific time.
10

References
[1] ANDREWS, K., KAPPE, F. and MAURER, H., Serving Information to the Web with Hyper-G. In:

Computer Networks and ISDN Systems, Volume 27, Number 6, pages 919-926, 1995.

[2] BELL, G., PARISI, A. and PESCE, M., Virtual Reality Modelling Language Specification 1.0.

[3] BERNERS-LEE, T., CAILIAU, R., GROFF, J. and POLLERMANN, B., World-Wide Web: The
Information Universe. In: Electronic Networking: Research, Applications and Policy, Vol. 2 No 1,
Spring, Meckler Publishing, Westport, CT, USA, pages 52-58, 1992.

[4] BERNERS-LEE, T. and CONOLLY, D., Hypertext Mark-up Language.

[5] BOWMAN, C., MANBER, U., DANZIG, P. B., SCHWARTZ, M. F., HARDY, D. R. and WESSELS,
D. P., Harvest: A Scaleable, Customisable, Discovery and Access System, CU-CS 732-94,
Department of Computer Science, University of Colorado, 1995.

[6] BURGER, A. M., MEYER, B. D., JUNG, C. P. and LONG, K. B., The Virtual Notebook System. In:
Hypertext 91, Proceedings of Third ACM Conference on Hypertext, San Antonio, Texas, USA
(December), ACM Press, pages 395-402, 1991.

[7] DALE, J., The Communication Routines - A Network Layer Communication Model, Multimedia
Technical Report M95/2, Department of Electronics and Computer Science, University of
Southampton, 1995.

[8] DALE, J., Distributed User Interfaces: Achieving User Interface Heterogeneity in a Distributed
Environment, Multimedia Technical Report M96/1, Department of Electronics and Computer
Science, University of Southampton, 1996.

[9] DAVIS, H. C., HALL, W., HEATH, I., HILL, G. and WILKINS, R. J., Towards an Integrated
Information Environment with Open Hypermedia Systems. In: D. Lucarella, J. Nanard, M. Nanard
and P. Paolini, Eds. ECHT ’92, Proceedings of the Fourth ACM Conference on Hypertext, Milan,
Italy (November), ACM Press, pages 181-190, 1992.

[10] FININ, T., et al, Knowledge Query and Manipulation Language Specification.

[11] FOUNTAIN, A., HALL, W., HEATH, I. and DAVIS, H. C., Microcosm: An Open Model with
Dynamic Linking. In: A. Rizk, N. Stroetz and J. André, Eds. Hypertext: Concepts, Systems and
Applications, Proceedings of the European Conference on Hypertext, INRIA, France (November),
pages 298-311, 1990.

[12] GOOSE, S., Distributed Open Hypermedia Systems, PhD Mini-thesis, Department of Electronics
and Computer Science, University of Southampton, 1995.

[13] GRØNBÆK, K. and TRIGG, R. H., Design Issues for a Dexter-Based Hypermedia System. In: D.
Lucarella, J. Nanard, M. Nanard and P. Paolini, Eds. ECHT ’92, Proceedings of the Fourth ACM
Conference on Hypertext, Milan, Italy (November), ACM Press, pages 191-200, 1992.

[14] HEATH, I., An Open Model for Hypermedia: Abstracting Links from Documents, PhD Thesis,
Department of Electronics and Computer Science, University of Southampton, 1992.

[15] HILL, G., WILKINS, R. J. and HALL, W., Open and Reconfigurable Hypermedia Systems: A Filter
Base Model. In: Hypermedia, 5(2), pages 103-118, 1993.

[16] HILL, G. and HALL, W., Extending the Microcosm Model to a Distributed Environment. In: ECHT
‘94 Proceedings, Edinburgh, Scotland (September), ACM Press, pages 32-40, 1994.

[17] MALCOM, K. C., POLTROCK, S. E. and SCHULER, D., Industrial Strength Hypermedia:
Requirements for a Large Engineering Enterprise. In: Hypertext ’91, Proceedings of Third ACM
Conference on Hypertext, San Antonio, Texas, ACM Press, pages 13-25, 1991.

[18] MEALLING, M., Specification of Uniform Resource Characteristics, April, 1994.

[19] MELLY, M., and HALL, W., Co-operative Work in Microcosm, Computer Science Technical
Report, Department of Electronics and Computer Science, University of Southampton, 1995.

[20] NELSON, T., Literary Machines 87.1, published by the author, Mindful Press, 1987.
11

[21] NYE, A., Xlib Programming Manual Volume 1 (3rd edition), O’Reilly & Associates Inc., 1993.

[22] Object Management Group, The Common Object Request Broker: Architecture and Specification,
OMG Technical Document Number 91-12-1, Revision 1.1, December 1991.

[23] Open Software Foundation, Distributed Computing Environment Overview, 1992.

[24] PEARL, A., Sun’s Link Service: A Protocol for Open Linking. In: Hypertext ‘89 Proceedings,
Pittsburgh, USA (November), pages 137-146, 1989.

[25] SHIPMAN, F. M. III, CHANEY, R. J. and GORRY, G. A., Distributed Hypertext for Collaborative
Research: The Virtual Notebook System. In: Hypertext ‘89 Proceedings, Pittsburgh, USA
(November), pages 129-136, 1989.

[26] SMITH, K. E. and ZDONIK, S. B., Intermedia: A Case Study of the Differences Between Relational
and Object-Oriented Database Systems. In: OOPSLA ‘87 Proceedings (October), pages 452-465,
1987.

[27] SOLLINS, K. and MASINTER, L., Requirements of Uniform Resource Names, March, 1994.

[28] Sun Microsystems, Java Programming Reference Manual, Sun Microsystems Inc.

[29] WIIL, U. K. and LEGGETT, J., Hyperform: Using Extensibility to Develop Dynamic, Open and
Distributed Hypertext Systems. In: D. Lucarella, J. Nanard, M. Nanard and P. Paolini, eds ECHT ’92,
Proceedings of the Fourth ACM Conference on Hypertext, Milan, Italy (November), ACM Press,
pages 251-261, 1992.

[30] WILKINS, R. J., HEATH, I., and HALL, W., A Direct Communication Model for Process
Management in an Open Hypermedia System, Computer Science Technical Report 93-14,
Department of Electronics and Computer Science, University of Southampton, UK, 1993.

[31] WILKINS, R. J., DeROURE, D. C., HALL, W. and DAVIS, H. C., The Role of Agents in Multimedia
Information Systems. In Proceedings of the Intelligent Agents and the Next Information
Revolution, Manchester, UK (May), pages 14-23, 1995.
12

	Unifying Distributed Processing and Open Hypermedia through a Heterogeneous Communication Model
	1. Introduction
	2. Flexible Distributed Operation
	3. Heterogeneous Communication Model
	3.1. Process addressing scheme
	3.2. Architecture of the HCM
	Figure 1 : Logical Model of the HCM Architecture

	3.3. Scaleable topology
	Figure 2 : Physical Model of the HCM Architecture

	3.4. Insulation from network dependencies and complexities
	Figure 3 : Layered HCM API

	3.5. Alternative configurations
	Figure 4 : Widely Distributed Multi-user Environment

	4. Heterogeneous User Interfaces
	Figure 5 : Process and Interface Handler Interactions

	5. Distributing Open Hypermedia
	5.1. Encapsulating closely related hypermedia resources
	Figure 6 : Application Encapsulation and Sharing between Users

	5.2. Microcosm: The Next Generation Prototype
	Figure 7 : Instances of Microcosm TNG Communicating across a Widely Distributed Environment

	6. Future Work
	7. Conclusions
	References

