HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

Contents

1 Introduction

2 Background
2.1 Introduction: The Five Senses
2.2 The Audio Domain
2.3 Multimedia Authoring Tools
2.3.1 The Timeline authoring method
2.3.2 The Flowchart authoring method
2.3.3 The “Book” Metaphor
2.4 The World Wide Web (WWW)
2.5 Existing Standards L oo
2.5.1 The Multimedia and Hypermedia Experts Group
2.5.2 The Hypermedia/Time-based Structuring Language
2.6 Hypermedia Systems o
2.6.1 Hypertext and Hypermedia
2.6.2 “Open” Hypermedia Systems
2.6.3 Hypermedia Systems and Audio
2.7 The Audio-Linker Tool
271 TheDesign L e

2.7.2 The Implementation

3 Streaming Media Protocols
3.1 The Traditional Protocols - TCP/IP
3.2 The Real-time Transport Protocol (RTP)
3.3 The Real Time Streaming Protocol (RTSP)

o © oo o O

10
12
13
16
16
19
22
22
25
26
29
29
30

CONTENTS

4 The Sound Viewer Tool

4.1 The original Sound Viewer Tool
4.1.1 AnOverview e
4.1.2 TheInterface o
4.1.3 The Implementation
4.1.4 The original Sound Viewer case study

4.2 The streaming Sound Viewer
421 AnOverview
422 TheDesign
4.2.3 The Implementation and case study

5 Conclusion

5.1 Future Work

Bibliography

41
41
41
43
46
47
49
49
o1
o4

61
63

65

List of Figures

21
2.2
2.3
2.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

A screen-shot of a presentation in Flash.
A screen-shot of an Authorware presentation.
MatchWare’s Medi8or design process.
The Audio Linker Application

The Sound Viewer Interface.
The Audio Device Layers.o.....
The original Sound Viewer demonstration.
The Audio Device Layers with RTSP.
Client / Server interaction for the RTSP “open” function
Client / Server interaction for the RTSP “get” function
Client / Server interaction for the RTSP “get” function (cont’d)

Client / Server interaction for the RTSP “play” function

The streaming Sound Viewer.

12

48

Chapter 1

Introduction

Audio media is one of the most neglected areas in the Hypermedia / Multimedia domain.
To play sound files in traditional hypermedia systems, for example the World Wide
Web (WWW), users click upon links (or hyperlinks) within a browser. This action
will download the sound file to the local machine and then activate an application to
play the file. More recently however, applications can stream the file over the network
instead, thus reducing the overhead of having to download it first.

In multimedia applications such as Microsoft Encarta, users click on areas of the
screen called “hot-spots” that will cause an event to occur. This event could cause an
audio file to be played, a picture to be displayed or it could cause some other event. In
both of these systems audio is usually just the result or side-effect of some action caused
by the user.

In the Hypermedia domain the information required to traverse the links is embedded
within the document using the HyperText Markup Language (HTML). In multimedia
systems the link information is stored in an internal format, which the user does not
have access to. This creates problems because only the original author of the hypertext
or multimedia document can modify, edit or create new links. Therefore because this
link information is difficult to modify, these systems are known as “closed” systems.

The aim of this research is to investigate how audio could be used in Open Hypermedia
Systems, specifically how links can be used with streaming audio.

Chapter 2 introduces the audio domain and describes how audio has been used in

multimedia authoring tools, “Open” Hypermedia Systems and the World Wide Web.

CHAPTER 1. INTRODUCTION)

This chapter also describes existing standards used in both the hypermedia and multi-
media communities and the development of a simple audio tool.

Chapter 3 describes the traditional internet protocols, TCP/IP and the protocol
used to transport real-time information over TCP/IP, the Real-time Transport Protocol
(RTP). A new streaming protocol, the Real Time Streaming Protocol (RTSP), is then
discussed.

Chapter 4 gives an overview of the original Soundviewer Tool and how it has been
used. The design and implementation of a streaming audio extension to this tool is also
discussed. Finally, an example scenario is outlined for the use of this new tool.

Chapter 5 assesses the work that has already been done and explores some possibil-

ities for future work.

Chapter 2

Background

This chapter describes the audio domain and how it is used in a number of systems,
specifically multimedia authoring tools, the World Wide Web and “Open” Hypermedia
Systems. Existing standards, such as MHEG and HyTime are discussed and the chapter
draws to a close by describing how a simple audio tool can be created using a modern

programming language e.g. Visual Basic.

2.1 Introduction: The Five Senses

Traditionally, vision has always been regarded as the primary sense for normally sighted
people. In general, however, humans interact with the outside world by receiving in-
formation through a mixture of the five senses', processing this information and then
reacting or responding to it. For example, the sense of smell and sight could be used
to determine if a piece of food had gone off. The user might react to this situation
by disposing of the food. In the development of graphical user interfaces, all of the
other senses are regarded as being less important than sight. This is mainly due to the
complexity of the other senses.

Dix et al. [1] describe how the majority of interactive computer systems are com-
pletely visual in nature, offering rudimentary audio support. As the complexity of these
systems increase, more and more visual information could be presented on the screen,

making it harder for the user to understand. The authors discuss how the other sensory

!Sight, hearing, touch, taste and smell.

CHAPTER 2. BACKGROUND 7

channels? could be used to relieve the pressure of the visual channel and thus reduce
the information overload. By increasing the number of sensory channels, users would
be able to interact with their computers in the same way that they would interact with
their everyday environment.

Most commercial computer systems, however, provide limited support for two of the

other senses, hearing and touch. Systems that produce a haptic response (the sense of
touch) are being used by the virtual reality (VR) community and joystick manufacturers.
For example, VR users can wear a special type of glove which contains small inflatable
pockets. As the user in the VR world picks up an object, these pockets fill with air giving
the impression that the user has actually picked up that object. Joystick manufacturers
have developed tactile feedback joysticks which have small motors that move the joystick
depending on the type of feedback required.
These interactive systems also support audio, although traditionally it is only used to
provide warnings, alarms and status information. Most modern operating systems such
as Microsoft’ s Windows 95 or NT also provide support for soundcards, which can be
used to record, edit and playback audio samples. The majority of the time, however,
soundcards are used for playing games. Dix et al. [1] describe how users, when playing
a game, will score more points when the sound is turned on rather than off. Users can
detect vital information and clues via the changes in the sound, which can be used with
the visual information to increase their scores. The authors also describe how audio and
visual information can help increase the accuracy of speech recognition systems. For
example a camera can be used to video the lip movements of the speaker. The sounds
will also be analysed. By using the video footage and the sound information, words and
phrases can be more accurately resolved.

Overall these interactive systems use the visual channel as the main medium for
transferring information. The auditory channel is rarely used, although the amount of
information that can be conveyed using audio is underestimated. The following section

describes the audio domain in more detail.

2There are two types of channel, input and output. With humans an input channel represents one of
the five senses, whilst an output channel represents a response, e.g. moving a leg, walking, talking etc.

CHAPTER 2. BACKGROUND 8

2.2 The Audio Domain

To understand the audio domain an overview of the human auditory system is required.
Dix et al. [1] and Moore [2] both describe how the human ear consists of three parts

and these are:

1. The Outer Ear which consists of the pinna (the visible part of the ear) and the
auditory channel. Both the pinna and the auditory channel amplify certain high
frequencies, whilst the channel itself secretes a waxy substance that prevents in-

sects and dirt from reaching the more sensitive middle ear.

2. The Middle Ear consists of a small cavity containing three of the smallest bones
in the human body, the ossicles. These connect the outer ear via the eardrum or

tympanic membrane to the cochlea in the inner ear.

3. The Inner Ear. This consists of the cochlea which has rigid bony walls and is filled
with a special type of fluid. The cochlea also contains tiny hairs or cilia which
move when the fluid vibrates. This vibration causes small electrical impulses to

be passed up the auditory nerve to the brain.

Moore [2] describes how the process of hearing originates with the vibration of an
object. This vibration causes a pattern of changes to occur within the surrounding
medium (usually air), which results in the creation of a sound wave. This wave travels
through the air until it eventually reaches the outer ear, mentioned above. The sound
wave will then pass down the auditory channel to the ear drum, causing the drum to
vibrate. The vibrations of the ear drum are passed via the ossicles, in the middle ear,
to the cochlea. These vibrations change the pressure within the cochlea, which in turn
moves the cilia.

This process of passing the sound waves from the outer to the inner ear, ensures the
efficient transfer of the actual sound information. Dix et al. [1] describe the different
characteristics of sound, such as the pitch and amplitude. If the pitch of the sound
increases, then the frequency® will also increase. The amplitude of the sound is propor-
tional to its loudness and therefore, an increase in the amplitude will cause an increase

in the volume of the sound.

3The human ear can hear frequencies from about 20 Hz to 15 KHz.

CHAPTER 2. BACKGROUND 9

The human ear can also identify the sound’s location, since the two ears receive slightly
different sounds. If a sound occurs to the left of a users head, then the left ear will
receive the sound wave first. It will take longer to reach the right ear due to its location
and the fact that the wave will also reflect off the users head.

Overall, sound can convey a remarkable amount of information. The human ear can
use this information to detect different types of sounds, where they are coming from
and how far away they are. However, the sense of hearing has always been regarded as
secondary to that of sight and this can be clearly seen in the development of computer
systems. By combining this sound information with visual information, users would be

able to interact with computers in a more natural way, see Section 2.1.

2.3 Multimedia Authoring Tools

This section describes some of the most popular multimedia authoring tools that are
available today. Multimedia authoring allows users to combine text, hypertext, pictures,
animation, sound and video into a single application that can be distributed on and
over a variety of media, for example the internet, CD-ROMs, floppy disks etc. Users
can design anything from an interactive Web site to an electronic product catalogue.
Designing a multimedia presentation, however, can take a lot of time and effort.
Therefore the majority of multimedia packages try and reduce this by using a range
of authoring techniques. These include the timeline and flowchart methods and the
“book” metaphor. The following sections give a brief overview of these methods and

the products that use them (a more detailed description of the products are in [3]).

2.3.1 The Timeline authoring method

The leading products in this area of authoring are developed by Macromedia and they
are called Director and Flash. In these applications a timeline consists of layers which
span over several frames. Fach layer contains one or more elements (cast members),
which exist in either one frame or they can span over several. For example a simple
presentation could contain three layers; layer one could contain a picture of blue sky,
layer two could contain a picture of a beach and layer three a picture of a palm tree.

If each of the layers span 10 frames and the user presses the “play” button, then the

CHAPTER 2. BACKGROUND 10

presentation will show a picture containing all of the elements in the layers e.g. blue sky,
a beach and a palm tree. If layer one however only spans 5 frames from the beginning,
then the blue sky would only show for 5 frames and then disappear for the remaining
5. Users can also modify a cast member in each frame of a single layer which will result
in a simple animation, e.g. modifying a birds wings so that in one frame they are up
and in another they are down, giving the impression of flight.

Both of these packages support audio. The Flash application allows users to import
audio files directly into a layer, whereas Director uses a separate digital audio layer.
Fig. 2.1 shows a section of a simple presentation in the Flash program. A section of
the timeline that contains audio samples, the “speaker flashes” layer, can be seen at the
top of the screen. Director has support for up to 10 digital audio channels depending
on the hardware used. Audio files can be played in the background of a presentation or
they can be activated by several other types of event e.g. a mouse click, the transition
from one scene to another etc.

Links can not be followed from within an audio event. Audio can be placed on one
layer and at a certain time / frame an event can occur e.g. an URL fired, screen
transition, video started etc. on another layer. Everything, however, is followed when
the “play head” touches the beginning of a cast member in the timeline. So sound again

is just another element used within a presentation.

2.3.2 The Flowchart authoring method

Several products use this method and they include Macromedia’s Authorware, Asym-
etrix’s IconAuthor and Linotype’s Dazzler. All of these applications use “drag and

drop” to pick up and place icons on the presentation page. These icons represent:
e events such as mouse clicks, key press,
e actions to be performed after an event e.g. a transition, a sound,
e routines to perform loops, conditional branches etc.

The flow of control within the flowchart is usually from the top to the bottom. Branches
are allowed, i.e. loops, decision and interaction branches etc., and users can also insert

smaller flowcharts within the main flowchart. Clicking on each icon usually brings up

CHAPTER 2. BACKGROUND 11

& Flash 2 - [Theater]

,,1 File Edit Yiew Insert Modify Control Hiras Mindow Help
D|=|| Sl
I_A %ll@il_l I}G -

|enhanced hitmap te: @

|speakerf|ashes = Ho Ho

|rightspeaker

'
=
5|
&
&
=
5
&
]

stage top

| e [12fps [565 4 |

[~
left speaker -
=

EEE PIRIA N
1ETl P “0%&@

Figure 2.1: A screen-shot of a presentation in Flash.

the icon’s properties, which can be easily changed. A presentation is built by inserting
one object after another e.g. a simple application could contain just three icons; the
first could be a picture, the second a sound icon and the third a text icon. When the
presentation is started the user would see and hear all three icons together. Fig. 2.2 is
a screen-shot of Macromedia’s Authoware program.

An audio icon can be inserted directly onto the author’s development page. The
properties of this icon, however, are usually quite limited; it only allows the audio file
to be located and imported. Again there is no functionality to create anchors within

the audio and, therefore, links to and from the audio.

CHAPTER 2. BACKGROUND 12

¥ Authorware
File Edit Mew Insert Modify Text Control Hiras Window Help

NEFERSERIE Bl REE] R

& Move.adp =

=

-3 Lewel 1
Fur to Wiew Documentation

Selactyour motion Rotating Gauge
D — D —

Frogress Bar
Scrolling Graphic

&= Scrolling Graphic = E3 [Z Scroll Down EEE

) Level 2
Interface Graphics E?:I Resetwvertical variable

Elack Backdrop
Scroll Knob o
. Scroll Down
Graphic to Scroll T
Mowe Scroll Knob
Close
Scroll U

Level 3

repeatwhile mou...

POEEHE S CEJIORE

5
=
=
=

>

2
:

Dragging®"Scroll Knok"
Click on Scroll Bar

Figure 2.2: A screen-shot of an Authorware presentation.

2.3.3 The “Book” Metaphor

Asymetrix’s ToolBook, Digital Workshop’s Illuminatus, Scala Computer Television’s
MM200 and MatchWare’s Medi8or all use this method of authoring. Basically when
the application is started, the user is shown a page in which certain objects can be placed
e.g. text, pictures, buttons etc. By inserting objects into several pages, a multimedia
“book” is eventually created. The author can create transitions between pages and
on the objects themselves e.g. zoom text in and out, cause a picture to flow onto the
page etc. Fig. 2.3 is a screen-shot of the design process used in MatchWare’s Medi8or
program.

Several of the applications allow a sound object to be placed directly onto the page.
Other objects can then be inserted into the page and arranged in such away that they
will appear or do something at a certain time, during the audio playback. The audio,

however, is not directly controlling these objects and therefore it can be described as

CHAPTER 2. BACKGROUND 13

E MatchWare MediSor 3.0 Demo

Eile Edit iew Arange Page Project Test Options

o ¥ P % Click thenose of the bahy, thiz areais a
HotSpot.

O[]~

x:46 y:2 Picture, Picture01 x:30.y:32 b:512 h:385

Figure 2.3: MatchWare’s Medi8or design process.

being just another entity or object used within the presentation. The majority of the
time audio output is caused by an event e.g. a button being pressed, the mouse cursor

moving over a hotspot etc.

2.4 The World Wide Web (WWW)

The World Wide Web or W3 was originally designed in 1990 by Tim Berners-Lee at
CERN, the European Laboratory for Particle Physics. The aim of the project was to
provide a uniform way in which information could be shared over wide-area networks.
A paper by T. J. Berners-Lee et al. [4] describes how most of the information at CERN,
for example technical reports, data from experiments etc., was already available on-line.
However the ability to create references to this material required a reasonable knowledge

of host names, terminals, passwords and the CERN network itself. As a consequence it

CHAPTER 2. BACKGROUND 14

was very difficult, if not impossible, to create and then “jump” to these references.
The WWW overcame these problems by defining three new platform-independent

and network-neutral components. These were:

1. The Universal Resource Locator (URL) addressing scheme. This consists of a
simple string, which contains the type of protocol to use, e.g. FTP, HTTP etc.,
the name of the computer on the internet and the actual name of the document
to be retrieved. For example “http://www.idiscover.co.uk/linux/linuxdoc/index-

.html”.

2. The HyperText Transfer Protocol (HTTP). This protocol was designed so that
information could be efficiently retrieved, for the purpose of making hypertext

“jumps”; see Section 2.6.1 for a description of hypertext.

3. The HyperText Markup Language (HTML) is used to markup, see Section 2.5.2,
documents that will be used on the WWW. This process enables authors to pre-
pare and format their documents using a mixture of text, pictures, sound, video
and hypermedia links. See Section 2.6.1 for a description of hypermedia. Users
can click on these links to “jump” to related items. By using this language, authors
ensure that their documents will look the same on different WWW browsers. A
WWW browser or client is an application that renders an HTML document into
a form that can be displayed on the user’s screen. Netscape’s Navigator and

Microsoft’s Internet Explorer are two of the most common browsers.

These three components form the core architecture of the WWW. Originally the WWW
was only designed to be used on wide-area networks (WANs). With the growth of the
Internet however, see Section 3.1, WWW browsers are now being used to read and
retrieve information off the internet. As a result the WWW has steadily grown in size
(the number of web “pages” being created) and popularity.

The first Web browsers could only be used to display text and pictures. Hypertext
links were displayed in a different colour and users could “click” on these, with a mouse,
to follow the link. With the development of more sophisticated browsers, however, users
could click on an “audio” link, which would make the browser download the file to the
users machine. The user could then use another application to play the file. Some

browsers, for example Netscape’s Navigator, could also execute a program to play the

CHAPTER 2. BACKGROUND 15

file once it had been downloaded. The process of downloading a file, however, could
take a long time especially if the file was quite large and / or the network connection
was very poor.

To overcome this problem, several companies, such as RealNetworks, Macromedia,
Xing Technology etc., have created streaming audio servers and players. A streaming
audio link is represented on a web page in exactly the same way as an audio link. This
link will contain information about the audio server and the audio file to be streamed.

When a user clicks upon this link, three events occur and they are:

1. The browser activates the relevant streaming audio player. This player will then
send a message, containing the name of the audio file to be streamed, to the audio

server.

2. The audio server splits the audio file into smaller packets and transmits them to

the player.

3. The player buffers these packets until enough have been received, so that they can

be played.

On a reasonably fast network connection the audio file is played almost immediately,
giving the impression that the audio file is stored on the local machine. Otherwise it
could take a long time for enough information to be received so that it can be played.

The current internet protocol, which the WWW uses, was not designed to handle
streaming audio information. This protocol is called TCP/IP and is described in more
detail in Section 3.1. To overcome this problem several protocols have been developed
and they are the Real-time Transport Protocol (RTP) and the Real Time Streaming
Protocol (RTSP). These protocols are discussed in more detail in Sections 3.2 and
3.3, respectively.

Overall the WWW uses audio as just another medium to link to. Anchors can not
be created within the audio stream or file and therefore links can not be created from
an anchor within the audio. Links can be created to a time within the audio file, but

this is not a true anchor, it is usually just a subrange of the entire file.

CHAPTER 2. BACKGROUND 16

2.5 Existing Standards

Several international standards have been created in the hypermedia and multimedia

community. These are described in more detail in the following sections.

2.5.1 The Multimedia and Hypermedia Experts Group

The Multimedia and Hypermedia Experts Group? (MHEG) was formed by a subcom-
mittee® of the International Standards Organisation (ISO) to address the problems of
trying to design a software-neutral interactive multimedia presentation tool. There are
several parts to MHEG and a paper by Rodriguez et al. [5] gives a brief description of
MHEG parts 1 to 5.

Boudnik and Effelsberg [6] describe MHEG-1, which was the initial specification for
robust multimedia data structures using ISO’s own Abstract Syntax Notation (ASN.1).
This notation describes all of the data structures (or MHEG classes) in an abstract
syntax, which ensures that applications conforming to this standard will be able to
communicate. An interactive presentation is formed by creating instances of these
MHEG classes or MHEG-Objects and forming interrelationships between these objects.
MHEG-1 defines several classes, of which four could be used for inserting links into

streaming audio. These are:
e The MH-Object class which is the root class inherited by all of the other classes.
e The Content class which contains the data that the user sees and / or hears.

e The Link and Action classes which describes what actions are performed when a

user activates a particular link object.

e The Multiplexed Content class which is derived from the content class and either
contains or refers to the multiplexed stream data. It also assists in inter-stream

synchronisation, such as lip synchronisation.

Each object when it is created can contain extra information about its original size
and its play-out duration. This information is stored as virtual co-ordinates from a

generic space and a virtual timeline, respectively. At run-time this extra information is

4Also known as the Multimedia and Hypermedia information coding Experts Group.
®“Coding of Audio, Picture, Multimedia and Hypermedia Information,” ISO/TEC JTC1/SC29.

CHAPTER 2. BACKGROUND 17

converted into real-time requirements, such as screen co-ordinates and a particular type
of timer, depending on the type of hardware being used.

MHEG-2 is exactly the same as MHEG-1, except that the classes are defined in SGML
(Standard Generic Markup Language) instead of ASN.1. SGML is described in more
detail in Section 2.5.2.

A paper by Rutledge et al. [7] gives an overview of the MHEG-3 project which is an
extension to MHEG-1. This part of the standard was created to increase the interactivity
between multimedia objects and the environments that they run in. This is achieved

by using :

1. Scripting languages® - a script is a program containing a set of procedures that
can be used to monitor events that are created by particular objects, for example
a user clicking on a button will cause an event. As a result of these events being
generated, the script will execute certain actions, possibly on other objects. This

allows objects to interact with each other.

2. A Virtual Machine - this is used to create a mapping table between the run-time
services provided by a particular platform / environment and the interface of the
scripting language, used to generate the script. This allows interactivity between

the scripts and the platform being used for the presentation.

Overall MHEG-3 increases the functionality of MHEG-1, by allowing users to create
presentations using external programs.

The fourth part of the MHEG standard (MHEG-4) was a simple extension and is
used to register objects and formats supported by MHEG, e.g. MPEG, JPEG etc.

Joseph and Rosengren [8] give an overview of the MHEG-5 standard, which was de-
signed to extend the class hierarchy of the initial MHEG-1 specification. This extended
hierarchy contains a set of new classes that can be used to develop client / server multi-
media applications across platforms with limited resources. This ensures that MHEG-5
conformant applications will run on conformant terminals.

MHEG-5 defines five classes that are relevant to the streaming audio and open hy-

permedia research domain. These are:

5These are also known as Scriptware.

CHAPTER 2. BACKGROUND 18

e The LinkEffect and the LinkCondition classes. A LinkCondition is triggered by an
event, which if it matches certain conditions will run a LinkEffect. The LinkEffect

contains a list of elementary actions to be carried out.

e The Stream class, which provides the functionality to multiplex audio and video
objects, present them in synchronisation and create links from MHEG objects to
specific points in the stream (stream-events). Links can also be created to specific

user-defined events.
e The Audio class, which encapsulates audio objects and can be used with streams.

e The HyperText class, which allows users to associate objects with a link to, for

instance, another page. Objects can be words, groups of words, pictures etc.

An example of an MHEG-5 application is the “GlassWWWay” tool developed by

Geyer et al. [9]. The original system, known as the “GLobally Accessible ServiceS”
(GLASS), used MHEG-1 to provide several different services such as video on demand,
interactive TV or online shopping in an easy-to-use interface. However, due to the prob-
lems of inferior browser technology and that the developers thought that MHEG-1 was
too abstract, they decided to develop a new system based on the MHEG-5 standard.
By re-defining the MHEG-5 classes in Java, they designed a Java applet which could
be downloaded into any Java-enabled World Wide Web (WWW) browser. This also
provided better communication between the users and the GLASS server.
This paper concentrates mainly on the benefits and drawbacks of using Java to imple-
ment the MHEG-5 engine and so the audio domain is not mentioned. It is not known
whether this system provides the functionality to stream audio or to create links from
certain points within an audio stream, which MHEG-5 can. The system does provide
basic sound support for interactive television and the other services mentioned above.
At this stage, however, Java has very limited sound capabilities and therefore the func-
tionality needed to support sound would have to be supplied by external functions”.

The MHEG standard contains many sections of which part five seems to provide
enough information to develop a tool to create links to and from the streaming audio
domain. MHEG at the moment, however, is used as a tool to develop visual, easy-to-use,

interoperable client / server systems, of which audio is just a small part of this.

"These are also called native functions and are usually specific to a particular platform.

CHAPTER 2. BACKGROUND 19

2.5.2 The Hypermedia/Time-based Structuring Language

The Hypermedia / Time-based Structuring Language (HyTime) became an ISO stan-
dard (ISO/IEC 10744:1992) in 1992 and uses the Standard Generic Markup Language
(SGML) to describe document architectures. HyTime evolved from the work of the
ANSI X3V1.8M committee on the development of a Standard Music Description Lan-
guage (SMDL) and to understand the concepts of HyTime, a brief description of SMDL
and SGML will also be given in this section.

A paper by Carr et al. [10] describes traditional markup and the equivalent logical and
physical markup techniques in use today. Markup can be described as the process of in-
serting specific commands or codes into the original text which the compositor program
(or traditionally a human) uses to compose the final document. Physical markup re-
quires the user to explicitly place certain commands, such as ‘bold’ and ‘centre’, around
the text to be rendered®; whereas logical markup requires the program to interpret and
render abstract commands, such as “this text is a heading”, inserted by the user.

This paper describes the Standard Generic Markup Language as taking logical markup
to the extreme. SGML does not define default markup commands or tags; the user
creates these by using SGML’s logical elements and physical entities. In ArborText’s
SGML White Paper [11], logical elements are described as pieces of data that may
contain either text or other subelements such as chapters and paragraphs etc. Each
element also contains their own generic identifier (GI), which is used for the markup
of documents. Physical entities are described as self-contained pieces of data, e.g. a
separate text file, a separate graphic file etc., that can be referenced as a unit.

These elements and entities are then stored in a Document Type Definition (DTD)
file, which can be used as a template for the structure of other documents. The syntax
of DTDs is very strict which ensures that they will be understood by other SGML-
compliant applications. It is upto the application, however, to interpret the ‘meaning’
of the document structure.

Mounce [12] describes in his paper, how the Standard Music Description Language
(SMDL) was initially defined using a SGML DTD in 1988. SMDL is defined? as “an

8The process of turning non-graphical information into a form that can be represented in a graphical
way e.g. a printer renders information into a form that can be printed.
°ISO/IEC Draft International Standard 10743.

CHAPTER 2. BACKGROUND 20

architecture for the representation of music information, either alone, or in conjunction
with text, graphics or other information needed for publishing or business purposes.”

Basically, SMDL divides a musical work into four domains and these are:

1. The Logical Domain or cantus. This will contain all of the logical information
about a piece of music. The cantus can be described as an abstract timeline on
which all events can be scheduled e.g. Eliens et al. [13] suggest that the cantus

can contain information to do with automated lighting.

2. The Visual Domain. This graphically represents the music in some form e.g. a

link to an image file (JPEG, GIF etc.) or to a coded music file.

3. The Gestural Domain. This can contain one or more links to the actual perfor-

mance of the musical work e.g. a link to a MIDI file.

4. The Analytical Domain. This contains commentaries or theoretical analyses of all

of the other domains.

A file written in SMDL would traditionally contain a cantus, links to one or more
graphical representations of the musical work and one or more links, again, to the
actual performance of the cantus. This initially provided enough information to create
simple presentations, but with the development of digital audio and multimedia, there
was a need to extend the functionality of the original SMDL document type definition
(DTD). With each subsequent development of the DTD, more and more information
was submitted until eventually a separate standards activity was initiated in 1989. This
research produced the Hypermedia/Time-based Structuring Language (HyTime) which
extended SGML and became a full International Standard in April 19920,

Newcomb et al. [14] describe how HyTime was originally defined using a SGML DTD,
which contained the HyTime-specific generic identifiers (GIs). The standards committee
realised, however, that these identifiers could not be changed because HyTime compliant
applications needed them to recognise HyTime documents. This reduced the expres-
siveness of SGML and as a result, the next draft of the HyTime standard replaced the
GIs with SGML architectural forms. In Newcomb’s [15] paper, an architectural form

defines elements with a standard meaning, e.g. independent hyperlink, and syntax for

19ISO/IEC 10744:1992.

CHAPTER 2. BACKGROUND 21

its associated data. An architectural form also defines an attribute type for the element,
which is used for identification purposes. Multimedia systems would then use this iden-
tifier to access only the relevant elements and hence parts of HyTime that they require.
HyTime usually provides a standard set of forms to build hypermedia / multimedia
documents and therefore, is often referred to as a meta-DTD.

One of the main problems of the hypermedia / multimedia industry is its inability
to store, describe and transport media objects in an application-neutral manner. New-
comb [16] discusses how the HyTime / SGML paradigm addresses this problem, by
encapsulating the information using abstract semantics. This ensures that the informa-
tion can co-exist in a variety of applications and contexts.

HyTime consists of six main modules. A paper by Newcomb [15] and Newcomb et

al. [14] give a thorough description of each one. They are:

1. The Base Module which includes facilities to manage documents, handle name
collision between HyTime-specific and user-defined identifiers and an ability to
track certain activities e.g. the creation, modification and deletion of links between

objects. This module also contains SGML itself.

2. The Location Address Module. SGML uses an unique ‘identifier’ and an ‘identifier
reference’, #ID and #IDREF respectively, to refer to particular elements within
a document. SGML can also create simple links to particular entities e.g. a
graphic file. These identifiers and links, however, can only be used within the
local scope of the document that defined them. HyTime, again, extends this
by providing location address, i.e. a pointer, architectural forms. These forms
include methods to address locations by name and by position using dimension(s)
and axis, e.g. a substring within a string, a word in a sentence, a node within a
tree etc. HyTime uses this address information to “resolve” the address and hence
recover the information at that location. This can be within the local document

or in another document.

3. The Hyperlinks Module which consists of several methods to create active refer-
ences (or hyperlinks) to other documents and / or objects within those documents.
This includes the general purpose independent link (ilink) which can have any

number of link ends and ways to activate a traversal of a link, e.g. a push of a

CHAPTER 2. BACKGROUND 22

button and the contextual link (clink) which always has two link ends, with one

of them being the clink’s own location e.g. a footnote.

4. The Measurement Module. This defines a way to address document objects using

abstract measurable domains such as space and time.

5. The Scheduling Module which uses finite co-ordinate spaces (FCSs) to define
any number of axes. These axes can represent anything that can be measured or
counted e.g. time, money, temperature etc. Objects within FCSs are called events

and these are used by the rendition module.

6. The Rendition Module. This module uses two constructs, the proscope and
modscope. The proscope can be used to project certain parts of events onto
another FCS e.g. show only this section of a map, whereas the modscope can be
used to modify an event e.g. change the colour. This module calls a schedule
of proscopes a baton and a schedule of modscopes a wand. A wand and then a
baton can be applied to a particular event, e.g. take this picture of a crowd, change
the colour and then only project a particular section of the crowd. Generally the

resulting FCS is in a form that the user can see and / or hear.

2.6 Hypermedia Systems

To fully understand how the audio domain has been used in Hypermedia Systems (HSs),
a brief overview of the origins of hypertext and hypermedia has to be given. This
section also discusses how hypertext and hypermedia have been used in first and second
generation systems, respectively. Finally this section describes how the audio domain
has been supported traditionally in second generation systems and more recently in

“open” hypermedia systems.

2.6.1 Hypertext and Hypermedia

The term “hypertext” has been used, over the last 30 years, to describe an extension to
the traditional form of “flat” or linear text. For example, a book can be described as
being linear because it is usually read from the beginning to the end. Recent develop-

ments in computer systems, however, have allowed programmers to develop new ways

CHAPTER 2. BACKGROUND 23

in which traditional text can be viewed. Conklin [17] describes how these systems allow
references to be created between different chunks of text, which can be in the same or
another document. This type of text is called nonlinear text or hypertext because the
path through the document can branch-off to other documents via these references.
Three of the main contributors to the area of hypertext were Vannevar Bush, Douglas
Engelbart and Theodore Nelson. Conklin [17] discusses each of their hypertext systems

and they were:

1. Bush’s Memex system. In 1945 Vannevar Bush'! predicted a rapid growth in the
amount of scientific literature and the need to create a way in which this large body
of information should be browsed. In his article, see Bush [18], Bush describes how
the human mind works by associating related pieces of information. He applied
this concept to a machine, called the Memex, which allowed the user to tie two
relevant pieces of information, from two separate documents, together. This idea

of association is credited as being the first attempt to describe hypertext.

2. Engelbart’s oN Line System (NLS/Augment). In 1963, Engelbart described a
computer system that would augment man’s intellect, by allowing the user to
interact with the system using special cooperative devices!?. As a result the
amount of information that a user could manipulate and understand would steadily
increase, effectively “amplifying” the native intelligence of the user. The NLS
system was implemented five years later at the Stanford Research Institute. It
allowed users to create any number of links between elements within a document
and between the documents themselves. See Engelbart and English [19] for more

details.

3. Nelson’s Xanadu System. During the development of the NLS, Ted Nelson was
also developing his own ideas about augmentation. Nelson’s system would only
allow the storage of documents in their original format and any modifications
made to these documents, e.g. a different paragraph etc. By using links between
these modifications and the original documents, previous versions could be easily

reconstructed. New links could easily be created between different bodies of text

"president Roosevelt’s science advisor.
20ne of the devices he invented was the mouse.

CHAPTER 2. BACKGROUND 24

and therefore new pathways could be formed through the material. It was from
this system of linking large bodies of text together that Ted Nelson created the
term “hypertext”. Nelson’s book, see Nelson [20], describes his ideas in more

detail.

The term hypermedia can be described as an extension to hypertext. Hypertext
systems allow users to author, edit and follow links between different bodies of text.
Hypermedia systems, however, are similar to hypertext systems, except that the user
can use other forms of media as well. For example, the authoring of links between an
audio file and a body of text.

Halasz [21] describes how Engelbart’s NLS/Augment system can be called a first
generation system because it used workstations with little or no graphics capabilities and
it focused primarily on text. An overview of these systems can be found in Conklin [17].
Halasz goes on to say that in the early 1980’s, second generation systems began to
emerge, which used workstations with more advanced user interfaces and graphics. As
a result these new systems would allow users to create references between different
types of media, e.g. text, pictures etc., and hence they were called hypermedia systems.
Example hypermedia systems are NoteCards [21], KMS [22] and Intermedia [23].

These second generation hypermedia systems originally used proprietary document
formats to store the data. The links themselves were embedded into these documents,
which made them considerably easier to transport. However this approach can cause
several problems, especially with networks and distributed systems. For example, when
a document is moved from one computer on the network to another, all links pointing
to this document will have to be updated. Otherwise users will not be able to follow
links to this document'®. Similar problems will occur if documents are deleted and
the links are not updated or removed. The use of embedded links also made it very
difficult to extend these systems, to support other types of media. External programs,
that were not fully integrated into these systems, would have to be used. As a result of

these problems, the second generation systems were called “closed” hypermedia systems.

Goose [24], Beitner [25] and Halasz [21] describe these systems in more detail.

13This is also known as the “dangling link” problem.

CHAPTER 2. BACKGROUND 25

2.6.2 “Open” Hypermedia Systems

Goose [24] describes that in 1987, at a international hypertext conference, researchers
started to express their concerns about the problems mentioned in the previous sec-
tion. Several ideas were discussed, see Halasz [21]; for example new search and query
mechanisms, management of dynamic information, more integration of existing applica-
tions etc. As a result of these discussions, several American research groups defined, in
1989, a reference model for hypermedia. It was called the Dexter Hypertext Reference

Model'*, see Halasz and Schwartz [26] and it was designed to:

1. Define both formally and informally the common abstractions found in a range of

existing hypertext systems, e.g. NoteCards, Intermedia, KMS etc.

2. Serve as a standard, so that the functionality and characteristics of existing hy-

pertext (and non-hypertext) systems could be compared.

3. Serve as a template, for the development of standards. These would assist in the

interoperability and interchange between different hypertext systems.

The Dexter reference model is widely regarded as being one of the most important
developments in hypermedia research.

A paper by Malcolm et al. [27] describes how hypermedia could be used in industry
to integrate large amounts of data from specialist tools and applications. Malcolm,
however, describes how the current (second) generation of hypermedia systems were
incompatible with each other, as well as the tools and applications used in industry. As
a result, Malcolm et al. defined several issues that needed to be addressed, e.g the ability
to access and link across different platforms (interoperability), templates for common
hypermedia structures and interaction with operating systems and networks etc.

Goose [24] describes that in 1991, at another hypertext conference, Halasz revisited
his original ideas, see [21], that he placed before the hypermedia community. Halasz re-
viewed the progress that had already been made and he also discussed the contribution
made by Malcolm et al. [27]. As a result of these discussions Halasz presented several
new areas of research, which focused primarily on the the development of “open” sys-

tems with independent communicating processes and the way in which large amounts

Y71t is usually referred to as Dexter.

CHAPTER 2. BACKGROUND 26

of information could be managed and visualised on workstation screens. With the de-
velopment of more “open” hypermedia systems, researchers would be able to overcome
some of the problems associated with the second generation of hypermedia systems, see
Section 2.6.1.

In [24], Goose gives a detailed overview of several hypermedia systems, that have
embraced some of the concepts of “open” hypermedia. These include the World Wide
Web, see Section 2.4, Hyper-G, Intermedia and Multicard. The following section
describes why the audio domain has been neglected in hypermedia systems and how

several “open” hypermedia systems have managed to overcome this.

2.6.3 Hypermedia Systems and Audio

Traditionally, the audio domain has been neglected in the development of hypermedia

systems. There are several reasons for this and they include:

e The lack of technology. The first generation of hypermedia systems did not have
the computer technology to manipulate audio data. Engelbart’s NLS/Augment
system used a computer with a small amount of memory and a very simple display.
Over time this technology has improved, e.g. the second generation systems could
manipulate pictures and text using advanced workstations. The audio domain
however, is quite complex and it requires more advanced technology, which is still

being developed.

e The problem of visualising audio information. Audio, by its very nature, can not
be seen. As a result, the ability to develop an intuitive graphical user interface,

that will allow users to manipulate audio information, is quite difficult.

e The dominance of the visual sense. Vision has always been regarded as the primary

sense for normally sighted people. Section 2.1 describes this in more detail.

e The problems of the audio file formats. Currently there are several file formats
which can be used to store audio data. For example Microsoft’s WAV format,
MPEG-1 layer 3 (MP3’s), Sun’s AU format etc. Each format has its own advan-
tages and disadvantages. With each format, however, the file size tends to increase

as the quality of the audio recording increases. As a result, high quality recordings

CHAPTER 2. BACKGROUND 27

can rapidly consume large amounts of disk space. The amount of memory and

the processing power of a computer can also affect the size of an audio file.

These problems have caused the majority of hypermedia systems to concentrate
mainly on the authoring of links between text, images and video; the visual domain.
With the development of more powerful computers, sound cards and “open” hypermedia
however, it has become possible to develop applications that can be used in conjunction
with these systems, to manipulate the audio domain.

Audio tools have been developed for two hypermedia systems and they are:

1. The SoundViewer tool for Microcosm. Microcosm', see [28, 29, 30, 31], is an
open hypermedia system which was primarily developed to investigate new areas
of hypermedia research. Goose and Hall [32] describe it as being a set of commu-
nicating processes which supplement the facilities of the native operating system.
Users interact with Microcosm using viewers which display different types of me-
dia, e.g. text and video, and allow users to author and follow links to and from
this media. Viewers can be either specifically created for the system or existing
third-party programs that have had their functionality extended; for example by

using Microsoft Word macros.

When a user performs an action in the viewer, messages are passed from this
viewer to Microcosm which then dispatches them through a chain of filters. These
filters process the messages and then decide what sort of information should be
returned to the user. The filters might return a set of links, which are stored in

separate link databases or linkbases, that the user can then follow.

Originally Microcosm had little support for sound. When a user traversed a link
to an audio file, a native application would be invoked to play this sample from
the beginning to the end. Users could not create links from the application or to
an area within the audio sample. As a result of this problem the SoundViewer

tool was developed. This tool is discussed in more detail in Section 4.1.

2. The Sound (FT) module for MAVIS. MAVIS, the Microcosm Architecture for

Video, Image and Sound, is an extension to Microcosm and it was also developed

5Developed by the Multimedia Research Group at the University of Southampton.

CHAPTER 2. BACKGROUND 28

at the University of Southampton by the Multimedia Research Group. Lewis et
al. [33] describe the system as being a tool that allows users to author generic
links'® between text and non-text based media. MAVIS achieves this by using the
content of the non-text media as the key to navigation and retrieval of related

information.

To navigate and retrieve information related to text is relatively straight forward
because algorithms already exist that can match strings or sentences. With Mi-
crocosm, a user selects a piece of text within a document and then tells the system
that this selection is a generic link. The system will then create a representation
of this text (a key) and then store this key in a linkbase. When users want to
retrieve information relating to the original selected text, this key will be used

with the string matching algorithms to find other occurrences of the text.

With MAVIS, however, exact matching with non-text media is clearly impossible;
the similarities between non-text media, for example images, have to be measured
instead and these values can then be used to determine the closest match!'”. To
achieve this, MAVIS uses signatures to represent the content of a selection. Several
signatures are often used since there are several different ways in which non-text
objects can be matched, e.g. colour, texture etc. Each description of a signature
is stored in a module and users can created their own signature modules, which

MAVIS can then use.

MAVIS has a prototype signature module that supports links in sound. It is
called the Sound FT module and it uses the Fourier Transform (FT) on a selected
portion of a digital sound. The resulting sample can then be used as the key for
matching. Lewis et al. [33] describe how single words can be articulated into the
MAVIS system, which then displays the word as a sound wave. A section of this
sound wave, representing the word, can then be chosen as a source anchor of a
generic link. The Sound FT module will process this selection and generate the
key. This key can then be used to navigate and / or retrieve information, e.g.

text, images etc., related to the original audio sample.

6 Microcosm supports the concept of generic links — links that can be followed from any point within
any document.
1" This is known as fuzzy matching.

CHAPTER 2. BACKGROUND 29

Both of these tools can be used to create links to and from the audio domain and
they have managed to overcome some of problems mentioned at the beginning of this

section, see Section 2.6.3.

2.7 The Audio-Linker Tool

The Audio-Linker tool was developed!® for a demonstration to show that links could
be created from audio to text and vice-versa. Originally only the Soundviewer tool and
Microcosm were going to be used, see Sections 4.1 and 2.6.3 respectively. However it
was decided that a simpler audio tool, to show how the links could be created without
having to use an underlying Open Hypermedia System e.g. Microcosm, should also be
developed. The design and implementation of this simple tool are discussed in more

detail in the following sections.

2.7.1 The Design

The requirements for the design of the tool were, again, very simple. It needed to be
created quickly, due to the limited amount of time before the actual demonstration
and so a Rapid Application Development (RAD) software tool had to be used, such as
Visual Basic, Borland C++ Builder, Visual Café etc.

The graphical user interface (GUI) of the tool had to have components to display:

1. The audio sample. This component would also be used by the user to select a

portion of the audio to link to and from.

2. The audio controls, which would allow the user to play, rewind, forward and stop
the audio file. In other words, buttons similar to the audio controls on a tape deck

or CD player.

3. The text file. This component would also be used to select a portion of the text

to link to and from.

The components to display the audio sample and the audio controls would have to
interact with each other, so that when the “Play” control / button is pressed, the audio

sample display would change to show the current position in the file. The components

¥Developed by Lee Oades and Neil Ridgway.

CHAPTER 2. BACKGROUND 30

to display the audio sample and the text file would also have to interact, so that any
links between the two could be displayed and followed, e.g. a highlighted piece of text
would represent a link to a particular part of the audio sample and if the user clicked
on this text, the link would be followed and the audio sample would be played from the

relevant position.

2.7.2 The Implementation

The tool was implemented using Visual Basic because it was easy to learn and use. Other
RAD tools were not really considered because the Audio-Linker application had to be
developed quickly, with the resources at hand. Visual Basic provided an environment
where components, called OCXs', can easily be made to interact with each other. By
inserting several of these components into a Visual Basic form, which represents the
main application window, the Audio-Linker tool could be rapidly developed.

Several OCX controls were used for the application and they were:

e A ‘Slider’ control, which was used to graphically represent the audio sample. This
control consists of a horizontal bar which represents the length of the audio file
and a vertical slider which was programmed to represent the current position in
the audio file. By moving the slider, the user can move to different areas within
the audio file. By holding down a particular keyboard key and sliding the vertical

bar, a user could easily select a portion of the audio file to be linked to or from.

e A ‘MMControl’ control. This is a multimedia MCI?° control that consists of a row
of buttons, i.e. play, stop, pause etc., which allows the user to manipulate visual
and audio media. In the Audio Linker, this control was set to play WAV sound
files. This control, however, has enough functionality to support MIDI, CD Audio,
CD-ROM drives and AVI (Microsoft’s proprietary audio/video format) files.

e A ‘RichTextBox’ control, which was used to display a text file, in either plain

ASCII or rich text. This control was used to create links from text to audio.

90OCX is an extension to Microsoft’s Object Linking and Embedding (OLE) which allows users to
embed objects e.g. Word documents, file dialog boxes, text boxes etc., into other documents.

20Media Control Interface. This is a set of high-level, device-independent commands that control
audio and visual peripherals.

CHAPTER 2. BACKGROUND 31

e A ‘Timer’ control, which was run whenever the play button was pressed. The
timer would then poll a certain function after a few seconds, which would update

the vertical bar in the ‘Slider’ control.
e A ‘FileDialog’ control, which was used to open project files.

When the application is executed, an “Open” file dialog box is displayed. This is
used to load a project file, which contains the name of the WAV audio file, the name
of the text file and the links, into the application. The file does not have to contain
any links since they can be created in the application and then saved in the file. When
the project file has been loaded, the ‘MMControl’ control buttons are activated and the
text is displayed in the ‘RichTextBox’ box. By clicking on the “Play” button the audio
file is played and if the current position of the audio file is in between the start and end
points of an audio link, the link is followed and the relevant text is highlighted. This is
shown in Fig. 2.4. An array in the program is used to store the links.

To test the application a simple project file was created, using paragraphs of text
from a book and an audio transcript of this text. Links were then created from each
paragraph of the text, to the relevant position in the audio file. When the audio file
was played back, a sentence of text from each paragraph would be highlighted, when
the equivalent position was reached in the audio file. If the user moved the vertical
slider and hence changed the current position in the audio file, again a sentence of text
would be highlighted in the relevant paragraph. These two methods are used to follow
links between audio and text. By clicking the right mouse button anywhere within a
paragraph, the position in the audio file and hence the slider would move to the start of
the audio version of that paragraph. This method is used to follow links between text
and audio.

In conclusion, this tool has shown that links can easily be created from audio to
text and vice-versa, without the need of the Open Hypermedia System (OHS), such
as Microcosm. The Audio-Linker was also considerably faster than Microcosm in the
creation and resolution of the links. This tool, however, does not have all of the extra
functionality, see Section 2.6.3, that Microcosm does and therefore it can not be
directly compared to this OHS. With modifications and enhancements it could be used

in conjunction with an OHS, so that links could be easily created from audio to other

CHAPTER 2. BACKGROUND

types of media and vice-versa.

32

CHAPTER 2. BACKGROUND

. Audio Linker
Eile

=] E3

— neil.way

. J

Y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3729 |

™|

— neiltrans. bt

- Meils Speech -
|
Thiz stops appletz from laading URLz fram any location, even pavr
ownh computer.

Applet Hozt
Thiz mode allows an applet to uze R Lz that refer to the spstemn they
came frarm,

Firewall

Thiz mode restricts URLz to those behind the fireweall. Applets that are
inzide the firewall can access any URL. but applets outside the firewall
cah accesz only thoze URLz that are alzo outzide the firewall,

rrestricted
Thiz rode allows an applet access to ary URL....

[

|Loaded way file: neil way

33

Figure 2.4: The Audio Linker Application

Chapter 3

Streaming Media Protocols

Chapter 3 describes a family of protocols that are being used to support the real-time
delivery of multimedia data. It specifically concentrates on the Real Time Streaming
Protocol which is designed to be an open standard. This chapter also gives an overview
of streaming audio players and the software tools they use to create streaming multi-

media presentations.

3.1 The Traditional Protocols - TCP/IP

The Transmission Control Protocol / Internet Protocol is the main protocol suite used
with the Internet. Halsall [34] describes how originally Local Area Networks (LANs)
were used to connect different computers on a local site, e.g. computers within an
office or building. This allows users to share and distribute information across the local
network. Large enterprises, however, usually have several sites situated in different areas
of the same country and more recently, different countries as well. To connect sites that
are situated within the same country, companies lease transmission lines between those
sites, from the public carriers such as British Telecom. This forms a Wide Area Network
(WAN). To connect sites that are situated in other countries, companies use different
types of communication, for example satellites, optic fibres across land and / or sea etc.
The networks that are formed from this type of communication are called Internetworks
or just Internets.

TCP/IP consists of a suite or a layered stack of two core protocols and they are the

internet and transport protocols. The Internet Protocol (IP) provides a number of core

34

CHAPTER 3. STREAMING MEDIA PROTOCOLS 35

functions that assist the process of internetworking across dissimilar networks. These

are:

1. Addressing. There are three types of address used with the current version of the
internet protocol (IPv4), unicast, broadcast and multicast. Unicast addressing is
used when a packet of information or datagram is to be sent to a single destination.
Broadcast addressing is used when a message is to be delivered to every host on a
destination LAN. A multicast address is used to deliver a datagram to a specific set
of hosts, called a multicast group. This type of addressing is called IP Multicast.
Hosts can join a multicast group at anytime and receive the datagrams that are

sent to the group.

2. Fragmentation and reassembly. If the datagrams sent by a host are larger than the
packet sizes used by a particular part of the internet, the datagrams will have to
be fragmented into smaller chunks so that they can be transmitted. When these
smaller packets are received, they have to be reassembled into the original sized

packet, so that they can be used.

3. Routing. This is used to determine which subnets, within the internet, the data-
grams must travel to get to the destination host. This could involve travelling

over several different LANs or WANSs.

4. Error reporting. This consists of several functions that will detect errors, for
example the process of reassembly could cause several packets to be discarded,
and report them back to the IP in the source host. Halsall [34] describes these

functions in more detail.

The transport protocols are designed to sit on “top of” the internet protocol men-
tioned above. They provide two modes of operation, connection-oriented or connection-
less. A connection-oriented protocol creates a connection between the transmitter and
the receiver before the data is actually transmitted. This is also known as a reliable
transport service since the data is guaranteed to get to the destination. The Transmis-
sion Control Protocol (TCP) is an example of this type of service.

A connectionless protocol, as the name suggests, does not form a connection and there-

fore can not guarantee that the data will be delivered. This mode of operation reduces

CHAPTER 3. STREAMING MEDIA PROTOCOLS 36

the overhead associated with each message transfer because no network connection is
established prior to the transmission. TCP/IP provides a connectionless protocol called
the User Datagram Protocol (UDP).

When users want to transmit information over the internet, using an internet-aware
application, the information is first passed to the transport protocol layer. This layer will
determine the type of delivery mechanism, e.g. TCP or UDP, to use. The information is
then passed to the internet protocol layer, which attaches extra information, for example
the destination host address etc.

When a host receives information from the internet, the internet protocol will carry
out several tests on the packets of information received. For example error reporting,
which could result in the re-transmission of particular packets, reassembly of packets
etc. The information is then passed to the transport protocol layer which strips off any
information to do with the delivery mechanism. The resulting information can be used
by the internet-aware application. A more thorough description of this can be found in

Halsall [34].

3.2 The Real-time Transport Protocol (RTP)

The Real-time Transport Protocol was developed by the “Audio-Video Transport Work-
ing Group”! and has recently become an internet standard. RTP is described in the
IETE’s RFC 1889 [35] specification as being a protocol providing end-to-end delivery
services, such as payload type identification, timestamping and sequence numbering,
for data with real-time characteristics, e.g. interactive audio and video. It can be used
over unicast or multicast networks. RTP itself however, does not provide all of the
functionality required for the transport of data and therefore applications usually run
it “on top” of a transport protocol such as UDP?, which is discussed in more detail in
the previous section.

RTP usually works in conjunction with another protocol called the Real Time Control
Protocol (RTCP)?, which provides minimal control over the delivery and quality of the

data. It performs four main functions and these are:

'Formed by the Internet Engineering Task Force (IETF).
2RTP can also be used with other transport or underlying network protocols.
%It is also known as the RTP Control Protocol.

CHAPTER 3. STREAMING MEDIA PROTOCOLS 37

1. Feedback Information. This is used to check the quality of the data distribution.
During an RTP session, RTCP control packets are periodically sent by each par-
ticipant to all the other participants. These packets contain information such as
the number of RTP packets sent, the number of packets lost etc., which the re-
ceiving application or any other third party program can use to monitor network
problems. The application might then change the transmission rate of the RTP

packets to help reduce any problems.

2. Transport-level identification. This is used to keep track of each of the participants
in a session. It is also used to associate multiple data streams from a given
participant in a set of related RTP sessions, e.g. the synchronisation of audio and

video.

3. Transmission Interval Control. This ensures that the control traffic will not over-
whelm network resources. Control traffic is limited to at most 5% of the overall

session traffic.

4. Minimal Session Control. This is an optional function which can be used to convey
a minimal amount of information to all session participants, e.g. to display the

name of a new user joining an informal session.

When an RTP session is initiated, an application defines one network address and two
ports for RTP and RTCP. If there are several media formats such as video and audio,
a separate RTP session with its own RTCP packets is required for each one. Other
participants can then decide which particular session and hence medium they want to
receive.

Overall RTP provides a way in which real-time information can be transmitted over
existing transport and underlying network protocols. With the use of a control protocol,
RTCP, it provides a minimal amount of control over the delivery of the data. To ensure
however, that the real-time data will be delivered on-time, if at all, RTP must be used
in conjunction with other mechanisms and / or protocols that will provide a reliable

service.

CHAPTER 3. STREAMING MEDIA PROTOCOLS 38

3.3 The Real Time Streaming Protocol (RTSP)

The Real Time Streaming Protocol is a proposed Internet standard which is being
jointly developed by Netscape Communications, RealNetworks? and Columbia Univer-
sity. The current RFC [36] describes RTSP as being an “application-level protocol”,
which controls the delivery of streaming media with real-time properties. This media
can be streamed over unicast or multicast networks. RTSP itself does not actually de-

liver the media data; this is handled by a separate protocol and therefore RTSP can be

4

described as a “network remote control” to the server that is streaming the media.

The underlying protocol, that is used to control the delivery of the media, is deter-

mined by the scheme used in the RTSP Uniform Resource Locator (URL)?. The schemes

i

that are supported on the internet are “rtsp:” which requires that the commands are

i

delivered using a reliable protocol, e.g. TCP, “rtspu:” which identifies an unreliable

i

protocol such as UDP and “rtsps:’
Transport Layer Security (TLS) [37] protocol. Therefore, a valid RTSP URL could be

which requires a TCP connection secured by the

“rtspu://foo.bar.com:5150”, which requests that the commands be delivered by an un-
reliable protocol to the server “foo.bar.com”, on port 5150. A more detailed description
of the URLs used in RTSP is given in Section 3.2 of the RFC [36].

RTSP is intentionally similar in syntax and operation to the latest version of the
HyperText Transfer Protocol (HTTP/1.1) [38], which will soon become an internet

standard. There are several reasons for this and they include:

e Any future extensions to HT'TP/1.1 can also be added to RTSP, with little or no

modification.
e RTSP can be easily parsed by standard HTTP or MIME parsers.
e It can adopt HTTP’s work on web security mechanisms, caches and proxies.

Pizzi and Church [39], however, describe one of the fundamental reasons why RTSP is
based upon HTTP/1.1; the previous version of HTTP (v1.0), which is currently being
used by most web servers and browsers, was not designed to cope with the transmission

of real-time data over the internet. What limited capabilities HTTP/1.0 has in this

“Formerly known as Progressive Networks.
5This is a formatted string that identifies via a name, location, or any other characteristic a resource,
e.g. an audio file, on the internet.

CHAPTER 3. STREAMING MEDIA PROTOCOLS 39

area have already been exhausted. By making RTSP similar in operation and syntax
to HTTP/1.1 the designers have essentially provided HTTP-level services to real-time
streaming data.

Although RTSP is similar to HTTP/1.1, there are several areas in which it differs.

One of these areas is RT'SP’s need to maintain state in almost all situations. In RTSP, as
mentioned previously, the data is streamed via a separate protocol which is independent
of the control channel. For example, TCP could be used for the control of the stream,
whilst UDP is used for the actual delivery®. Thus the data will still be delivered by
the media server, even if it receives no RTSP control commands. Since most servers
are designed to handle more than one user at a time, the server needs to be able to
maintain “session state”, i.e. whether it is setting up a session, the “SETUP” state;
playing a stream, the “PLAY” state etc. This will allow it to correlate RTSP requests
with the relevant stream. HTTP/1.1, however, is a stateless protocol; there is no need
to save the state of each client.
Another area in which HTTP/1.1 and RTSP differ is in the way the client and the
server interact. With HTTP/1.1 the interaction is one-way; the client issues a request
for a document and the server responds. With RTSP both the client and the server can
issue requests.

RTSP is really more of a protocol framework rather than a protocol itself because it

provides:
e A way to control the delivery of multiple data streams.

e A means for choosing the actual delivery channels such as UDP, multicast UDP

and TCP.
e A way to choose a delivery mechanism such as RTP.

RTSP URLs, which are described earlier in this section, are used to control the delivery
of the multiple data streams. The type of delivery channel and delivery mechanism,
however, are usually implementation specific, e.g. coded into the implementation of the
RTSP server. Early implementations of these servers support UDP, multicast UDP,

TCP and RTP.
SRTP over UDP can also be used, although RTSP is not tied to RTP.

CHAPTER 3. STREAMING MEDIA PROTOCOLS 40

To create a presentation which could be a live videoconference or the simple trans-
mission of stored data, a presentation description is used. This contains a common
time axis and information about one or more media streams, e.g. RTSP URLs, dura-
tion, start time etc. A simple presentation description could, therefore, contain just one
audio stream, whilst a more complex example could contain an audio, video and text
stream running in parallel.

RealNetworks have developed the RealMedia architecture, that can be used to create
presentations. It consists of several components of which one of them is a scripting
language called the Real Time Session Language (RTSL). This language is used to define
the content of a RealMedia presentation and therefore is used to create the presentation
description.

The World Wide Web Consortium (W3C) have also developed a scripting language
called the Synchronised Multimedia Integration Language (SMIL). Bugaj et al. [40]
describe SMIL as a language that allows the integration of independent multimedia
objects into a synchronised multimedia presentation. SMIL is very similar to RTSL and

it can be used in the same way.

Chapter 4

The Sound Viewer Tool

This chapter covers two main areas. The first is an overview of the original Sound Viewer
application and how it has been used. The second is the design and implementation of
an extension to the Sound Viewer, which will allow the creation and traversal of links
to and from streaming audio. A brief discussion of how this new tool can be used is

also given.

4.1 The original Sound Viewer Tool

4.1.1 An Overview

The Sound Viewer tool was developed by Stuart Goose at the University of Southamp-
ton, to provide “a generic and meaningful visual representation of audio within a hy-
permedia context”. A paper by Goose and Hall [32] describes the development of the
Sound Viewer tool and discusses some of the unique properties of the audio domain,
which is described in more detail in Section 2.2.

This paper discusses how audio has helped in many applications; for example audio
confirmation of particular types of action possibly reduces the number of errors and
non-speech sounds have been successfully used in the navigation of a screen interface for
blind users. The human voice, however, is the main medium in which we communicate
with each other and so it is natural to assume that it would form an integral part of
multimedia and hypermedia systems. As shown in Sections 2.3, 2.4 and 2.6 most

systems support a variety of media such as text, animations, video and pictures. Audio

41

CHAPTER 4. THE SOUND VIEWER TOOL 42

is supported but with many systems it is just associated with a particular event e.g. a
button being clicked upon, the system shutting down etc.

The main reason why audio has not attracted as much attention as other media is
due to its lack of visual identity. Visual media such as text, pictures and videos all have
specific graphical applications to create and modify them e.g. word processors, graphics
programs etc. With the Sound Viewer a suitable graphical metaphor for sound had to

be found and so existing methods were reviewed. They are:

1. The Scrollbar method. This uses a graphical scrollbar, to represent the length of
an audio file. By moving the position indicator, the user can seek to a different
position in the file. Microsoft’s Media Player and the simple AudioLinker tool,

see Section 2.7, use the scrollbar approach.

2. The Waveform method. Several samples of the audio file are taken at a given rate
and the results are then drawn, forming a waveform, onto the screen. This seems
to be one of the most popular ways of representing sound. Microsoft’s Sound

Recorder uses this method.

3. The Piano Roll. This displays a single octave of a piano keyboard, drawn vertically,
on the left hand side of the display. A single line representing the “play” head
scrolls from left to right, at regular time intervals, over markers representing a key
depression. This method is most commonly used in programs that manipulate

Musical Instrument Digital Interface (MIDI) files e.g. Cakewalk’s Pro Audio.

4. The Manuscript / “Score” method. This represents audio using a musical score,
e.g. five horizontal parallel lines (the stave) represent pitch and musical notes

drawn on this stave produce the music. Again this is used with MIDI files.

5. No visualisation (Sound engineers). The majority of sound editing by studio
engineers is performed manually without any visual tools. The equipment used
provides fine control over the start and stop positions within the audio recording
and playback facilities for further refinements of these positions. Time and position

indicators are used for noting and re-locating specific sequences.

Different sound formats have different ways in which they can be rendered on a display.

For example MIDI can be expressed well using the manuscript and piano roll method,

CHAPTER 4. THE SOUND VIEWER TOOL 43

whilst it can not be displayed using waveforms. Also MIDI can not be used for speech.
Microsoft’s proprietary WAV format is usually displayed using waveforms and can be
used for both music and speech. However, the waveform itself is of little use to the
average user who can not relate the sound to its corresponding waveform. The scrollbar
method is really just a means to move within the audio file itself and therefore, it can
be used for all of the sound formats e.g. WAV, CD-Audio, MIDI etc.

Each of these methods have their own advantages and disadvantages and the Sound
Viewer tool was designed to represent WAV, MIDI and CD-Audio in an uniform way. It
would be very confusing if the tool displayed a waveform for a WAV file and something
completely different for a MIDI file. Therefore it was decided that more priority would
be given to the visual authoring of the anchors, rather than how the audio was displayed.
Goose and Hall [32] describe several other objectives required for the manipulation of

audio by a hypermedia author / user and they are:
e To have full control over the audio device.
e To discern the current position and duration of the sound sequence.

e To have the ability to select a portion of the sequence, playback and refine that

selection in preparation for creating an anchor.
e To identify any links present in the sequence.
e To traverse links to and from the sequence in an intuitive manner.

The host hypermedia system that manages the link information created to and from
the Sound Viewer, is called Microcosm. This “open” system is discussed in more detail

in Section 2.6.3.

4.1.2 The Interface

The user interface of the Sound Viewer consists of several components and these are the
audio controls, the windows that represent the audio and are used to view the links, two
position counters and two selection indicators. Each of these components are shown in
Fig. 4.1.

The audio controls are similar to the ones used with cassette decks and compact disc

machines and consist of buttons with the labels “Play”, “Pause” and “Repeat”. There

CHAPTER 4. THE SOUND VIEWER TOOL 44

E?.Suund"'f'iew - SINEW01.50U

File Unitz Action Controlz Help

Audio Sequence

e T —

— Poszition Counters Selection——— Audio Sequence Controls

Elapsed - 0:03 Start “:““H: Play | Pause | Repeat |
Duration : 0:34 Stop ﬂﬂ“HZ Memory In | Memory Out |

Figure 4.1: The Sound Viewer Interface.

are also two extra buttons; the “Memory In” which stores the current position / time
within the file and the “Memory Out” button which, if pressed, displays a list box of all
the stored positions. The user can double-click on any of these, to move to that position
in the file.

The Sound Viewer has two white windows which span the width of the main applica-
tion window. The larger of the two windows is called the detail window and the smaller,
the overview window. The overview window represents the length of the audio file and
within this window is a highlighted rectangle, which represents the exploded view seen
in the detail window above. Users can change the width of this rectangle, so that the
smaller the rectangle the higher the zoom factor and vice versa. The middle of this
rectangle is represented in the detail window as a thin vertical line.

When an audio file is played, the highlighted rectangle moves from left to right, which
gives a visual clue to the current position in the audio sequence. The vertical line also
moves to the middle of the detail window and when the end of the audio sample has
been reached, it will scroll off to the right. If the highlighted rectangle passes over
any links, the links scroll horizontally across the detail window as well. The links are

displayed in the overview window as horizontal lines and in the detail window as shaded

CHAPTER 4. THE SOUND VIEWER TOOL 45

rectangles with simple text descriptions of the link. The overview window is really just
an enhanced scrollbar and by moving the rectangle or the position indicator the user
can seek to a position within the file.

There are two position counters and two selection indicators underneath these win-
dows. The two counters represent the duration of the file and the elapsed time since the
start of the track. The indicators are used to select a portion of the sound file which is
conventionally highlighted in black. This selection can then be used to create an anchor.

When the Sound Viewer is executed, outside of the Microcosm environment, all of
the components mentioned above are shown, apart from the detail window. This is
displayed when an audio file is loaded. The position counters and selection indicators
are all set to zero and the audio sequence controls are dimmed, since they can not be
used at this stage. To load an audio file, the Sound Viewer uses a project file which
has a “.SOU” extension. This file contains the type of audio format e.g. MIDI, WAV
etc., the audio sample’s filename, the start and stop time of the sample and a simple
description of the file. There is also an option to automatically play the file when it
is loaded. After a project file has been parsed and the audio file has been loaded, the
detail window is shown and the position counters are updated. The audio sequence
controls are also updated e.g. the “Play” button is undimmed so that the file can be
played.

Within the Microcosm environment, the application is usually executed when the user
follows a link to a “.SOU” file or when the user explicitly uses Microcosm to open an
“.S0U” file. In both cases the Sound Viewer automatically loads the project file.

To create and traverse links to and from the Sound Viewer tool, the Microcosm system

which manages all of this link information, must be running in the background. With

this system running, a user must follow several steps to create a link and these are:

1. Using the selection indicators, a user selects a portion of an audio file to be the

start point of a link.

2. The user selects the “Start Link” option from the “Action” menu. This starts the

creation of a link and a “Start Link” dialog box is displayed.

3. The user then selects “End Link” from the “Action” menu of a Microcosm-aware

application or Microcosm’s own universal viewer. This ends the link and the “End

CHAPTER 4. THE SOUND VIEWER TOOL 46

Link” dialog box is displayed.

7 button, in either of the two dialog

4. The user then clicks on the “Complete...
boxes. This brings up the “Linker” window which allows the user to type in a
brief text description of the link and choose the type of link to be created. At the
moment the Sound Viewer only supports specific links (from one point to another)

because intensive sound processing would be required for the generation of generic

or local links.

5. By clicking on the “Ok” button, in the “Linker” window, the link is forged and a
message is sent by Microcosm to the Sound Viewer to show the link information in
its windows, e.g. a horizontal line in the overview window and a shaded rectangle,

with the text description of the link, in the detail window.

To follow / traverse a link, from the Sound Viewer, a user can either double-click on
the shaded rectangle (the link) in the detail window or press the “play” button. By
pressing this button, the highlighted rectangle in the overview window will move from
left to right, which will cause the shaded rectangles (the links) in the detail window to
do the same. As these links pass under the vertical line, in the detail window, they are
automatically traversed. This is shown in Fig. 4.3. In this picture an audio file is being
played and it contains two links; one to a window containing a picture and the other
to a text window. These links are immediately followed as the vertical line passes over

them.

4.1.3 The Implementation

The original Sound Viewer was implemented using Microsoft’s Visual C++ for Windows
v1.52. The graphical interface to the viewer was created using one of the components
of this application; the Resource Editor. This editor allows the user to create dialog
boxes, icons, fonts, menus and other resources, which can then be used in the main
application. For the Sound Viewer, this editor was used to create a dialog box with a
menu, two text boxes for the counters, two list boxes for the selection indicators and
five buttons for the audio controls. The detail and overview window were created using
specific functions in the Visual C++ language. The dialog box was then used as the
graphical user interface (GUI) to the program, see Fig. 4.1.

CHAPTER 4. THE SOUND VIEWER TOOL 47

Goose and Hall [32] describe in their paper how the Sound Viewer tool was divided
into a number of modules. For example one of the modules would handle the graphics,
whilst another would handle the audio (see Figure 6 in [32]). This helped to reduce the
complexity of the programming task.

This paper also describes how the audio module consists of two layers. The first layer
is a suite of audio device independent functions, that separate the user from the lower
layer audio device controls. The second layer consists of a suite of functions for each of
the audio formats supported by the Sound Viewer. These are specific audio functions
that are called by the first layer and rely heavily on Microsoft’s Media Control Interface
(MCI). MCI provides several functions that allow users to control different types of
media, e.g. opening, playing, stopping and closing a WAV audio or AVI video file.

A simple visual representation of these two layers is shown in Fig. 4.2. Each of
the “?” in this diagram can be replaced with a specific audio control command, e.g.
“Open”, “Close”, “Play”, “Stop” etc. Therefore if a user clicks on the “Play” button,
the “PlayAudioDevice” function is called. This function will then call “GetAudioDe-
viceType”, which will return the format of the audio file. If the file is a WAV file, the
“PlayWAV” function is called, which in turn calls the relevant MCI function.

The modular design of the Sound Viewer and the creation of an abstract layer, be-
tween the user interface and the audio controls (MCT), ensures that any new and emerg-

ing audio formats can be easily supported.

4.1.4 The original Sound Viewer case study

To test the original Sound Viewer tool, a simple demonstration had to be developed.
It was decided that certain items from the Churchill archives, stored at the University
of Southampton, could be used. The archives contain several movie clips and text
transcripts of Winston Churchill’s Sinews of Peace speech at Westminster College. For
the demonstration it was decided that the audio from the movie clips would be used, in
conjunction with pictures and the text transcript of the speech.

To create the demonstration, links were created between the relevant pieces of the
media, e.g. between the text transcript and the relevant portion of the audio sample,
between the audio and JPEG pictures etc. These links were created using Microcosm,

see Sections 2.6.3 and 4.1.2.

CHAPTER 4. THE SOUND VIEWER TOOL 48

,,,,,,,, Audio Device
| I ndependent Functions :

?AudioDevice

GetAudioDeviceType()

77777 IsCD? IsMIDI? s Wav?
?CD ?MIDI ?WAV
e Specific Audio

Functions

Figure 4.2: The Audio Device Layers.

Once the links had been created between each of the media objects, the demonstration
could then be used. A user could bring up the text transcript of the speech and click on
a highlighted link. This would cause the Sound Viewer tool to be displayed and the user
could then play the audio sample. Fig. 4.3 shows a small sample of a demonstration.

In this screen-shot, the Sound Viewer tool has been activated. Within the viewer’s
detail window there are two links (represented as two rectangles). When the user presses
the “Play” button, the audio sample is played and the highlighted rectangle in the
overview window moves from left to right. This causes the links to move and pass under
the thin black line in the detail window above. As the links pass under this line they are
automatically followed and in the diagram, Fig. 4.3, one of the links displays a picture

of Winston Churchill and the other, the text transcript of his speech.

CHAPTER 4. THE SOUND VIEWER TOOL 49

F_::__:Sound\fiew - SINEWD1.50U =)]
File Unitz Action Contral: Help

Audio Sequence

FA church.... M=l B
File Edit

Action Optiong

— Position Counters Selection Audio Sequence Controls
Elapsed : 0-04 Start 0:00= Flay | Pause | Bepeat |
Duration : 0:34 Stop 0:34 1= Memary In | Memory Out |
SinewsS - Imported on 10/09/97 =] 3

Fil= Edit Action Optiohs Help

#] ol 2] 5| 2]

complimented that you should give me a degree. The name -]

"Westminster” iz somehow familiar to me. I seem to have heard of it L

before. Indeed, it was at Westminster that I received a very large part R T P
efLondon

of my education in polities, dialectic, thetoric, and one or two other
things. In fact we have both been educated at the same, or similar, or,
at any rate, kindred establishments.

100% [MoSel %

It is alzo an honour, perhaps almost unique, for a private visitor
to be introduced to an academic audience by the President of the
United States. Amid his heavy burdens, duties and respongibilities --

= 226 i

Figure 4.3: The original Sound Viewer demonstration.

4.2 The streaming Sound Viewer

4.2.1 An Overview

Over the last few years the World Wide Web, see Section 2.4, has steadily grown
from being a simple hypertext system to a more sophisticated hypermedia system, that
supports moving pictures, audio and video. Traditionally when a user clicks on a link
to a page that contains a sound and / or a video sequence, the user had to wait until
the entire media file had been downloaded, before it could be played. If the network
connection was slow and / or the file was very large, this could take a considerable

amount of time. Therefore software and hardware manufacturers started to develop

CHAPTER 4. THE SOUND VIEWER TOOL 50

protocols that could stream the media over the networks. These are discussed in more
detail in Chapter 3.

If a user clicks on a link to a streaming audio file, a request is sent to a streaming audio
server which splits the appropriate file into smaller packets. These packets are then sent
to the client (user’s computer) using the new protocols. A client-side streaming media
application then buffers the incoming packets until a certain amount has been received.
It can then play the contents of the buffer. If the network connection is good, there is
no perceivable delay in the delivery of the data. Otherwise there is a slight delay as the
application waits for the packets.

The Soundviewer tool was developed as a hypermedia application to visually create
and traverse links to and from the audio domain. Audio files can be loaded into this
tool and then the Microcosm link creation mechanism can be used to create the links.
These audio files, however, can be quite large e.g. 31.5 seconds of stereo sound can
generate a 347.7 kilobyte WAV file. Audio and video sequences, which contain far more
information, can consume copious amounts of hard disk space. With the streaming audio
techniques mentioned previously in this section, it is possible to store this information
on a separate streaming media server. Users can then access the audio by using a
streaming media protocol, which would save valuable amounts of disk space.

To implement this concept, the functionality of the Soundviewer was extended so that
streaming audio could be supported. This was achieved by changing the tool from a
simple application to a streaming audio client, that could communicate with the media
server. Several protocols exist that provide suitable methods for a media server to
communicate with a client and vice-versa. Chapter 3 discusses two of these protocols
and they are the Real-time Transport Protocol (RTP) and the Real Time Streaming
Protocol (RTSP). RTP is an internet standard whilst RTSP is a proposed internet
standard. Before it can become a standard, however, it has to go through several
refinements and at least two basic implementations of the client and the server have to
be written. This is a requirement of the Internet Engineering Task Force (IETF), which
is a part of the internet standards committee. The RTSP drafts and implementations are
publicly available and allow prospective users to comment on any area of the protocol.
This ensures that the protocol remains an “open” standard.

Since RTSP provides most of the functionality required to create a streaming version

CHAPTER 4. THE SOUND VIEWER TOOL o1

of the Sound Viewer and an initial implementation of the protocol is already available
for public use, it was decided that this protocol would be used with the Sound Viewer.
The following sections describe the design and implementation of this streaming audio

tool.

4.2.2 The Design

As described in the previous section, Section 4.2.1, IETF requires at least two imple-
mentations of a proposed internet standard before it can become an actual standard.
As a result the developers of RTSP, see Section 3.3, have created a simple client and
a server, that will stream WAV audio files over the internet. This code is available for
Microsoft Windows (both 95 and NT) and UNIX machines. By combining a modified
version of this client with the original Sound Viewer, a streaming Sound Viewer client
was created. The RTSP server, however, was not modified since its functionality does
not need to be changed.

To integrate the RTSP client into the Sound Viewer, the viewer’s audio module was
extended. The audio module consists of two layers, see Section 4.1.3; an abstract
audio device independent layer and a suite of lower-layer functions for each of the
supported audio formats. For RTSP, a new set of these functions were created. A small
modification was also made to the abstract layer so that it could detect a new audio
device type, e.g. RTSP. A simple diagram showing how RTSP is integrated into these
layers is shown in Fig. 4.4.

Each of the “?” in this diagram can be replaced with a specific audio control com-
mand, such as “Open”, “Play”, “Stop” etc. If RTSP is the audio format being used
and the user clicks on the “Play” button, the “PlayRTSP” function will be called.

One of the fundamental design decisions, for the streaming Sound Viewer, was that
the interface would look exactly the same as the original tool. As far as the end user is
concerned the viewer looks the same and can be used in exactly the same way. A few
changes were made to the project file, which is described in Section 4.1.2, but apart
from this, however, all of the underlying network connections to the RTSP server and
the actual delivery of the audio data will be transparent. For example a fast network
connection gave the impression that the sample being streamed from the server was

actually on the local machine. Network congestion, however, can cause the viewer to

CHAPTER 4. THE SOUND VIEWER TOOL 52

e Audio Device o
I ndependent Functions 3

?AudioDevice

GetAudioDeviceType()

IsCD? IsMIDI? IsWav? ISRTSP?
2CD 2MIDI 2WAV 2RTSP
S Specific Audio
Functions

Figure 4.4: The Audio Device Layers with RTSP.

pause playback until enough data had been received.

With the original Sound Viewer, a project file is used to store information about the
audio sample, e.g. the filename, start and stop times etc. This file is then loaded into
the tool. The contents of this file for the streaming version of the viewer, however, had

to be changed. For example:

e A new audio format type would need to be supported, e.g. RTSP. The original
viewer only recognised three types of audio in the project file: CD, MIDI and
WAV.

e The location of the audio file would have to be changed from a local path to an

RTSP URL. This URL would be used to locate the media server.

e The start and stop times of the audio sample would have to be removed because
the file is stored on a separate media server. The length of the file would only be

known when this information is retrieved from the server.

When this new project file is loaded into the streaming viewer, the URL (which includes

the filename of the audio sample on the server) is read in and a connection is then formed

CHAPTER 4. THE SOUND VIEWER TOOL 53

between the viewer and the media server. At this stage the Sound Viewer has effectively
become an RTSP client. Fig. 4.5 shows the interaction between the streaming Sound
Viewer and the media server, when the viewer requests a connection to be formed.

The connection that is formed between the viewer and the server is called the control
channel. The type of channel used will depend on the RT'SP URL, see Section 3.3. The
viewer uses this channel to send commands to the server. Initially a “get” command is
sent, with the filename of the audio sample, to the server. Figures 4.6 and 4.7 show
the interaction between the viewer and the server, when the RTSP “get” command is
issued.

The media server processes this command and returns information about that audio
file, e.g. the file length in bytes, the duration in milliseconds etc., to the viewer. This
information is used to update the duration counter and initialise certain components
within the Sound Viewer tool.

When the “Play” button is pressed in the viewer, the “p” command is sent to the
server. This command can also contain a range to play, which is described in more detail
in the RTSP standards track, see [36]. The server will process this command, divide the
audio sample into packets and then stream these to the viewer. The delivery mechanism
for this audio data is separate from the control channel and it might be reliable or
unreliable!, e.g. TCP or UDP respectively. The developers initial implementation of
the RT'SP server uses UDP and therefore, there is no guarantee that the packets will be
delivered to the viewer. Fig. 4.8 shows the interaction between the streaming Sound
Viewer and the media server, when the play command is sent to the server.

With the original Sound Viewer two events occur when the audio file is played and

they are:

1. The highlighted rectangle in the overview window moves from left to right. This

graphically represents the current position in the audio file.

2. The “Elapsed” position counter also changes to display the current position. This
is usually in milliseconds or minutes and seconds, depending on the user’s prefer-

ences.

Both of these components use a Media Control Interface (MCI) function to obtain this

! This is usually implementation specific.

CHAPTER 4. THE SOUND VIEWER TOOL 54

position. MCI, however, will only work with files stored on the local machine. With
the streaming Sound Viewer, the audio sample is stored on a media server which is
another machine connected to the internet. Therefore this function can not be used
with the streaming viewer. To overcome this problem a virtual time unit (VIU) was
created. This calculates the current position within the file, based on the number of
packets received from the RTSP server, the length of the file in bytes and the duration
of the file in milliseconds. The VTU was then used to move the highlighted rectangle
and change the “Elapsed” position counter.

As mentioned previously, MCI can only be used with media files stored on the local
machine. Therefore MCI will not work with RTSP, since the audio files are stored on
other machines (media servers). The developers of the RT'SP client, however, overcame
this problem by using Microsoft’s lower-level audio specific functions. These functions
were incorporated into the lower-layer of the Sound Viewer’s audio module. There was
no need to modify the MCI controls for the other supported audio formats, since their

functionality has not changed.

4.2.3 The Implementation and case study

The main problem that was encountered, in the implementation of the streaming Sound
Viewer tool, was that the original viewer was designed for a 16 bit open hypermedia sys-
tem (Microcosm), see Sections 2.6.3 and 4.1.1. Therefore the original Sound Viewer
code had to be compiled using a 16 bit compiler, e.g. Microsoft Visual C++ for Windows
1.52. Both the RTSP client and server, however, were designed to be 32 bit applications;
requiring a 32 bit compiler, for example Microsoft Visual C++ v4 for Windows 95 or
NT. As a result, the streaming viewer could not be created by simply “inserting” the
relevant RTSP client code into the original Sound Viewer code. The resulting program
would contain 16 and 32 bit code, which would not compile.

To overcome this problem, the RTSP client was converted into a 16 bit application.
This new code was then integrated into the original Sound Viewer code to form the
streaming viewer application. For example the functions in the RTSP client that handle
the streaming audio were inserted into the lower layer of the audio module, see Sections
4.1.3, 4.2.2 and Fig. 4.2.

Another possible solution would of been to convert the Sound Viewer into a 32 bit

CHAPTER 4. THE SOUND VIEWER TOOL 95

application. However, there is no 32 bit implementation of Microcosm and so the
functionality required to create, modify and follow links would have been lost; the
tool would have effectively become a standalone application that could play local and
streaming audio files.

Overall the process of integrating the RTSP client into the original Sound Viewer
tool was relatively straight-forward. New code had to be created to handle the virtual
time unit (VTU), see Section 4.2.2 and the interface between the RTSP client and the
Sound Viewer’s graphical user interface (GUI). This new code, to handle the interface,
was designed to ensure that all of the network connections to the RTSP server were
transparent to the user.

To test the streaming Sound Viewer, a demonstration similar to the original case
study, see Section 4.1.4, was created. Again the Churchill archives, at the University
of Southampton, were used. Links were created between the audio samples (which are
now stored on a separate media server) and the relevant pieces of the archive. This is
shown in the diagram Fig. 4.9.

In this screenshot, when the “Play” button has been pressed, a command is sent to
the media server to stream the audio to the Sound Viewer. When the Sound Viewer
receives enough information, the audio is played and the virtual time unit is updated.
As the VTU is updated, the highlighted rectangle in the overview window moves from
left to right, which causes the links to pass under the thin black line in the detail window.

This results in the links being automatically followed.

CHAPTER 4. THE SOUND VIEWER TOOL

Client

56

Server

Open "rtsp://.."
ParseURL
server_connfect (Start TCP)
handle_event(CMD_OPEN)

SEND_HELLO REQ

HANDLE_HELLO REPLY
(DISCARD)

HANDLE_HELLO_REQ

interface_hello(...)
(initialises dialog box)

SEND_REPLY (200 if OK)

HANDLE_HELLO REQ
SEND_REPLY (200 if OK)

SEND_HELLO

HANDLE_HELLO REPLY
(DISCARD)

Figure 4.5: Client / Server interaction for the RTSP “open” function

CHAPTER 4. THE SOUND VIEWER TOOL

Client

o7

Server

get "filename"
handle_event(CMD_GET)

SEND_GET_REQ

HANDLE GET_REPLY
(handles the information
sent e.g. filesize etc.)

¢

set_stream_settings(...)

SEND_SETUP_REQ
(Creates a UDP stream)

HANDLE_GET_REQ
(check that "filename" exists)

Setup_stream(...)
(read in information
about thefile)

/

SEND_GET_REPLY
(Containsfile size, samples
per sec, bits per sec etc.)

HANDLE_GET_REPLY

Figure 4.6: Client / Server interaction for the RTSP “get” function

CHAPTER 4. THE SOUND VIEWER TOOL

Client Server

o8

/

HANDLE_SETUP_REQ
(sets up the UDP/ RTP port)

SEND_SETUP_REPLY

/

SEND_REPLY (200 if OK)

HANDLE_SETUP_REPLY

¢

interface_new_session(...)
(enablesthe ‘play’ and ‘ pause’
buttons on the dialog box)

Figure 4.7: Client / Server interaction for the RTSP “get” function (cont’d)

CHAPTER 4. THE SOUND VIEWER TOOL

Client Server

99

(‘Play’ button pressed)
handle_event(CMD_PLAY)

SEND_PLAY_RANGE_REQ

add_play_range(...)
(if thereisarange)

OR

end_of_streams(...)
(start from the beginning)

HANDLE_PLAY_REQ
(check for errors)

/

start_stream(...)

(if thereisaplay range, seek to
the start position and prepare the
UDP socket for transmission)

/

stream_event(...)
(stream the file over UDP)

/

SEND_PLAY_REPLY

HANDLE_PLAY_REPLY

¢

interface_start_play(...)
(initialises the ‘play’ dialog
box)

Figure 4.8: Client / Server interaction for the RT'SP “play” function

CHAPTER 4. THE SOUND VIEWER TOOL 60

E;:Slreaming from server “ratbert™ - session id: 0
File Unitz Action Controlz Help

Audio Sequence

| —

— Position Counters Selection ————— Audio Sequence Controls
Elapsed : 0-02 Start 0:00f= Play | Pauze I Bepeat I
Duration : 0:34 Stop 0:34= Memory In | Memory Out |

2 church3 : Imported on 10/09/97 O] x| 70 churchl - [H[=] B3
File Edit Action Options Help File Edit Action
Optiohz Help

Wllﬁ" '?.E.'Ifr‘ﬁ'_‘

h ¢

Churchill Spealks at
Westminster, 1946

AP N : 100% [MaSel 7/

Chruchill and Truman tour the Westminster Campus prier
to the famous "Iren Curtain” speech, 19456

100% |MaSel 4

Figure 4.9: The streaming Sound Viewer.

Chapter 5

Conclusion

This report has discussed how audio has been used in a variety of multimedia, hyper-
media and “open” hypermedia systems. With most of these systems however, audio is
used as just another part of a presentation or as a side-effect when the user clicks on a
button / link. This is not synonymous to the way sound is used in everyday situations.
Humans generally use a mixture of the five senses to interact with the outside world,
whilst the majority of the systems mentioned above use the sense of sight as the primary
means to convey information. This is mainly due to the complexity of the other senses.

The aim of this research was to develop a tool that allows users to create links to and
from streaming audio. There are several existing standards, MHEG and HyTime, that
could have been used to do this. MHEG and HyTime however, are quite complex and
have primarily been designed to help create easy-to-use client/server systems and well-
structured documents, respectively. The audio domain has been supported by earlier
versions of HyTime (SMDL), however these standards have focused specifically on the
visual domain.

Streaming audio is being used quite extensively on the World Wide Web (WWW).
On older web browsers, a user would click on an “audio” link to play an audio file.
The browser would then download the entire file to the user’s PC and then activate a
local sound tool to play the sample. This process of downloading the file could take a
considerable amount of time especially if the audio file was large and / or the network
connection was poor. Streaming the audio can take considerably less time because

the file does not have to be downloaded first. The WWW however, is known as a

61

CHAPTER 5. CONCLUSION 62

“closed” hypermedia system because all of the link information is embedded within the
documents. Also, there are no mechanisms within the HyperText Markup Language
(HTML), the language used to markup documents for the WWW, to create links from
within an audio file or stream.

Multimedia authoring tools and the WWW can be used to create links to audio. These

systems however, can not create links from within an audio file or stream. Therefore
to overcome this problem existing hypermedia systems were examined. Originally these
systems only allowed the creation of links to and from text. Over time, as technology
improved, new systems were developed that could support different types of media as
well as text. These systems however, used proprietary document formats with embed-
ded links, which made them very difficult to extend for different media types. At this
time, these systems had limited support for audio.
In 1987 researchers realised that they needed to develop more “open” systems, which
could share data and store link information separately from the actual content. Several
“open” hypermedia systems have been developed and they include Intermedia, Micro-
cosm and Hyper-G. The majority of these systems have, again, used the sense of sight
as the primary means to convey information.

In 1994, however, an audio tool was developed for the Microcosm system. It is called

the SoundViewer tool and it allows users to easily create links, from within an audio
file, to different types of media. Microcosm also allows the creation of links to this tool
and hence the audio, as well. The SoundViewer, however, only allows users to load files
that are stored on the local machine. To create links to and from streaming audio, the
tool had to be changed to a streaming audio client, so that it could communicate with
a streaming audio server.
To create this new streaming SoundViewer client, the functionality of the tool had to be
enhanced using a new streaming protocol; the Real Time Streaming Protocol (RTSP).
RTSP has just recently become a proposed standard and it is described as being a
“network remote control”, e.g. it allows users to play, pause, stop or move to any
position within the audio stream. This protocol is used by the tool to communicate
with the server and buffer any incoming audio streams. The streaming SoundViewer
can still be used with local audio files.

To conclude, the sense of sight has always been regarded as the primary means to

CHAPTER 5. CONCLUSION 63

convey information, for normally sighted people. As a result the other senses have not
really been used; although this is slowly changing as technology improves. This report
has shown that it is possible to use the audio domain and recent developments in audio

technology, in ways that have traditionally been used for the visual domain.

5.1 Future Work

This section describes several further areas of research and it also gives a brief outline
of the schedule required to cover the main aspects of this work. Several areas are going

to be investigated and they are:

1. Content Based Navigation (CBN) using speech recognition software and RTSP as

the delivery mechanism.

2. The next generation of internet protocol, IPv6. The current protocol (IPv4) was
not originally designed to handle streaming media. IPv6 however, has several new

mechanisms that can handle this type of media.

3. Distributed linkbases. The Microcosm system stores link information in linkbases
on the local machine. The streaming SoundViewer could be enhanced if dis-
tributed linkbases were also supported; possibly by using the Distributed Link
Server (DLS).

The schedule for this work is given below.
e March - April

- Research into speech recognition software and the speech APT’s.

- Investigation into how the streaming audio can be fed into a speech recogni-

tion engine.
- Familiarization of speech software development kits (SDKs).
e May - July

- Research into the IPv6 “flow” control mechanism and incorporate IPv6 into

the RTSP code.

- General RTSP improvements.

CHAPTER 5. CONCLUSION

- Incorporating RTSP into the DLS.

- Testing and evaluation.
e August - October

- Design of speech recognition tool to be used with RTSP and the DLS.

- Testing and evaluation.
e November - December

- Write up of the thesis.

64

Bibliography

[1]

A. Dix, J. Finlay, G. Abowd and R. Beale, Human-Computer Interaction. Prentice
Hall Europe, 2nd ed., 1998.

Brian C. J. Moore, An Introduction to the Psychology of Hearing. Academic Press,
4th ed., 1997.

P. Georghiades and G. Jacobs, “Mixed Media,” Personal Computer World, vol. 20,
pp- 225-242, November 1997.

T. J. Berners-Lee, R. Cailliau, J. F. Groff and B. Pollerman, “World Wide Web: An
Information Infrastructure for High-Energy Physics,” in Proceedings of the Work-
shop on Software Engineering, Artificial Intelligence and Expert Systems for High
Energy and Nuclear Physics, (La Londe-les-Maures, France), CERN, World Scien-
tific, January 1992.

Arturo A. Rodriguez, Martin Fisher and Brian Markey, “Scripting Languages
Emerge in Standards Bodies,” IEEE Multimedia, pp. 88-92, Winter 1995.

Thomas Meyer-Boudnik and Wolfgang Effelsberg, “MHEG Explained,” IEEE Mul-
timedia, pp. 26-38, Spring 1995.

Lloyd Rutledge, John Buford and Roger Price, “Mobile Objects and the Hyoc-
tane Distributed Hyperdocument Server,” Computers & Graphics, vol. 20, no. 5,
pp- 633-639, 1996.

Robert Joseph, PhD and Jorgen Rosengren, MSc, “MHEG-5: An Overview,”
http://www.fokus.gmd.de/ovma/mug/archives/documents/mheg-reader/. . .
rd1206.html, December 1995.

65

BIBLIOGRAPHY 66

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

Lars Geyer, Michael Baentsch, Lothar Baum, Georg Molter, Steffen Rothkugel,
Peter Sturm, “MHEG in Java - Integrating a Multimedia Standard into the Web,”
http://thunder.informatik.uni-kl.de:8080/MHEG5Engine/, 1996.

L. A. Carr, D. W. Barron, H. C. Davis and W. Hall, “Why use HyTime?,” FElec-
tronic Publishing, vol. 7, pp. 163-178, September 1994.

An ArborText Inc. SGML White Paper, “SGML: Getting Started,” tech. rep.,
ArborText, Inc., http://www.arbortext.com/wp.html, (©)1992, 1995.

Stephen R. Mounce, “A Brief Discussion of the Standard Music Description Lan-
guage,” http://www.techno.com/SMDL.html, 1990.

Anton Eliens, Martijn Van Welie, Jacco van Ossenbruggen and Bastiaan Schonhage,
“Jamming (on) the Web,” in The 6" International WWW Conference Proceedings,
(Santa Clara, California, USA), W3C, April 1997.

Steven R. Newcomb, Neill A. Kipp and Victoria T. Newcomb, “The “HyTime”
Hypermedia / Time-based Document Structuring Language,” Communications of

the ACM, vol. 34, pp. 67-83, November 1991.

Steven R. Newcomb, “Multimedia Interchange Using SGML / HyTime (Part 1:
Structures),” IEEE Multimedia, pp. 86-89, Summer 1995.

Steven R. Newcomb, “Multimedia Interchange Using SGML / HyTime (Part 2:
Principles and Applications),” IEEE Multimedia, pp. 60-64, Fall 1995.

J. Conklin, “Hypertext: An Introduction and Survey,” IEEE Computer, vol. 1(9),
pp- 17-40, September 1987.

V. Bush, “As we may think,” in Atlantic Monthly, pp. 101-108, July 1945.

D. C. Engelbart and W. K. English, “A Research Center for Augmenting Human
Intellect,” AFIPS Conference Proceedings, vol. 33, no. 1, 1968.

T. H. Nelson, “Literary Machines,” Mindfull Press, 1987.

F. G. Halasz, “Reflections on NoteCards: Seven issues for the next generation of
Hypermedia Systems,” Communications of the ACM, vol. 31, pp. 836-852, July
1988.

BIBLIOGRAPHY 67

[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

R. M. Akscyn, D. L. McCracken and E. A. Yoder, “KMS: A distributed hypermedia
system for managing knowledge in organisations,” Communications of the ACM,

vol. 31, pp. 820-835, July 1988.

N. Yankelovich, B. J. Haan, N. K. Meyrowitz and S. M. Drucker, “Intermedia:
The Concept and the Construction of a Seamless Information Environment,” IEEE

Computer, vol. 1, pp. 81-96, January 1988.

Stuart Goose, A Framework for Distributed Open Hypermedia. PhD thesis, Uni-
versity of Southampton, Faculty of Engineering and Applied Science, Department

of Electronics and Computer Science, June 1997.

Nechemia Daniel Beitner, Microcosm++: the development of a loosely coupled ob-
ject based architecture for open hypermedia systems. PhD thesis, University of
Southampton, Faculty of Engineering and Applied Science, Department of Elec-

tronics and Computer Science, September 1995.

Frank Halasz and Mayer Schwartz, “The Dexter Hypertext Reference Model,”
Communications of the ACM, vol. 37, pp. 30-39, February 1994.

K. C. Malcolm, S. E. Poltrock and D. Schuler, “Industrial Strength Hypermedia:
The Requirements for a Large Engineering Enterprise,” in Proceedings of the ACM
Hypertext '91 Conference, (San Antonio, Texas, USA), pp. 13-25, December 1991.

A. M. Fountain, W. Hall, I. Heath and H. C. Davis, “MICROCOSM: An Open
Model for Hypermedia with Dynamic Linking,” in Hypertext: Concepts, Systems
and Applications, INRIA, Cambridge University Press, November 1990.

H. C. Davis, W. Hall, I. Heath, G. J. Hill and R. J. Wilkins, “Towards an Inte-
grated Environment with Open Hypermedia Systems,” in Proceedings of the ACM
Conference on Hypertext, (Milan, Italy), pp. 181-190, ACM, December 1992.

W. Hall, I. Heath, G. J. Hill, H. C. Davis and R. J. Wilkins, “The Design and
Implementation of an Open Hypermedia System,” Computer Science Technical Re-
port 92-19, University of Southampton, Department of Electronics and Computer

Science, UK, 1992.

BIBLIOGRAPHY 68

31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Wendy Hall, “Ending the Tyranny of the Button,” IEEE Multimedia, vol. 1, pp. 60—
68, Spring 1994.

Stuart Goose and Wendy Hall, “The Development of a Sound Viewer for an Open
Hypermedia System,” in The New Review of Hypermedia and Multimedia, vol. 1,
pp- 213-231, 1995.

Paul H. Lewis, Hugh C. Davis, Steve R. Griffiths, Wendy Hall and Rob J. Wilkins,
“Media-based Navigation with Generic Links,” in Hypertext ’96, (Washington DC,
USA), pp. 215-223, 16!"-20"" March 1996.

Fred Halsall, Data Communications, Computer Networks and Open Systems. Ad-
dison Wesley, 3rd ed., 1992.

Audio-Video Transport Working Group, H. Schulzrinne, S. Casner, R. Fred-
erick, V. Jacobson, “RTP: A Transport Protocol for Real-Time Applications
(RFC: 1889),” tech. rep., Network Working Group, http://src.doc.ic.ac.uk/-
packages/rfc/rfc1889.txt, January 1996.

H. Schulzrinne, A. Rao and R. Lanphier, “The Real Time Streaming Proto-
col (RFC 2326),” tech. rep., Internet Engineering Task Force (IETF), http://-
src.doc.ic.ac.uk/packages/rfc/rfc2326.txt, April 1998.

Tim Dierks and Christopher Allen, “The TLS Protocol Version 1.0,” tech. rep.,
Internet Engineering Task Force (IETF), ftp://ftp.nordu.net/internet-drafts/draft-
ietf-tls-protocol-05.txt, November 1997.

R. Fielding, UC. Irvine, J. Gettys, J. Mogul, DEC, H. Frystyk, T. Berners-Lee,
MIT/LCS, “The Hypertext Transfer Protocol - HTTP/1.1 (RFC:2068),” tech. rep.,
Network Working Group, http://www.w3.org/Protocols/rfc2068 /rfc2068, January
1997.

Skip Pizzi and Steve Church, “Audio Webcasting Demystified,” Web Techniques,
pp- 5560, August 1997.

S. Bugaj, D. Bulterman, L.. Hardman, J. Jansen, R. Lanphier, N. Layaida, J. Marsh,
A. Rao, W. ten Kate, J. van Ossenbruggen, M. Vernick and J. Yu, “Synchronized

BIBLIOGRAPHY 69

Multimedia Integration Language,” tech. rep., The World Wide Web Consortium,
http://www.w3c.org/TR/WD-smil, November 1997.

