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observations lie on the main diagonal and the off-diagonal counts are small. For these tables,
the model of independence is implausible and interest is then focussed on the off-diagonal cells
and the models of quasi-independence and quasi-symmetry. For ordinal variables, a linear-by-
linear association model can be used to model the interaction structure. For sparse tables,
large-sample goodness-of-fit tests are often unreliable and one should use an exact test. In this
paper, we review exact tests and the computing problems involved. We propose new recursive
algorithms for exact goodness-of-fit tests of quasi-independence, quasi-symmetry, linear-by-
linear association and some related models. We propose that all computations be carried out
using symbolic computation and rational arithmetic in order to calculate the exact p-values

accurately and describe how we implemented our proposals. Two examples are presented.
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1 Introduction

A two-way contingency table in which both variables have the same categories is termed a
symmetric table. Such square tables occur in a variety of applications, including studies of:
change over time, where each individual is classified by the same categorical variable at two
points in time; pairs of individuals, where each member of the pair is classified by the same
categorical variable; respondents answering two similar questions in a survey, each question
having the same answers; confusion matrices, where subjective categorical data are compared
with the truth; and inter-observer agreement of subjective ratings. For other examples, see
Bishop et al. (1975, Chapters 7-8) and Agresti (1990, Chapters 10-11).

In many applications, because of the social processes involved, most of the observations lie
on the main diagonal and the off-diagonal counts are small. For these tables, the model of
independence (I) is implausible and interest is then focussed on the off-diagonal cells and the
models of quasi-independence (QI) and quasi-symmetry (QS). For ordinal variables, a linear-

by-linear association (LLA) model can be used to model the interaction structure. For sparse



tables, large-sample goodness-of-fit tests are often unreliable and one should use an exact test,
i.e., a test which uses the exact distribution of the test statistic, rather than a large-sample
approximation such as the y? distribution.

Exact tests for log-linear models are generalizations of Fisher’s exact test of independence
in a 2 X 2 table to more complicated models and larger tables. Recently much progress has
been made in developing efficient computational algorithms for exact tests, e.g., the network
algorithm, which has been developed in a series of papers by Mehta, Patel and co-workers. See
Mehta (1994) for references and a description of available software for exact inference. Agresti
(1992) surveyed the current theoretical and computational developments of exact methods for
the analysis of contingency tables. In the section on future research, he stated ‘By the turn
of the century, we should see advances in applicability of exact methodology for contingency
tables at least comparable to those of the past decade. One does not need a crystal ball to
predict that computer speed will continue to increase and algorithms will be further improved,
so that tables not now feasible for analysis soon will be. In addition, it is reasonable to handle
new types of categorical data, in particular, more complex relationships for larger tables in
higher dimensions’. However, Agresti’s review made no mention of exact tests of QI, QS and
LLA and these tests are not available in existing software packages for exact inference.

An exact test of independence requires the enumeration of a population of tables, namely,
all tables with row and column marginal totals equal to those of the observed table. For large
tables or sample sizes, this enumeration is usually infeasible, especially with near uniform
marginals. With very skew marginal distributions, the enumeration is much easier. It has not
been appreciated that for tests of QI, QS and LLA the required population of tables is much
smaller because these models impose additional constraints on the population of tables and the
enumeration is much easier. In this paper, we first review exact tests and the computational
problems that need to be solved. We then propose new recursive algorithms for exact tests of
QI, QS and LLA and some related models. We propose that all computations be carried out
using symbolic computation and rational arithmetic in order to calculate the exact p-values

accurately and describe how we implemented our algorithms. Two examples are presented.

2 Exact tests for two-way symmetric tables

One approach to making inferences about parameters of interest, when there are nuisance
parameters, is the conditional approach. If sufficient statistics exist for both sets of parameters,
then the distribution of the sufficient statistics for the parameters of interest, conditional on the
sufficient statistics for the nuisance parameters, does not depend on the nuisance parameters.
This conditional distribution, termed the reference distribution, may be used for inference
about the parameters of interest and the resulting test is called an exact test. Exact inference

for contingency tables is reviewed by Agresti (1992). We consider exact goodness-of-fit tests



for a class of log-linear models used by Agresti (1988) to model agreement between ratings
in an ordinal symmetric table. Note that for testing the goodness of fit of a given log-linear
model, all the model parameters are nuisance parameters and the parameters not in the model
are our parameters of interest (set to zero under the null hypothesis).

A saturated log-linear model for a r x r symmetric table Y with either Poisson or (product)

multinomial distributed cell counts Y;;’s is
logE(YZ']‘) = A+ o + 55 + vij yi=1,...,r (1)

The model of independence, I, corresponds to «v;; = 0 for all 7,7. Here the interaction
parameters, 7;;’s, are of interest while the constant A and main effects, a;’s and 3;’s, are nui-
sance parameters. The cell counts are sufficient statistics for the interaction parameters and the
marginal totals are sufficient statistics for the nuisance parameters. The diagonal-parameter
model, D, corresponds to v;; = 0, for ¢ # j and 7; = § for all 7. Here § is an additional
nuisance parameter with sufficient statistic ), y;;. The model of quasi-independence, QI, for
the off-diagonal cells corresponds to v;; = 0, 7« # j. Here the 7;;’s are additional nuisance
parameters with sufficient statistics y;;’s. The model of quasi-symmetry, QS, corresponds to
vi; = 7 for all 4,7. Here the common interaction parameters are additional nuisance pa-
rameters with sufficient statistics the sum of symmetrically opposite cell counts, y;; 4+ y;; for
¢ # j. The model of linear-by-linear association, LLA, corresponds to v;; = vu;u; for all ¢, j
for known scores u;. The model of uniform association, UA, corresponds to 7;; = yu,u; for all
i, 7 for known equal-interval scores u;. For the model of LLA (and special case of UA), v is
an additional nuisance parameter with sufficient statistic 2, > u;u;y;;. The models of LLA
and UA may be considered for the cells off the main diagonal and are termed the quasi-linear-
by-linear association (QLLA) and quasi-uniform association (QUA) models. Note than QLLA
and QUA are special cases of the QS model, i.e., they are parsimonious QS models which have
QI as the special case of v = 0.

An exact goodness-of-fit test for I uses the conditional distribution of the cell counts given
the margins. An exact goodness-of-fit test for D uses the conditional distribution of the cell
counts given the margins and the sum of the diagonal counts. An exact goodness-of-fit test
for QI uses the conditional distribution of the cell counts given the margins and the diagonal
counts. An exact goodness-of-fit test for QS uses the conditional distribution of the cell counts
given the margins, the diagonal counts and the sums of symmetrically opposite cell counts.
An exact goodness-of-fit test for LLA uses the conditional distribution of the cell counts given
the margins and ), 5 u;u;y;j, i.e., the ‘covariance’ between the scores. An exact goodness-
of-fit test for QLLA uses the conditional distribution of the cell counts given the margins, the
diagonal counts and }_; >, wiu;y;;.

An exact goodness-of-fit test is conceptually simple. Consider the set of possible tables

with the same sufficient statistics for the nuisance parameters (the model parameters) as those



of the observed table. This set is called the reference set and denoted by I', with subscript
referring to a specific model if necessary. For a test statistic 7" and a value of T, T, for the
observed table, carry out the following steps: 1) enumerate all possible tables in I', 2) compute
T for each table in I'; and 3) calculate the exact p-value, pops = P(T > Tips), by summing all

null conditional probabilities of tables at least as extreme as the observed table.

3 Computational problems

Three computational problems need to be solved in order to calculate accurately the exact
p-value: 1) how to enumerate I efficiently, 2) how to compare accurately the value of the test
statistic for each table in I' with the observed test statistic and 3) how to calculate accurately
and sum the null probabilities of tables at least as extreme as the observed table. We consider
each computational problem in turn and propose a new recursive algorithm for enumeration
of tables with fixed margins as well as for enumeration of tables with fixed margins and fixed
diagonal counts. We also propose the use of symbolic computation along with error-free rational

arithmetic so as to calculate the exact p-values more accurately than existing algorithms.

3.1 Table enumeration

Verbeek and Kroonenberg (1985) survey algorithms for exact tests in 7 X ¢ contingency tables
with fixed margins. The algorithms for enumeration of I' either involve straightforward filling
in of the table counts, simulating a dynamic number of nested ‘for-loops’ or recursion. Only
Boulton and Wallace (1973) proposed a truly recursive algorithm. Their ALGOL algorithm
reduced the problem of enumerating all r X ¢ tables with fixed margins to three subproblems:
1) enumerating all (r — 1) X ¢ tables with fixed margins (derived by collapsing the last two
rows), 2) enumerating certain 2 X ¢ tables with fixed margins and 3) enumerating certain 2 x 2
tables with fixed margins. Unfortunately, computer languages most often used for statistical
computation, such as FORTRAN 77 or earlier versions, did not support recursion, so this may
explain why this algorithm has not been used by statisticians. Languages such as Lisp and C do
support recursion. Also, versions of Lisp support distributed computing, which may be used to
distribute subproblems to a network of computers or to a set of processors in a multiprocessor
parallel computer. Distribution may be used for speed up of computations as well as for
extending the range of feasible problems (De Roure and Michaelides, 1994; Michaelides, 1997).

For independence, we propose a new recursive algorithm for enumerating all tables with
fixed margins. The algorithm of Boulton and Wallace (1973) does not generalize to the case
of enumerating all tables with fixed margins and fixed diagonal counts, which is one of the
computational problems for an exact test of QI. Our proposed algorithm decomposes the
problem into generation of the top row and (recursive) generation of the subtable consisting

of the remaining rows. After generating the top row of a table (or subtable), we subtract the



counts in the top row from the corresponding column marginal totals. These adjusted column
marginal totals form the new constraints for the generation of the subtable consisting of the
remaining rows. The generation of the top row consists of filling in the feasible row counts
from left to right, for each cell always starting with the highest possible value consistent with
the row and column marginal totals. For cells with fixed counts, its value is subtracted from
the corresponding row and column marginal totals and the cell is flagged as fixed. For tables
with fixed cells, these fixed cells are skipped when generating feasible counts. This algorithm
is described in further detail in the Appendix.

Note that I'ypa € I'y and T'grrpa € I'gs € I'gr € I'p C I'y. For enumerating 'y 7.4,
we propose an enumerate-and-reject algorithm, namely, enumerate ['y, then reject any table
in I'; whose covariance between the scores does not equal those of the observed table. A
similar algorithm may be used for I'p. For enumerating I'gs, we propose an enumerate—
and-reject algorithm, namely, enumerate I'gy, then reject any table in I'g; whose sums of
symmetrically opposite counts does not equal those of the observed table, so as to obtain
I'gs. A similar algorithm may be used for I'grr,4. The efficiency of any enumerate-and-reject
algorithm depends on the rejection rate and the efficiency in which the larger set of tables can
be enumerated and each table tested for rejection. When algorithms for the direct generation
of the desired I' do not exist, this may be the only possible way to enumerate the desired I'.
A similar simulate-and-reject idea was used by McDonald and Smith (1995) and Smith and
McDonald (1995) to carry out Monte Carlo exact tests for QI.

3.2 Comparing test statistics

Fisher’s exact test of independence orders the tables in I'; by the inverse of their hypergeometric
probabilities. This idea was extended to r X ¢ tables by Freeman and Halton (1951) and this test
is referred to as the Freeman-Halton test. This test uses as test statistic, —2log(ypr(y)), where
pr(y) is the null table probability and v is a known normalisation factor. The Freeman-Halton
test statistic has an asymptotic y? distribution with (r — 1)(c — 1) degrees of freedom.

Three common ways of measuring departure from the null hypothesis are the Pearson X2
statistic, the log-likelihood-ratio L? statistic and the null table probability (Freeman-Halton
test). As different test statistics may order tables in the I' differently, they may yield different
p-values. Kim and Agresti (1995) suggest using two statistics so that the actual size of the
test is closer to the desired nominal size than would be possible using a single statistic. This
reduces the potential conservativeness of exact tests resulting from the discreteness of the exact
distribution. They calculate a modified p-value by first partitioning the sample space using
primary test statistic 7', then within fixed values of T, further partitioning the sample space
using a secondary test statistic 7”. Let T, and 17, denote the observed values of the primary

and secondary test statistic. Kim and Agresti defined their modified p-value, p*, as



p = P(T > Tops) + P(T =Tops, T >T0,). (2)

Note that if the primary statistic, e.g. L?, depends only on the sufficient statistics under the
alternative, then any other statistic, e.g. X?, which also depends only on the sufficient statistics
under the alternative cannot be used as a secondary statistic, as two tables that have the same
value of the primary statistic will have the same value of the secondary statistic. Thus, we
must base the secondary statistic on a more general alternative, in order to have a secondary
partitioning of the sample space, e.g., we can use L? as the primary test statistic and the
Freeman-Halton statistic as secondary test statistic.

How can we compare accurately the value of the test statistic 1" for each table in I' with the
observed test statistic 1,557 The tests ‘if T' = 1,55, then’ or ‘if T > T35, then’ are problematic
when T and T,ps are floating point numbers. In practice, a tolerance is set which declares two
floating point numbers to be equal if the difference is less than the tolerance. Unfortunately,
the results of a floating point test may depend on the compiler, the machine type, the size of the
floating point mantissa, the order of computations and the CPU rounding process (Verbeek
and Kroonenberg, 1985). Some of these problems may be avoided by using floating point
arithmetic conforming to IEEE standards (Thisted, 1988, Section 2.4).

The most accurate form of a test statistic should be used for computation. We may write
the X2 statistic and the likelihood—ratio LR statistic (rather than L? = 2log LR) as

v
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where e;; denotes the expected value in the ¢j cell. For independence, expected values and mul-
tivariate hypergeometric probabilities are rational numbers so that comparisons of the three
commonly used test statistics may be made using rational arithmetic. Many versions of Lisp
support BigNum (Serpette et al., 1989), a C library of routines for arbitrary precision arith-
metic, which supports rational number types. The calculation and comparison of rational test
statistics can made without error by using BigNum. Hence, for an exact test of independence,
the problematic comparison of floating point numbers may be avoided entirely.

For the models of QI, QS, QLLA and LLA, the expected values may be irrational. However,
rational fitted values may be obtained for any log-linear model by implementing the iterative
proportional fitting (IPF) algorithm using rational arithmetic as follows. IPF maximizes the
likelihood by searching along a series of fixed directions defined by the column vectors of the
model matrix (Fienberg and Meyer, 1983). If we are maximizing the likelihood along direction

x;, defined by the jth column of the model matrix, then the new updated vector of fitted



values, €,¢y, is obtained by proportional adjustment of the old vector of fitted values, ey, by
€new = €oid X 0%, (5)

where the multiplication is coordinatewise. When x; is a vector of zeros and ones, 6; is the
ratio of the lengths of y and e,;4 projected onto the x; direction, i.e.,
!

6, = (L. (6)
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When x; is arbitrary, there is no direct estimate of #; and we are left with a one-dimensional
maximization problem.

For QI and QS, the column vectors of the model matrix are vectors of zeros and ones. For
these models, start with initial estimates of 1 for off-diagonal cells and 0 for the diagonal cells.
Since each iterative step of IPF only involves successive proportional adjustment of fitted values
at the previous step by a ratio of rationals to yield updated fitted values, the successive updated
fitted values may be calculated exactly using rational arithmetic. A stopping rule may be used
that ensures any desired degree of accuracy in the rational expected values. Comparison of the
usual test statistics is based on error-free rational arithmetic using BigNum library routines.

For QLLA and LLA, the column vector corresponding to = is not a vector of zeros and ones,
so an one-dimensional maximization problem needs solving. By restricting the proportional
adjustment scale factor # to be rational, once again the successive updated fitted values may
be calculated exactly using rational arithmetic. A stopping rule may be used that ensures any
desired degree of accuracy in the rational fitted values. Comparison of the usual test statistics
is based on error-free rational arithmetic using BigNum library routines. Note that alternative
IPF methods, not involving searching, exist for fitting the UA model (Lawal and Upton, 1995),

which can be implemented using only rational arithmetic.

3.3 Calculating the p-value

For a saturated log-linear model and null hypothesis that all the interest parameters equal zero,
Forster et al. (1996) derived, up to a constant of proportionality, the conditional distribution of
the sufficient statistics for the interest parameters, given the sufficient statistics for the nuisance
parameters. For testing the goodness of fit of a log-linear model, all the model parameters are
nuisance parameters and the conditional distribution for testing goodness of fit may be written

explicitly in terms of the cell counts, up to a constant of proportionality, as

1

fyXTYIXTyos X =

(7)
where y denotes the random vector of counts, X7© is the transpose of the model matrix X,
Y., denotes the observed vector of counts, Xy, are the observed sufficient statistics for the

nuisance parameters and the right hand side is subject to the conditioning constraints. For
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independence, as is well known, this distribution is the multivariate hypergeometric. Unfor-
tunately, in general, these null conditional probabilities cannot be represented in closed form.
Except possibly for the case of independence, the normalization constant cannot be represented
in closed form, but must be left as a summation over all tables whose sufficient statistics for
the nuisance parameters are equal to their observed values. Note that for QI and QS, this dis-
tribution only involves the distribution of counts in the off-diagonal cells, so that the product
in (?7?) may be taken as over the off-diagonal cells, see also Smith and McDonald (1995).
How to calculate accurately and sum the probabilities of tables at least as extreme as the
observed table is problematic. The probabilities in (??) may be extremely small and usually
the normalization constant must be calculated by summing (??) over all the tables in I'. Most
algorithms use log-factorials or the log-gamma function in order to prevent overflow or under-
flow in the calculations (see Verbeek and Kroonenberg (1985) for details). The most accurate
approach uses symbolic calculation based on number theory. Any positive integer, say n!, can
be written as a product of prime factors, so that n! = p{*pi?p5® - - - p;* for some positive integers
k and ry,79,73,...,7E, Where the p;’s are prime numbers. Each factorial term can be repre-
sented by its prime factorization. Two terms in the summation of the normalization constant
are added together only after factorial terms have been factorized into primes and the calcu-
lation simplified symbolically. This reduces the computational complexity to a minimum and
achieves maximum accuracy, see also Wu (1993). The result is a rational number. A C routine
was written to symbolically reduce each required calculation to its simplest irreducible rational
form. Then the addition or division of rational terms was implemented using BIGNUM library
routines yielding rational results without loss of any accuracy. While symbolic computation

maintains accuracy, it incurs significant time penalties (about a factor of 3 or 4).

4 Couple’s rating of sexual fun

Hout et al. (1987) studied the association of husbands’ and wives’ reports of sexual fun.
Husbands and wives answered the question ‘Sex is fun for me and my partner (a) never, (b)
occasionally, (c) fairly often, (d) very often, (e) almost always’. The rare (two wives and one
husband) ‘never’ responses were combined with the ‘occasionally’ responses because the data
was sparse. After deleting a few cases for various reasons, they analysed the resulting 4 x 4
table based on 91 responses. These data are presented in Table ?? with asymptotic and exact
p-values for the models of I, UA, QI, QUA and QS reported in Table ??. For the model of I,
the asymptotic p-value of 0.078 differs somewhat from the exact p-value of 0.114, calculated
by enumerating the 947766 430 tables in I';. For the model of QI, the asymptotic p-value
of 0.402 differs substantially from the exact p-value of 0.502, calculated by enumerating the
15708 tables in I'g;. For the model of QS, the asymptotic p-value of 0.947 differs somewhat
from the exact p-value of 1.000, calculated by enumerating the 161 tables in I'gs. While the



models of QI and QS fit the data, they do not take into account that the categories are ordered.

We now consider the models of UA and QUA (scored never or occasionally = 1,. .., almost
always = 4). For the model of UA, the asymptotic p-value of 0.757 differs somewhat from the
exact p-value of 0.795, calculated by enumerating the 8 137492 tables in I'yr4. For the model
of QUA, the asymptotic p-value of 0.979 is close to the exact p-value of 1.000, calculated by
enumerating the 251 tables in I'gp 4.

The tests just discussed are tests of goodness of fit, i.e., they compare a given model to
the saturated model. Exact tests against non-saturated alternatives are straightforward. An
exact test of model I against UA (or QI against QUA) is based on the sufficient statistic for 7,
i.e., the covariance between the scores. This linear-by-linear association test orders the tables
in I'ya (and I'gua) by the covariance between the scores. The exact test of model I against
UA yields an exact p-value of 0.00079, calculated by enumerating the 947766 430 tables in
[';. The exact test of model QI against QUA yields an exact p-value of 0.02113, calculated
by enumerating the 15708 tables in I'g;. While the models of I and QI fit the data, most
analysts would reject these models in favour of either the model of UA or QUA on the basis of
these exact tests against non-saturated alternatives. As the models of UA and QUA both fit
the data well, most analysts would choose the model of uniform association as it is the most

parsimonious.

5 Variability in classification of cancer by two pathologists

Agresti (1988) used the log-linear models described in Section 2 to study the agreement be-
tween two pathologists evaluating possible cervical cancer, using data given in Holmquist et
al. (1967). These data are presented in Table ??. The pathologists classified 118 specimens
using the ordered categories: 1) negative, 2) atypical squamous hyperplasia, 3) carcinoma in
situ, 4) squamous carcinoma with early stromal invasion and 5) invasive carcinoma.

Agresti noted that Table ?? was sparse with 12 off-diagonal zeros and that the distribution
of L? is not well approximated by a y? distribution. L?, degrees of freedom, asymptotic and
exact p-values for the test of goodness of fit of various models fitted to the data in Table
?7? are reported in Table ??. The I model is implausible and is not considered further. The
asymptotic p-value of 0.009 for the D model differs slightly from the exact p-value of 0.001,
calculated by enumerating the 845489 tables in ['p. The asymptotic p-value of 0.3679 for the
UA model (scored negative = 1, ..., invasive carcinoma = 5) differs substantially from the
exact p-value of 0.036, calculated by enumerating the 16 623 tables in I'yy 4. The asymptotic
p-value of 0.8668 for the D + UA model differs substantially from the exact p-value of 0.459,
calculated by enumerating the 3350 tables in I'pipa. The asymptotic p-value of 0.259 for
the QI model differs substantially from the exact p-value of 0.023, calculated by enumerating
the 435 tables in I'g;. The asymptotic p-value of 1.000 for the QUA model equals, to three



decimal points, the exact p-value of 1.000, calculated by enumerating the 3 tables in I'gy 4.
The asymptotic p-value of 0.986 for the QS model is very close to the exact p-value of 1.000,
calculated by enumerating the 3 tables in I'gs.

One advantage of exact tests is that the calculation of degrees of freedom is unnecessary,
which for complicated log-linear models fitted to sparse tables is often difficult. For the model
of QI, the diagonal counts are fitted exactly so that the last two columns of Table ?? do not
contribute to L%, We claim that degrees of freedom for the model of QI should be based on
the 5 x 3 table obtained by deleting these last two columns. Hence, a x? distribution with 5
df, rather than 11 df, should be used for the calculation of asymptotic p-values. Based on 5
df, QI has an asymptotic p-value of 0.019 which is much closer to the exact p-value of 0.023.
See Smith and McDonald (1995) for further discussion. Similarly, for QUA and QS, degrees
of freedom should be based on the 3 x 3 table obtained by deleting the last two columns and
the last two rows of Table ?7. This conclusion is supported by the enumeration of I'gyy4 and
I'gs. These reference sets contain the same three tables. These tables have identical counts in
the last two columns and the last two rows, namely, those of the observed table. Note that the
models of QUA and QS based on the 3 x 3 table obtained by deleting the last two columns and
the last two rows of Table ?? have 1 df. Hence, a y? distribution with 1 df, rather than 10 and
6 df, should be used for the calculation of asymptotic p-values for QUA and QS respectively.
Based on 1 df, QUA has an asymptotic p-value of 0.263 which differs substantially from the
exact p-value of 1.000. Based on 1 df, QS has an asymptotic p-value of 0.323 which differs
substantially from the exact p-value of 1.000.

On the basis of exact goodness-of-fit tests we conclude, as does Agresti, that the diagonal
parameter plus uniform-association model fits the data well. Therefore, there is agreement in
excess of that occurring simply by chance (what would occur under independence of ratings)
plus extra agreement due to a positive association between the ratings. For further discussion

and interpretation in terms of parameter estimates and local odds-ratios see Agresti (1988).

6 Discussion

Exact tests can be used when the computations are feasible. Feasibility depends on the size of
[' and how fast we can enumerate I'. Estimates of the size of I'7, [[';|, have been reviewed by
Agresti et al. (1979). Unfortunately, estimates of the size of I' for more complicated models
are unavailable and providing estimates an area for further research.

One disadvantage of exact tests is that the discrete reference distribution may have small
support or even be degenerate. Calculating the size of the reference set serves as a useful
diagnostic tool. When the reference distribution has a small number of support points one
should be cautious. Asymptotic methods can be unreliable when one is approximating a

discrete distribution with a small number of support points by a continuous approximating
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distribution. In this case, exact methods can be conservative because of the high degree of
discreteness of the test statistic and one should consider using a mid p-value or a modified
p-value, which reduces conservativeness, but maintains exactness (Kim and Agresti, 1995).

Enumerating the reference set may be infeasible or so time consuming so as to inhibit data
analysis, e.g., the calculations may take days. In this case, Monte Carlo methods may be used
to provide point and interval estimates of the exact p-value by simulating from the required
reference distribution. For each simulated table, the test statistic is calculated and the exact
p-value is estimated by the proportion of simulated tables which are at least as discrepant
from the null as the observed table. For independence, this has been described in detail by
Agresti et al. (1979). For log-linear models, Forster et al. (1996) provide Markov chain Monte
Carlo methods which may be used to estimate the exact p-value and its precision. Smith et
al. (1996a, 1996b) use these methods for the models of I, QI, QS and QUA.

One advantage of estimating, rather than calculating, the exact p-value is that the required
computational effort is much less dependent on the sample size, table size and distributions
of the sufficient statistics for the nuisance parameters. One disadvantage is that the estimate
depends on the starting seed used for random sampling. Senchaudhuri et al. (1995) estimate
the required sample sizes so that the estimated p-value cannot differ in the first three decimal
places, regardless of the starting seed, 99% of the time. These sample sizes vary monotonically
from 2651244 for a p-value of 0.001 to 424623720 for a p-value of 0.200. Hence, much
computational effort is needed to estimate exact p-values with very small Monte Carlo error.

One may want to calculate, rather than estimate, the true exact p-value for many reasons.
The true value serves as the ‘gold standard’ for validating the Monte Carlo methods used to
estimate the exact p-value. Monte Carlo error in the estimated p-value may be unacceptable,
e.g., to regulatory agencies dealing with the licensing of drugs. The computational cost of
calculating the exact p-value may be negligible when the calculation can run in the background
and not interfere with other computer tasks. A Monte Carlo estimate may suffice for data
analysis and the first submission of a paper to a journal. Many months may pass from paper
submission until the final proof stage when exact p-values may be substituted for estimated
p-values. While estimated p-values are usually sufficient for data analytic purposes, for many
reasons, the goal should always be to calculate the true exact p-values.

This paper proposes recursive algorithms for exact tests of quasi-independence, quasi-
uniform association and quasi-symmetry using symbolic computation and rational arithmetic
in order to calculate the exact p-values accurately. One area for future research is whether the
network algorithm can be modified to carry out exact tests of these models and whether it can

be adapted to use rational arithmetic.
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Appendix

Here we discuss the recursive enumeration algorithm in more detail as well as some of the
implementation issues using Lisp and C.

The recursive step breaks down the table by removing the first row. At each level of
recursion, i.e., each row in the table, all the possible rows given the constraints have to be
generated. Generating a table is a simple extension of being able to generate rows given a set
of constraints. The top row constraints are extracted from the general constraints for the table
being generated. For each of the rows that is generated, the column totals are adjusted, and a
recursive call is made passing in the new constraints for the subtable. The recursion terminates
if the table to be generated consists of just one row. In this case the column margins are the
elements of the final row. When generating under QI this may not be the case, since there
may be cells in the final row that are fixed. Hence, if there are fixed cells in the final row, then
the respective column margin must be zero, otherwise an invalid table has been generated.

Row generation can be easily achieved in a number of ways. Firstly, the constraints on the
cell counts in the row have to be considered. The major constraint is that the row has to add
up to a certain total, given by the row margin for this row. Additionally, each count in the
row must be less than or equal to its column margin.

The algorithm must be able to generate rows of arbitrary length. One method would be
to perform the operation recursively, and this approach was used in our Lisp implementation.
This approach may return a long list of all the possible rows and becomes unworkable because
of potential high storage requirements. In Lisp we solved this problem by working with delayed
evaluation of ‘streams’ (not to be confused with 1/O streams). In Lisp, such streams consist
of head and tail elements of the list (Abelson and Sussman, 1985). The head stores the first
element, whilst the tail is a function that will return the rest of the stream. To follow the
tail of the stream, the function is evaluated, returning a new head and tail pair. Whilst this
representation requires a minor performance penalty, it does allow very large lists.

In C, we used a slightly different method, which consisted of firstly setting all the row
elements to zero, and starting out with the row total. Then starting at the first element, the
maximum amount that the first element can hold is placed in it, and subtracted from the
running row total. This is repeated for all the elements along the row, even if the running
total is zero. Once the end of the row has been reached, the result should be a valid row, if
the running total is zero. If not, then we have already generated all the rows possible. Once
we have generated a row, another row is generated by resetting the running total to the value
of the last element, then reversing along the row, looking for a nonzero element. If a nonzero
element cannot be found, then we have again generated all the rows and can terminate. Once
a nonzero element has been found, the value is decremented, the running total incremented

and the procedure repeated starting at the next element. For row generation under QI, the
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only modification to the algorithm is that it should skip any fixed cells.

The major difficulty with this algorithm is expressing it in such a way that tables are
generated one at a time. Using Lisp streams solved this problem cleanly, since the state of
the computation is effectively stored in the tail of the stream. In C, the solution was to call
a function whenever a table had been generated. This inside out approach does lead to some
minor problems with the scope of variables, and breaking out of generating tables. For example,
when generating under QS we discard tables that do not satisfy the constraints. With the C
version we had to rewrite the function that is called from the final step of the recursion.

Pseudo-code for the heart of the recursive routine follows:

define recursive(row-margins, column-margins)
if final-row(row-margins)
maketable(column-margins) ;
else
foreach x in permute(head(row-margins), column-margins) do
appendfront(x, recursive(tail(row-margins),

sublist(column-margins, x)));

The permute function takes a total and a list of constraints, and generates a list of rows that

have the given total and each element is less than or equal to the respective constraint.

13



Acknowledgements

McDonald and Michaelides were supported by the Economic and Social Research Council’s
Analysis of Large and Complex Datasets Programme (award H519255005 and Ph.D. stu-
dentship respectively). This work was also supported by the IBM Shared University Research

programme which provided an IBM SP2 multiprocessor parallel computer for computations.

References

Abelson, H. and Sussman, G. (1985) Structure and Interpretation of Computer Programs, MIT
Press, Cambridge, MA.

Agresti, A. (1988) A model for agreement between ratings on an ordinal scale. Biomeltrics, 44,

539-548.
Agresti, A. (1990) Categorical Data Analysis, Wiley, New York.

Agresti, A. (1992) A survey of exact inference for contingency tables (with discussion). Statis-

tical Science, 7, 131-177.

Agresti, A., Wackerly, D. and Boyett, J. M. (1979) Exact conditional tests for cross-classifications:

approximation of attained significance levels. Psychometrika, 44, 75-83.

Bishop, Y. M. M., Fienberg, S. E. and Holland, P. W. (1975) Discrete Multivariate Analysis:
Theory and Practice, MIT Press, Cambridge, MA.

Boulton, D. M. and Wallace, C.S. (1973) Occupancy of a rectangular array. Computer Journal,
16, 57-63.

De Roure, D. C. and Michaelides, D. (1994) A distributed LISP-STAT environment, in Proceed-
ings of COMPSTAT 1994, R. Dutter and W. Grossman (eds), Physica—Verlag, Heidelberg,
pp. 371-376.

Forster, J. J., McDonald, J. W. and Smith, P. W. F. (1996) Monte Carlo exact conditional
tests for log-linear and logistic models. Journal of the Royal Statistical Society, Series B,
58, 445-453.

Freeman, G. H. and Halton, J. H. (1951) Note on an exact treatment of contingency, goodness

of fit and other problems of significance. Biometrika, 38, 141-149.

Holmquist, N. S., McMahon, C. A. and Williams, O. D. (1967) Variability in classification of

carcinoma in situ of the uterine cervix. Archives of Pathology, 84, 334-345.

Hout, M., Duncan, O. D. and Sobel, M. E. (1987) Association and heterogeneity: structural
models of similarities and differences, in Sociological Methodology 1987, C. C. Clogg (ed),
American Sociological Association, Washington DC, pp. 145-184.

14



Kim, D. and Agresti, A. (1995) Improved exact inference about conditional association in

three-way contingency tables. Journal of the American Stalistical Associalion, 90, 632—

639.

Fienberg, S. E. and Meyer, M. M. (1983) Iterative proportional fitting, in Encyclopedia of
Statistical Sciences, Vol. 4, S. Kotz (ed), Wiley, New York, pp. 275-279.

Lawal, H. B. and Upton, G. J. G. (1995) An algorithm for fitting models to N x N contingency

tables having ordered categories. Communications in Statistics - Simulation, 24, 793-805.

McDonald, J. W. and Smith, P. W. F. (1995) Exact conditional tests of quasi-independence for
triangular contingency tables: estimating attained significance levels. Applied Statistics,

44, 143-151.

Mehta, C. R. (1994) The exact analysis of contingency tables in medical research. Statistical
Methods in Medical Research, 3, 135-156.

Michaelides, D. T. (1997) Exact Tests via Complete Enumeration: A Distributed Computing
Approach. Ph. D. thesis under submission. Department of Social Statistics, University of

Southampton.

Senchaudhuri, P., Mehta, C. R. and Patel N. R. (1995) Estimating exact p-values by the
method of control variates, or Monte Carlo Rescue. Journal of the American Stalistical

Assoctiation, 90, 640-648.

Serpette, B., Vuillemin, J. and Hervé, J. (1989) BigNum: a portable and efficient package for
arbitrary-precision arithmetic. Research Report 2, Digital Equipment Corporation Paris

Research Laboratory. Available at http://pam.devinci.fr/documentation.html.

Smith, P. W. F. and McDonald, J. W. (1995) Exact conditional tests for incomplete contingency
tables: estimating attained significance levels. Statistics and Compuling, 5, 253-256.

Smith, P. W. F., Forster, J. J., and McDonald, J. W. (1996a) Monte Carlo exact tests for square
contingency tables. Journal of the Royal Statistical Society, Series A, 159, 309-321.

Smith, P. W. F., McDonald, J. W., Forster, J. J., and Berrington, A. M. (1996b) Monte Carlo
exact methods used for analysing interethnic unions in Great Britain. Applied Statistics,

45, 191-202.
Thisted, R. A. (1988) Elements of Statistical Computing, Chapman and Hall, New York.

Verbeek, A. and Kroonenberg, P. M. (1985) A survey of algorithms for exact distributions of
test statistics in 7 X ¢ contingency tables with fixed margins. Computational Statistics &

Data Analysis, 3, 159-185.

Wu, T. (1993) An accurate computation of the hypergeometric distribution function. ACM
Transactions on Mathematical Software, 19, 33-43.

15



Table 1: Rating of Sexual Fun: Husband’s Response by Wife’s Response

Wife’s Response

Husband’s Never or Fairly Very Almost
Response Occasionally Often Often Always
Never or occasionally 7 7 2 3
Fairly often 2 8 3 7
Very often 1 5 4 9
Almost always 2 8 9 14
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Table 2: Likelihood ratio goodness-of-fit test statistics and p-values for models for Table 1

Degrees of Asymptotic Exact

Model L? freedom p-value p-value
I 15.49 9 0.078 0.114
UA 5.00 8 0.757 0.795
Ql 5.12 5 0.402 0.502
QUA 0.44 4 0.979 1.000
QS 0.37 3 0.947 1.000
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Table 3: Cross-classification of pathologist ratings

Pathologist B

Pathologist
A 1 2 3 4 5
1 22 2 2 00
2 5 7 14 0 0
3 0 2 36 0 0
4 0 1 14 7 0
5 0o 0 3 0 3
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Table 4: Likelihood ratio goodness-of-fit test statistics and p-values for models for Table 3

Degrees of Asymptotic Exact

Model L?  freedom p-value p-value
D 30.90 15 0.009 0.001
UA 16.21 15 0.368 0.036
D+UA  8.41 14 0.867 0.459
Ql 13.56 11 0.259 0.023
QUA 1.25 10 1.000 1.000
QS 0.98 6 0.986 1.000
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296 /96R: Exact tests for two-way symmetric contingency tables

McDONALD,De ROURE andMICHAELIDES

Changes made in response to comments of referee B

Referee B first paragraph: Referee B caught a minor error. We did not distinguish between
the models of linear-by-linear association (LLA) FOR THE WHOLE TABLE and quasi linear-
by-linear association (QLLA) FOR THE OFF-DIAGONAL CELLS. While LLA is not nested
within QS, QLLA is nested within QS. We now use both terms in the paper.

The following text addressing these points is new.

The model of linear-by-linear association, LLA, corresponds to v;; = vyu;u; for all ¢, j for
known scores u;. The model of uniform association, UA, corresponds to 7v;; = vu;u; for all
i, 7 for known equal-interval scores u;. For the model of LLA (and special case of UA), v is
an additional nuisance parameter with sufficient statistic >, > u;u;y;;. The models of LLA
and UA may be considered for the cells off the main diagonal and are termed the quasi-linear-
by-linear association (QLLA) and quasi-uniform association (QUA) models. Note than QLLA
and QUA are special cases of the QS model, i.e., they are parsimonious QS models which have
QI as the special case of v = 0.

An exact goodness-of-fit test for LLA uses the conditional distribution of the cell counts
given the margins and ;3 ; u;u;jy;;, ie., the ‘covariance’ between the scores. An exact
goodness-of-fit test for QLLA uses the conditional distribution of the cell counts given the

margins, the diagonal counts and 37, >, w;u;y;;.

Referee B second paragraph: We did use the correct set of tables and algorithms. The referee
preferred the term quasi-uniform association and notation QUA to our notation QI + UA. We

agree and have made the necessary changes.

Referee B last paragraph: As the categories in Table 1 are ordered, we should have considered
the model of LLA and its goodness of fit. We have done so with the UA and QUA models.
The referee then carried out a Monte Carlo test of linear-by-linear association using StatXact.
This is not a test of goodness of fit but can be viewed as a test of the model of I against a
nonsaturated alternative. i.e., the model of UA. Using our algorithms we carried out two exact
tests against nonsaturated alternatives, i.e., | against UA and QI against QUA. Note that our
exact test of I against UA yielded an exact p-value of 0.0007949 versus the estimated p-value
from StatXact of 0.0015 £ .0003 with 100,000 Monte Carlo samples. While our calculated p-
value is outside the Monte Carlo interval estimate, we attribute the difference to Monte Carlo

€ITOrI.
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The following text addressing these points is new.

While the models of QI and QS fit the data, they do not take into account that the
categories are ordered.

We now consider the models of UA and QUA (scored never or occasionally = 1,. .., almost
always = 4). For the model of UA, the asymptotic p-value of 0.757 differs somewhat from the
exact p-value of 0.795, calculated by enumerating the 8 137492 tables in I'74. For the model
of QUA, the asymptotic p-value of 0.979 is close to the exact p-value of 1.000, calculated by
enumerating the 251 tables in I'gy 4.

The tests just discussed are tests of goodness of fit, i.e., they compare a given model to
the saturated model. Exact tests against non-saturated alternatives are straightforward. An
exact test of model | against UA (or QI against QUA) is based on the sufficient statistic for -,
i.e., the covariance between the scores. This linear-by-linear association test orders the tables
in I'y4 (and 'gua) by the covariance between the scores. The exact test of model I against
UA yields an exact p-value of 0.00079, calculated by enumerating the 947766 430 tables in
[';. The exact test of model QI against QUA yields an exact p-value of 0.02113, calculated
by enumerating the 15708 tables in I'g;. While the models of I and QI fit the data, most
analysts would reject these models in favour of either the model of UA or QUA on the basis of
these exact tests against non-saturated alternatives. As the models of UA and QUA both fit
the data well, most analysts would choose the model of uniform association as it is the most

parsimonious.
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