
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

Contents

1 Introduction 4

2 Background 6

2.1 Introduction: The Five Senses . 6

2.2 The Audio Domain . 8

2.3 Multimedia Authoring Tools . 9

2.3.1 The Timeline authoring method 9

2.3.2 The Flowchart authoring method 10

2.3.3 The \Book" Metaphor . 12

2.4 The World Wide Web (WWW) . 13

2.5 Existing Standards . 16

2.5.1 The Multimedia and Hypermedia Experts Group 16

2.5.2 The Hypermedia/Time-based Structuring Language 19

2.6 Hypermedia Systems . 22

2.6.1 Hypertext and Hypermedia . 22

2.6.2 \Open" Hypermedia Systems . 25

2.6.3 Hypermedia Systems and Audio 26

2.7 The Audio-Linker Tool . 29

2.7.1 The Design . 29

2.7.2 The Implementation . 30

3 Streaming Media Protocols 34

3.1 The Traditional Protocols - TCP/IP . 34

3.2 The Real-time Transport Protocol (RTP) 36

3.3 The Real Time Streaming Protocol (RTSP) 38

1

CONTENTS 2

4 The Sound Viewer Tool 41

4.1 The original Sound Viewer Tool . 41

4.1.1 An Overview . 41

4.1.2 The Interface . 43

4.1.3 The Implementation . 46

4.1.4 The original Sound Viewer case study 47

4.2 The streaming Sound Viewer . 49

4.2.1 An Overview . 49

4.2.2 The Design . 51

4.2.3 The Implementation and case study 54

5 Conclusion 61

5.1 Future Work . 63

Bibliography 65

List of Figures

2.1 A screen-shot of a presentation in Flash. 11

2.2 A screen-shot of an Authorware presentation. 12

2.3 MatchWare's Medi8or design process. 13

2.4 The Audio Linker Application . 33

4.1 The Sound Viewer Interface. 44

4.2 The Audio Device Layers. 48

4.3 The original Sound Viewer demonstration. 49

4.4 The Audio Device Layers with RTSP. 52

4.5 Client / Server interaction for the RTSP \open" function 56

4.6 Client / Server interaction for the RTSP \get" function 57

4.7 Client / Server interaction for the RTSP \get" function (cont'd) 58

4.8 Client / Server interaction for the RTSP \play" function 59

4.9 The streaming Sound Viewer. 60

3

Chapter 1

Introduction

Audio media is one of the most neglected areas in the Hypermedia / Multimedia domain.

To play sound �les in traditional hypermedia systems, for example the World Wide

Web (WWW), users click upon links (or hyperlinks) within a browser. This action

will download the sound �le to the local machine and then activate an application to

play the �le. More recently however, applications can stream the �le over the network

instead, thus reducing the overhead of having to download it �rst.

In multimedia applications such as Microsoft Encarta, users click on areas of the

screen called \hot-spots" that will cause an event to occur. This event could cause an

audio �le to be played, a picture to be displayed or it could cause some other event. In

both of these systems audio is usually just the result or side-e�ect of some action caused

by the user.

In the Hypermedia domain the information required to traverse the links is embedded

within the document using the HyperText Markup Language (HTML). In multimedia

systems the link information is stored in an internal format, which the user does not

have access to. This creates problems because only the original author of the hypertext

or multimedia document can modify, edit or create new links. Therefore because this

link information is di�cult to modify, these systems are known as \closed" systems.

The aim of this research is to investigate how audio could be used in Open Hypermedia

Systems, speci�cally how links can be used with streaming audio.

Chapter 2 introduces the audio domain and describes how audio has been used in

multimedia authoring tools, \Open" Hypermedia Systems and the World Wide Web.

4

CHAPTER 1. INTRODUCTION 5

This chapter also describes existing standards used in both the hypermedia and multi-

media communities and the development of a simple audio tool.

Chapter 3 describes the traditional internet protocols, TCP/IP and the protocol

used to transport real-time information over TCP/IP, the Real-time Transport Protocol

(RTP). A new streaming protocol, the Real Time Streaming Protocol (RTSP), is then

discussed.

Chapter 4 gives an overview of the original Soundviewer Tool and how it has been

used. The design and implementation of a streaming audio extension to this tool is also

discussed. Finally, an example scenario is outlined for the use of this new tool.

Chapter 5 assesses the work that has already been done and explores some possibil-

ities for future work.

Chapter 2

Background

This chapter describes the audio domain and how it is used in a number of systems,

speci�cally multimedia authoring tools, the World Wide Web and \Open" Hypermedia

Systems. Existing standards, such asMHEG and HyTime are discussed and the chapter

draws to a close by describing how a simple audio tool can be created using a modern

programming language e.g. Visual Basic.

2.1 Introduction: The Five Senses

Traditionally, vision has always been regarded as the primary sense for normally sighted

people. In general, however, humans interact with the outside world by receiving in-

formation through a mixture of the �ve senses1, processing this information and then

reacting or responding to it. For example, the sense of smell and sight could be used

to determine if a piece of food had gone o�. The user might react to this situation

by disposing of the food. In the development of graphical user interfaces, all of the

other senses are regarded as being less important than sight. This is mainly due to the

complexity of the other senses.

Dix et al. [1] describe how the majority of interactive computer systems are com-

pletely visual in nature, o�ering rudimentary audio support. As the complexity of these

systems increase, more and more visual information could be presented on the screen,

making it harder for the user to understand. The authors discuss how the other sensory

1Sight, hearing, touch, taste and smell.

6

CHAPTER 2. BACKGROUND 7

channels2 could be used to relieve the pressure of the visual channel and thus reduce

the information overload. By increasing the number of sensory channels, users would

be able to interact with their computers in the same way that they would interact with

their everyday environment.

Most commercial computer systems, however, provide limited support for two of the

other senses, hearing and touch. Systems that produce a haptic response (the sense of

touch) are being used by the virtual reality (VR) community and joystick manufacturers.

For example, VR users can wear a special type of glove which contains small in
atable

pockets. As the user in the VR world picks up an object, these pockets �ll with air giving

the impression that the user has actually picked up that object. Joystick manufacturers

have developed tactile feedback joysticks which have small motors that move the joystick

depending on the type of feedback required.

These interactive systems also support audio, although traditionally it is only used to

provide warnings, alarms and status information. Most modern operating systems such

as Microsoft' s Windows 95 or NT also provide support for soundcards, which can be

used to record, edit and playback audio samples. The majority of the time, however,

soundcards are used for playing games. Dix et al. [1] describe how users, when playing

a game, will score more points when the sound is turned on rather than o�. Users can

detect vital information and clues via the changes in the sound, which can be used with

the visual information to increase their scores. The authors also describe how audio and

visual information can help increase the accuracy of speech recognition systems. For

example a camera can be used to video the lip movements of the speaker. The sounds

will also be analysed. By using the video footage and the sound information, words and

phrases can be more accurately resolved.

Overall these interactive systems use the visual channel as the main medium for

transferring information. The auditory channel is rarely used, although the amount of

information that can be conveyed using audio is underestimated. The following section

describes the audio domain in more detail.

2There are two types of channel, input and output. With humans an input channel represents one of
the �ve senses, whilst an output channel represents a response, e.g. moving a leg, walking, talking etc.

CHAPTER 2. BACKGROUND 8

2.2 The Audio Domain

To understand the audio domain an overview of the human auditory system is required.

Dix et al. [1] and Moore [2] both describe how the human ear consists of three parts

and these are:

1. The Outer Ear which consists of the pinna (the visible part of the ear) and the

auditory channel. Both the pinna and the auditory channel amplify certain high

frequencies, whilst the channel itself secretes a waxy substance that prevents in-

sects and dirt from reaching the more sensitive middle ear.

2. The Middle Ear consists of a small cavity containing three of the smallest bones

in the human body, the ossicles. These connect the outer ear via the eardrum or

tympanic membrane to the cochlea in the inner ear.

3. The Inner Ear. This consists of the cochlea which has rigid bony walls and is �lled

with a special type of
uid. The cochlea also contains tiny hairs or cilia which

move when the
uid vibrates. This vibration causes small electrical impulses to

be passed up the auditory nerve to the brain.

Moore [2] describes how the process of hearing originates with the vibration of an

object. This vibration causes a pattern of changes to occur within the surrounding

medium (usually air), which results in the creation of a sound wave. This wave travels

through the air until it eventually reaches the outer ear, mentioned above. The sound

wave will then pass down the auditory channel to the ear drum, causing the drum to

vibrate. The vibrations of the ear drum are passed via the ossicles, in the middle ear,

to the cochlea. These vibrations change the pressure within the cochlea, which in turn

moves the cilia.

This process of passing the sound waves from the outer to the inner ear, ensures the

e�cient transfer of the actual sound information. Dix et al. [1] describe the di�erent

characteristics of sound, such as the pitch and amplitude. If the pitch of the sound

increases, then the frequency3 will also increase. The amplitude of the sound is propor-

tional to its loudness and therefore, an increase in the amplitude will cause an increase

in the volume of the sound.

3The human ear can hear frequencies from about 20 Hz to 15 KHz.

CHAPTER 2. BACKGROUND 9

The human ear can also identify the sound's location, since the two ears receive slightly

di�erent sounds. If a sound occurs to the left of a users head, then the left ear will

receive the sound wave �rst. It will take longer to reach the right ear due to its location

and the fact that the wave will also re
ect o� the users head.

Overall, sound can convey a remarkable amount of information. The human ear can

use this information to detect di�erent types of sounds, where they are coming from

and how far away they are. However, the sense of hearing has always been regarded as

secondary to that of sight and this can be clearly seen in the development of computer

systems. By combining this sound information with visual information, users would be

able to interact with computers in a more natural way, see Section 2.1.

2.3 Multimedia Authoring Tools

This section describes some of the most popular multimedia authoring tools that are

available today. Multimedia authoring allows users to combine text, hypertext, pictures,

animation, sound and video into a single application that can be distributed on and

over a variety of media, for example the internet, CD-ROMs,
oppy disks etc. Users

can design anything from an interactive Web site to an electronic product catalogue.

Designing a multimedia presentation, however, can take a lot of time and e�ort.

Therefore the majority of multimedia packages try and reduce this by using a range

of authoring techniques. These include the timeline and
owchart methods and the

\book" metaphor. The following sections give a brief overview of these methods and

the products that use them (a more detailed description of the products are in [3]).

2.3.1 The Timeline authoring method

The leading products in this area of authoring are developed by Macromedia and they

are called Director and Flash. In these applications a timeline consists of layers which

span over several frames. Each layer contains one or more elements (cast members),

which exist in either one frame or they can span over several. For example a simple

presentation could contain three layers; layer one could contain a picture of blue sky,

layer two could contain a picture of a beach and layer three a picture of a palm tree.

If each of the layers span 10 frames and the user presses the \play" button, then the

CHAPTER 2. BACKGROUND 10

presentation will show a picture containing all of the elements in the layers e.g. blue sky,

a beach and a palm tree. If layer one however only spans 5 frames from the beginning,

then the blue sky would only show for 5 frames and then disappear for the remaining

5. Users can also modify a cast member in each frame of a single layer which will result

in a simple animation, e.g. modifying a birds wings so that in one frame they are up

and in another they are down, giving the impression of
ight.

Both of these packages support audio. The Flash application allows users to import

audio �les directly into a layer, whereas Director uses a separate digital audio layer.

Fig. 2.1 shows a section of a simple presentation in the Flash program. A section of

the timeline that contains audio samples, the \speaker
ashes" layer, can be seen at the

top of the screen. Director has support for up to 10 digital audio channels depending

on the hardware used. Audio �les can be played in the background of a presentation or

they can be activated by several other types of event e.g. a mouse click, the transition

from one scene to another etc.

Links can not be followed from within an audio event. Audio can be placed on one

layer and at a certain time / frame an event can occur e.g. an URL �red, screen

transition, video started etc. on another layer. Everything, however, is followed when

the \play head" touches the beginning of a cast member in the timeline. So sound again

is just another element used within a presentation.

2.3.2 The Flowchart authoring method

Several products use this method and they include Macromedia's Authorware, Asym-

etrix's IconAuthor and Linotype's Dazzler. All of these applications use \drag and

drop" to pick up and place icons on the presentation page. These icons represent:

� events such as mouse clicks, key press,

� actions to be performed after an event e.g. a transition, a sound,

� routines to perform loops, conditional branches etc.

The
ow of control within the
owchart is usually from the top to the bottom. Branches

are allowed, i.e. loops, decision and interaction branches etc., and users can also insert

smaller
owcharts within the main
owchart. Clicking on each icon usually brings up

CHAPTER 2. BACKGROUND 11

Figure 2.1: A screen-shot of a presentation in Flash.

the icon's properties, which can be easily changed. A presentation is built by inserting

one object after another e.g. a simple application could contain just three icons; the

�rst could be a picture, the second a sound icon and the third a text icon. When the

presentation is started the user would see and hear all three icons together. Fig. 2.2 is

a screen-shot of Macromedia's Authoware program.

An audio icon can be inserted directly onto the author's development page. The

properties of this icon, however, are usually quite limited; it only allows the audio �le

to be located and imported. Again there is no functionality to create anchors within

the audio and, therefore, links to and from the audio.

CHAPTER 2. BACKGROUND 12

Figure 2.2: A screen-shot of an Authorware presentation.

2.3.3 The \Book" Metaphor

Asymetrix's ToolBook, Digital Workshop's Illuminatus, Scala Computer Television's

MM200 and MatchWare's Medi8or all use this method of authoring. Basically when

the application is started, the user is shown a page in which certain objects can be placed

e.g. text, pictures, buttons etc. By inserting objects into several pages, a multimedia

\book" is eventually created. The author can create transitions between pages and

on the objects themselves e.g. zoom text in and out, cause a picture to
ow onto the

page etc. Fig. 2.3 is a screen-shot of the design process used in MatchWare's Medi8or

program.

Several of the applications allow a sound object to be placed directly onto the page.

Other objects can then be inserted into the page and arranged in such away that they

will appear or do something at a certain time, during the audio playback. The audio,

however, is not directly controlling these objects and therefore it can be described as

CHAPTER 2. BACKGROUND 13

Figure 2.3: MatchWare's Medi8or design process.

being just another entity or object used within the presentation. The majority of the

time audio output is caused by an event e.g. a button being pressed, the mouse cursor

moving over a hotspot etc.

2.4 The World Wide Web (WWW)

The World Wide Web or W3 was originally designed in 1990 by Tim Berners-Lee at

CERN, the European Laboratory for Particle Physics. The aim of the project was to

provide a uniform way in which information could be shared over wide-area networks.

A paper by T. J. Berners-Lee et al. [4] describes how most of the information at CERN,

for example technical reports, data from experiments etc., was already available on-line.

However the ability to create references to this material required a reasonable knowledge

of host names, terminals, passwords and the CERN network itself. As a consequence it

CHAPTER 2. BACKGROUND 14

was very di�cult, if not impossible, to create and then \jump" to these references.

The WWW overcame these problems by de�ning three new platform-independent

and network-neutral components. These were:

1. The Universal Resource Locator (URL) addressing scheme. This consists of a

simple string, which contains the type of protocol to use, e.g. FTP, HTTP etc.,

the name of the computer on the internet and the actual name of the document

to be retrieved. For example \http://www.idiscover.co.uk/linux/linuxdoc/index-

.html".

2. The HyperText Transfer Protocol (HTTP). This protocol was designed so that

information could be e�ciently retrieved, for the purpose of making hypertext

\jumps"; see Section 2.6.1 for a description of hypertext.

3. The HyperText Markup Language (HTML) is used to markup, see Section 2.5.2,

documents that will be used on the WWW. This process enables authors to pre-

pare and format their documents using a mixture of text, pictures, sound, video

and hypermedia links. See Section 2.6.1 for a description of hypermedia. Users

can click on these links to \jump" to related items. By using this language, authors

ensure that their documents will look the same on di�erent WWW browsers. A

WWW browser or client is an application that renders an HTML document into

a form that can be displayed on the user's screen. Netscape's Navigator and

Microsoft's Internet Explorer are two of the most common browsers.

These three components form the core architecture of the WWW. Originally the WWW

was only designed to be used on wide-area networks (WANs). With the growth of the

Internet however, see Section 3.1, WWW browsers are now being used to read and

retrieve information o� the internet. As a result the WWW has steadily grown in size

(the number of web \pages" being created) and popularity.

The �rst Web browsers could only be used to display text and pictures. Hypertext

links were displayed in a di�erent colour and users could \click" on these, with a mouse,

to follow the link. With the development of more sophisticated browsers, however, users

could click on an \audio" link, which would make the browser download the �le to the

users machine. The user could then use another application to play the �le. Some

browsers, for example Netscape's Navigator, could also execute a program to play the

CHAPTER 2. BACKGROUND 15

�le once it had been downloaded. The process of downloading a �le, however, could

take a long time especially if the �le was quite large and / or the network connection

was very poor.

To overcome this problem, several companies, such as RealNetworks, Macromedia,

Xing Technology etc., have created streaming audio servers and players. A streaming

audio link is represented on a web page in exactly the same way as an audio link. This

link will contain information about the audio server and the audio �le to be streamed.

When a user clicks upon this link, three events occur and they are:

1. The browser activates the relevant streaming audio player. This player will then

send a message, containing the name of the audio �le to be streamed, to the audio

server.

2. The audio server splits the audio �le into smaller packets and transmits them to

the player.

3. The player bu�ers these packets until enough have been received, so that they can

be played.

On a reasonably fast network connection the audio �le is played almost immediately,

giving the impression that the audio �le is stored on the local machine. Otherwise it

could take a long time for enough information to be received so that it can be played.

The current internet protocol, which the WWW uses, was not designed to handle

streaming audio information. This protocol is called TCP/IP and is described in more

detail in Section 3.1. To overcome this problem several protocols have been developed

and they are the Real-time Transport Protocol (RTP) and the Real Time Streaming

Protocol (RTSP). These protocols are discussed in more detail in Sections 3.2 and

3.3, respectively.

Overall the WWW uses audio as just another medium to link to. Anchors can not

be created within the audio stream or �le and therefore links can not be created from

an anchor within the audio. Links can be created to a time within the audio �le, but

this is not a true anchor, it is usually just a subrange of the entire �le.

CHAPTER 2. BACKGROUND 16

2.5 Existing Standards

Several international standards have been created in the hypermedia and multimedia

community. These are described in more detail in the following sections.

2.5.1 The Multimedia and Hypermedia Experts Group

The Multimedia and Hypermedia Experts Group4 (MHEG) was formed by a subcom-

mittee5 of the International Standards Organisation (ISO) to address the problems of

trying to design a software-neutral interactive multimedia presentation tool. There are

several parts to MHEG and a paper by Rodriguez et al. [5] gives a brief description of

MHEG parts 1 to 5.

Boudnik and E�elsberg [6] describe MHEG-1, which was the initial speci�cation for

robust multimedia data structures using ISO's own Abstract Syntax Notation (ASN.1).

This notation describes all of the data structures (or MHEG classes) in an abstract

syntax, which ensures that applications conforming to this standard will be able to

communicate. An interactive presentation is formed by creating instances of these

MHEG classes or MHEG-Objects and forming interrelationships between these objects.

MHEG-1 de�nes several classes, of which four could be used for inserting links into

streaming audio. These are:

� The MH-Object class which is the root class inherited by all of the other classes.

� The Content class which contains the data that the user sees and / or hears.

� The Link and Action classes which describes what actions are performed when a

user activates a particular link object.

� The Multiplexed Content class which is derived from the content class and either

contains or refers to the multiplexed stream data. It also assists in inter-stream

synchronisation, such as lip synchronisation.

Each object when it is created can contain extra information about its original size

and its play-out duration. This information is stored as virtual co-ordinates from a

generic space and a virtual timeline, respectively. At run-time this extra information is

4Also known as the Multimedia and Hypermedia information coding Experts Group.
5\Coding of Audio, Picture, Multimedia and Hypermedia Information," ISO/IEC JTC1/SC29.

CHAPTER 2. BACKGROUND 17

converted into real-time requirements, such as screen co-ordinates and a particular type

of timer, depending on the type of hardware being used.

MHEG-2 is exactly the same as MHEG-1, except that the classes are de�ned in SGML

(Standard Generic Markup Language) instead of ASN.1. SGML is described in more

detail in Section 2.5.2.

A paper by Rutledge et al. [7] gives an overview of the MHEG-3 project which is an

extension to MHEG-1. This part of the standard was created to increase the interactivity

between multimedia objects and the environments that they run in. This is achieved

by using :

1. Scripting languages6 - a script is a program containing a set of procedures that

can be used to monitor events that are created by particular objects, for example

a user clicking on a button will cause an event. As a result of these events being

generated, the script will execute certain actions, possibly on other objects. This

allows objects to interact with each other.

2. A Virtual Machine - this is used to create a mapping table between the run-time

services provided by a particular platform / environment and the interface of the

scripting language, used to generate the script. This allows interactivity between

the scripts and the platform being used for the presentation.

Overall MHEG-3 increases the functionality of MHEG-1, by allowing users to create

presentations using external programs.

The fourth part of the MHEG standard (MHEG-4) was a simple extension and is

used to register objects and formats supported by MHEG, e.g. MPEG, JPEG etc.

Joseph and Rosengren [8] give an overview of the MHEG-5 standard, which was de-

signed to extend the class hierarchy of the initial MHEG-1 speci�cation. This extended

hierarchy contains a set of new classes that can be used to develop client / server multi-

media applications across platforms with limited resources. This ensures that MHEG-5

conformant applications will run on conformant terminals.

MHEG-5 de�nes �ve classes that are relevant to the streaming audio and open hy-

permedia research domain. These are:

6These are also known as Scriptware.

CHAPTER 2. BACKGROUND 18

� The LinkE�ect and the LinkCondition classes. A LinkCondition is triggered by an

event, which if it matches certain conditions will run a LinkE�ect. The LinkE�ect

contains a list of elementary actions to be carried out.

� The Stream class, which provides the functionality to multiplex audio and video

objects, present them in synchronisation and create links from MHEG objects to

speci�c points in the stream (stream-events). Links can also be created to speci�c

user-de�ned events.

� The Audio class, which encapsulates audio objects and can be used with streams.

� The HyperText class, which allows users to associate objects with a link to, for

instance, another page. Objects can be words, groups of words, pictures etc.

An example of an MHEG-5 application is the \GlassWWWay" tool developed by

Geyer et al. [9]. The original system, known as the \GLobally Accessible ServiceS"

(GLASS), used MHEG-1 to provide several di�erent services such as video on demand,

interactive TV or online shopping in an easy-to-use interface. However, due to the prob-

lems of inferior browser technology and that the developers thought that MHEG-1 was

too abstract, they decided to develop a new system based on the MHEG-5 standard.

By re-de�ning the MHEG-5 classes in Java, they designed a Java applet which could

be downloaded into any Java-enabled World Wide Web (WWW) browser. This also

provided better communication between the users and the GLASS server.

This paper concentrates mainly on the bene�ts and drawbacks of using Java to imple-

ment the MHEG-5 engine and so the audio domain is not mentioned. It is not known

whether this system provides the functionality to stream audio or to create links from

certain points within an audio stream, which MHEG-5 can. The system does provide

basic sound support for interactive television and the other services mentioned above.

At this stage, however, Java has very limited sound capabilities and therefore the func-

tionality needed to support sound would have to be supplied by external functions7.

The MHEG standard contains many sections of which part �ve seems to provide

enough information to develop a tool to create links to and from the streaming audio

domain. MHEG at the moment, however, is used as a tool to develop visual, easy-to-use,

interoperable client / server systems, of which audio is just a small part of this.

7These are also called native functions and are usually speci�c to a particular platform.

CHAPTER 2. BACKGROUND 19

2.5.2 The Hypermedia/Time-based Structuring Language

The Hypermedia / Time-based Structuring Language (HyTime) became an ISO stan-

dard (ISO/IEC 10744:1992) in 1992 and uses the Standard Generic Markup Language

(SGML) to describe document architectures. HyTime evolved from the work of the

ANSI X3V1.8M committee on the development of a Standard Music Description Lan-

guage (SMDL) and to understand the concepts of HyTime, a brief description of SMDL

and SGML will also be given in this section.

A paper by Carr et al. [10] describes traditional markup and the equivalent logical and

physical markup techniques in use today. Markup can be described as the process of in-

serting speci�c commands or codes into the original text which the compositor program

(or traditionally a human) uses to compose the �nal document. Physical markup re-

quires the user to explicitly place certain commands, such as `bold' and `centre', around

the text to be rendered8; whereas logical markup requires the program to interpret and

render abstract commands, such as \this text is a heading", inserted by the user.

This paper describes the Standard Generic Markup Language as taking logical markup

to the extreme. SGML does not de�ne default markup commands or tags; the user

creates these by using SGML's logical elements and physical entities. In ArborText's

SGML White Paper [11], logical elements are described as pieces of data that may

contain either text or other subelements such as chapters and paragraphs etc. Each

element also contains their own generic identi�er (GI), which is used for the markup

of documents. Physical entities are described as self-contained pieces of data, e.g. a

separate text �le, a separate graphic �le etc., that can be referenced as a unit.

These elements and entities are then stored in a Document Type De�nition (DTD)

�le, which can be used as a template for the structure of other documents. The syntax

of DTDs is very strict which ensures that they will be understood by other SGML-

compliant applications. It is upto the application, however, to interpret the `meaning'

of the document structure.

Mounce [12] describes in his paper, how the Standard Music Description Language

(SMDL) was initially de�ned using a SGML DTD in 1988. SMDL is de�ned9 as \an

8The process of turning non-graphical information into a form that can be represented in a graphical
way e.g. a printer renders information into a form that can be printed.

9ISO/IEC Draft International Standard 10743.

CHAPTER 2. BACKGROUND 20

architecture for the representation of music information, either alone, or in conjunction

with text, graphics or other information needed for publishing or business purposes."

Basically, SMDL divides a musical work into four domains and these are:

1. The Logical Domain or cantus. This will contain all of the logical information

about a piece of music. The cantus can be described as an abstract timeline on

which all events can be scheduled e.g. Eliens et al. [13] suggest that the cantus

can contain information to do with automated lighting.

2. The Visual Domain. This graphically represents the music in some form e.g. a

link to an image �le (JPEG, GIF etc.) or to a coded music �le.

3. The Gestural Domain. This can contain one or more links to the actual perfor-

mance of the musical work e.g. a link to a MIDI �le.

4. The Analytical Domain. This contains commentaries or theoretical analyses of all

of the other domains.

A �le written in SMDL would traditionally contain a cantus, links to one or more

graphical representations of the musical work and one or more links, again, to the

actual performance of the cantus. This initially provided enough information to create

simple presentations, but with the development of digital audio and multimedia, there

was a need to extend the functionality of the original SMDL document type de�nition

(DTD). With each subsequent development of the DTD, more and more information

was submitted until eventually a separate standards activity was initiated in 1989. This

research produced the Hypermedia/Time-based Structuring Language (HyTime) which

extended SGML and became a full International Standard in April 199210.

Newcomb et al. [14] describe how HyTime was originally de�ned using a SGML DTD,

which contained the HyTime-speci�c generic identi�ers (GIs). The standards committee

realised, however, that these identi�ers could not be changed because HyTime compliant

applications needed them to recognise HyTime documents. This reduced the expres-

siveness of SGML and as a result, the next draft of the HyTime standard replaced the

GIs with SGML architectural forms. In Newcomb's [15] paper, an architectural form

de�nes elements with a standard meaning, e.g. independent hyperlink, and syntax for

10ISO/IEC 10744:1992.

CHAPTER 2. BACKGROUND 21

its associated data. An architectural form also de�nes an attribute type for the element,

which is used for identi�cation purposes. Multimedia systems would then use this iden-

ti�er to access only the relevant elements and hence parts of HyTime that they require.

HyTime usually provides a standard set of forms to build hypermedia / multimedia

documents and therefore, is often referred to as a meta-DTD.

One of the main problems of the hypermedia / multimedia industry is its inability

to store, describe and transport media objects in an application-neutral manner. New-

comb [16] discusses how the HyTime / SGML paradigm addresses this problem, by

encapsulating the information using abstract semantics. This ensures that the informa-

tion can co-exist in a variety of applications and contexts.

HyTime consists of six main modules. A paper by Newcomb [15] and Newcomb et

al. [14] give a thorough description of each one. They are:

1. The Base Module which includes facilities to manage documents, handle name

collision between HyTime-speci�c and user-de�ned identi�ers and an ability to

track certain activities e.g. the creation, modi�cation and deletion of links between

objects. This module also contains SGML itself.

2. The Location Address Module. SGML uses an unique `identi�er' and an `identi�er

reference', #ID and #IDREF respectively, to refer to particular elements within

a document. SGML can also create simple links to particular entities e.g. a

graphic �le. These identi�ers and links, however, can only be used within the

local scope of the document that de�ned them. HyTime, again, extends this

by providing location address, i.e. a pointer, architectural forms. These forms

include methods to address locations by name and by position using dimension(s)

and axis, e.g. a substring within a string, a word in a sentence, a node within a

tree etc. HyTime uses this address information to \resolve" the address and hence

recover the information at that location. This can be within the local document

or in another document.

3. The Hyperlinks Module which consists of several methods to create active refer-

ences (or hyperlinks) to other documents and / or objects within those documents.

This includes the general purpose independent link (ilink) which can have any

number of link ends and ways to activate a traversal of a link, e.g. a push of a

CHAPTER 2. BACKGROUND 22

button and the contextual link (clink) which always has two link ends, with one

of them being the clink's own location e.g. a footnote.

4. The Measurement Module. This de�nes a way to address document objects using

abstract measurable domains such as space and time.

5. The Scheduling Module which uses �nite co-ordinate spaces (FCSs) to de�ne

any number of axes. These axes can represent anything that can be measured or

counted e.g. time, money, temperature etc. Objects within FCSs are called events

and these are used by the rendition module.

6. The Rendition Module. This module uses two constructs, the proscope and

modscope. The proscope can be used to project certain parts of events onto

another FCS e.g. show only this section of a map, whereas the modscope can be

used to modify an event e.g. change the colour. This module calls a schedule

of proscopes a baton and a schedule of modscopes a wand. A wand and then a

baton can be applied to a particular event, e.g. take this picture of a crowd, change

the colour and then only project a particular section of the crowd. Generally the

resulting FCS is in a form that the user can see and / or hear.

2.6 Hypermedia Systems

To fully understand how the audio domain has been used in Hypermedia Systems (HSs),

a brief overview of the origins of hypertext and hypermedia has to be given. This

section also discusses how hypertext and hypermedia have been used in �rst and second

generation systems, respectively. Finally this section describes how the audio domain

has been supported traditionally in second generation systems and more recently in

\open" hypermedia systems.

2.6.1 Hypertext and Hypermedia

The term \hypertext" has been used, over the last 30 years, to describe an extension to

the traditional form of \
at" or linear text. For example, a book can be described as

being linear because it is usually read from the beginning to the end. Recent develop-

ments in computer systems, however, have allowed programmers to develop new ways

CHAPTER 2. BACKGROUND 23

in which traditional text can be viewed. Conklin [17] describes how these systems allow

references to be created between di�erent chunks of text, which can be in the same or

another document. This type of text is called nonlinear text or hypertext because the

path through the document can branch-o� to other documents via these references.

Three of the main contributors to the area of hypertext were Vannevar Bush, Douglas

Engelbart and Theodore Nelson. Conklin [17] discusses each of their hypertext systems

and they were:

1. Bush's Memex system. In 1945 Vannevar Bush11 predicted a rapid growth in the

amount of scienti�c literature and the need to create a way in which this large body

of information should be browsed. In his article, see Bush [18], Bush describes how

the human mind works by associating related pieces of information. He applied

this concept to a machine, called the Memex, which allowed the user to tie two

relevant pieces of information, from two separate documents, together. This idea

of association is credited as being the �rst attempt to describe hypertext.

2. Engelbart's oN Line System (NLS/Augment). In 1963, Engelbart described a

computer system that would augment man's intellect, by allowing the user to

interact with the system using special cooperative devices12. As a result the

amount of information that a user could manipulate and understand would steadily

increase, e�ectively \amplifying" the native intelligence of the user. The NLS

system was implemented �ve years later at the Stanford Research Institute. It

allowed users to create any number of links between elements within a document

and between the documents themselves. See Engelbart and English [19] for more

details.

3. Nelson's Xanadu System. During the development of the NLS, Ted Nelson was

also developing his own ideas about augmentation. Nelson's system would only

allow the storage of documents in their original format and any modi�cations

made to these documents, e.g. a di�erent paragraph etc. By using links between

these modi�cations and the original documents, previous versions could be easily

reconstructed. New links could easily be created between di�erent bodies of text

11President Roosevelt's science advisor.
12One of the devices he invented was the mouse.

CHAPTER 2. BACKGROUND 24

and therefore new pathways could be formed through the material. It was from

this system of linking large bodies of text together that Ted Nelson created the

term \hypertext". Nelson's book, see Nelson [20], describes his ideas in more

detail.

The term hypermedia can be described as an extension to hypertext. Hypertext

systems allow users to author, edit and follow links between di�erent bodies of text.

Hypermedia systems, however, are similar to hypertext systems, except that the user

can use other forms of media as well. For example, the authoring of links between an

audio �le and a body of text.

Halasz [21] describes how Engelbart's NLS/Augment system can be called a �rst

generation system because it used workstations with little or no graphics capabilities and

it focused primarily on text. An overview of these systems can be found in Conklin [17].

Halasz goes on to say that in the early 1980's, second generation systems began to

emerge, which used workstations with more advanced user interfaces and graphics. As

a result these new systems would allow users to create references between di�erent

types of media, e.g. text, pictures etc., and hence they were called hypermedia systems.

Example hypermedia systems are NoteCards [21], KMS [22] and Intermedia [23].

These second generation hypermedia systems originally used proprietary document

formats to store the data. The links themselves were embedded into these documents,

which made them considerably easier to transport. However this approach can cause

several problems, especially with networks and distributed systems. For example, when

a document is moved from one computer on the network to another, all links pointing

to this document will have to be updated. Otherwise users will not be able to follow

links to this document13. Similar problems will occur if documents are deleted and

the links are not updated or removed. The use of embedded links also made it very

di�cult to extend these systems, to support other types of media. External programs,

that were not fully integrated into these systems, would have to be used. As a result of

these problems, the second generation systems were called \closed" hypermedia systems.

Goose [24], Beitner [25] and Halasz [21] describe these systems in more detail.

13This is also known as the \dangling link" problem.

CHAPTER 2. BACKGROUND 25

2.6.2 \Open" Hypermedia Systems

Goose [24] describes that in 1987, at a international hypertext conference, researchers

started to express their concerns about the problems mentioned in the previous sec-

tion. Several ideas were discussed, see Halasz [21]; for example new search and query

mechanisms, management of dynamic information, more integration of existing applica-

tions etc. As a result of these discussions, several American research groups de�ned, in

1989, a reference model for hypermedia. It was called the Dexter Hypertext Reference

Model14, see Halasz and Schwartz [26] and it was designed to:

1. De�ne both formally and informally the common abstractions found in a range of

existing hypertext systems, e.g. NoteCards, Intermedia, KMS etc.

2. Serve as a standard, so that the functionality and characteristics of existing hy-

pertext (and non-hypertext) systems could be compared.

3. Serve as a template, for the development of standards. These would assist in the

interoperability and interchange between di�erent hypertext systems.

The Dexter reference model is widely regarded as being one of the most important

developments in hypermedia research.

A paper by Malcolm et al. [27] describes how hypermedia could be used in industry

to integrate large amounts of data from specialist tools and applications. Malcolm,

however, describes how the current (second) generation of hypermedia systems were

incompatible with each other, as well as the tools and applications used in industry. As

a result, Malcolm et al. de�ned several issues that needed to be addressed, e.g the ability

to access and link across di�erent platforms (interoperability), templates for common

hypermedia structures and interaction with operating systems and networks etc.

Goose [24] describes that in 1991, at another hypertext conference, Halasz revisited

his original ideas, see [21], that he placed before the hypermedia community. Halasz re-

viewed the progress that had already been made and he also discussed the contribution

made by Malcolm et al. [27]. As a result of these discussions Halasz presented several

new areas of research, which focused primarily on the the development of \open" sys-

tems with independent communicating processes and the way in which large amounts

14It is usually referred to as Dexter.

CHAPTER 2. BACKGROUND 26

of information could be managed and visualised on workstation screens. With the de-

velopment of more \open" hypermedia systems, researchers would be able to overcome

some of the problems associated with the second generation of hypermedia systems, see

Section 2.6.1.

In [24], Goose gives a detailed overview of several hypermedia systems, that have

embraced some of the concepts of \open" hypermedia. These include the World Wide

Web, see Section 2.4, Hyper-G, Intermedia and Multicard. The following section

describes why the audio domain has been neglected in hypermedia systems and how

several \open" hypermedia systems have managed to overcome this.

2.6.3 Hypermedia Systems and Audio

Traditionally, the audio domain has been neglected in the development of hypermedia

systems. There are several reasons for this and they include:

� The lack of technology. The �rst generation of hypermedia systems did not have

the computer technology to manipulate audio data. Engelbart's NLS/Augment

system used a computer with a small amount of memory and a very simple display.

Over time this technology has improved, e.g. the second generation systems could

manipulate pictures and text using advanced workstations. The audio domain

however, is quite complex and it requires more advanced technology, which is still

being developed.

� The problem of visualising audio information. Audio, by its very nature, can not

be seen. As a result, the ability to develop an intuitive graphical user interface,

that will allow users to manipulate audio information, is quite di�cult.

� The dominance of the visual sense. Vision has always been regarded as the primary

sense for normally sighted people. Section 2.1 describes this in more detail.

� The problems of the audio �le formats. Currently there are several �le formats

which can be used to store audio data. For example Microsoft's WAV format,

MPEG-1 layer 3 (MP3's), Sun's AU format etc. Each format has its own advan-

tages and disadvantages. With each format, however, the �le size tends to increase

as the quality of the audio recording increases. As a result, high quality recordings

CHAPTER 2. BACKGROUND 27

can rapidly consume large amounts of disk space. The amount of memory and

the processing power of a computer can also a�ect the size of an audio �le.

These problems have caused the majority of hypermedia systems to concentrate

mainly on the authoring of links between text, images and video; the visual domain.

With the development of more powerful computers, sound cards and \open" hypermedia

however, it has become possible to develop applications that can be used in conjunction

with these systems, to manipulate the audio domain.

Audio tools have been developed for two hypermedia systems and they are:

1. The SoundViewer tool for Microcosm. Microcosm15, see [28, 29, 30, 31], is an

open hypermedia system which was primarily developed to investigate new areas

of hypermedia research. Goose and Hall [32] describe it as being a set of commu-

nicating processes which supplement the facilities of the native operating system.

Users interact with Microcosm using viewers which display di�erent types of me-

dia, e.g. text and video, and allow users to author and follow links to and from

this media. Viewers can be either speci�cally created for the system or existing

third-party programs that have had their functionality extended; for example by

using Microsoft Word macros.

When a user performs an action in the viewer, messages are passed from this

viewer to Microcosm which then dispatches them through a chain of �lters. These

�lters process the messages and then decide what sort of information should be

returned to the user. The �lters might return a set of links, which are stored in

separate link databases or linkbases, that the user can then follow.

Originally Microcosm had little support for sound. When a user traversed a link

to an audio �le, a native application would be invoked to play this sample from

the beginning to the end. Users could not create links from the application or to

an area within the audio sample. As a result of this problem the SoundViewer

tool was developed. This tool is discussed in more detail in Section 4.1.

2. The Sound (FT) module for MAVIS. MAVIS, the Microcosm Architecture for

Video, Image and Sound, is an extension to Microcosm and it was also developed

15Developed by the Multimedia Research Group at the University of Southampton.

CHAPTER 2. BACKGROUND 28

at the University of Southampton by the Multimedia Research Group. Lewis et

al. [33] describe the system as being a tool that allows users to author generic

links16 between text and non-text based media. MAVIS achieves this by using the

content of the non-text media as the key to navigation and retrieval of related

information.

To navigate and retrieve information related to text is relatively straight forward

because algorithms already exist that can match strings or sentences. With Mi-

crocosm, a user selects a piece of text within a document and then tells the system

that this selection is a generic link. The system will then create a representation

of this text (a key) and then store this key in a linkbase. When users want to

retrieve information relating to the original selected text, this key will be used

with the string matching algorithms to �nd other occurrences of the text.

With MAVIS, however, exact matching with non-text media is clearly impossible;

the similarities between non-text media, for example images, have to be measured

instead and these values can then be used to determine the closest match17. To

achieve this, MAVIS uses signatures to represent the content of a selection. Several

signatures are often used since there are several di�erent ways in which non-text

objects can be matched, e.g. colour, texture etc. Each description of a signature

is stored in a module and users can created their own signature modules, which

MAVIS can then use.

MAVIS has a prototype signature module that supports links in sound. It is

called the Sound FT module and it uses the Fourier Transform (FT) on a selected

portion of a digital sound. The resulting sample can then be used as the key for

matching. Lewis et al. [33] describe how single words can be articulated into the

MAVIS system, which then displays the word as a sound wave. A section of this

sound wave, representing the word, can then be chosen as a source anchor of a

generic link. The Sound FT module will process this selection and generate the

key. This key can then be used to navigate and / or retrieve information, e.g.

text, images etc., related to the original audio sample.

16Microcosm supports the concept of generic links { links that can be followed from any point within
any document.

17This is known as fuzzy matching.

CHAPTER 2. BACKGROUND 29

Both of these tools can be used to create links to and from the audio domain and

they have managed to overcome some of problems mentioned at the beginning of this

section, see Section 2.6.3.

2.7 The Audio-Linker Tool

The Audio-Linker tool was developed18 for a demonstration to show that links could

be created from audio to text and vice-versa. Originally only the Soundviewer tool and

Microcosm were going to be used, see Sections 4.1 and 2.6.3 respectively. However it

was decided that a simpler audio tool, to show how the links could be created without

having to use an underlying Open Hypermedia System e.g. Microcosm, should also be

developed. The design and implementation of this simple tool are discussed in more

detail in the following sections.

2.7.1 The Design

The requirements for the design of the tool were, again, very simple. It needed to be

created quickly, due to the limited amount of time before the actual demonstration

and so a Rapid Application Development (RAD) software tool had to be used, such as

Visual Basic, Borland C++ Builder, Visual Caf�e etc.

The graphical user interface (GUI) of the tool had to have components to display:

1. The audio sample. This component would also be used by the user to select a

portion of the audio to link to and from.

2. The audio controls, which would allow the user to play, rewind, forward and stop

the audio �le. In other words, buttons similar to the audio controls on a tape deck

or CD player.

3. The text �le. This component would also be used to select a portion of the text

to link to and from.

The components to display the audio sample and the audio controls would have to

interact with each other, so that when the \Play" control / button is pressed, the audio

sample display would change to show the current position in the �le. The components

18Developed by Lee Oades and Neil Ridgway.

CHAPTER 2. BACKGROUND 30

to display the audio sample and the text �le would also have to interact, so that any

links between the two could be displayed and followed, e.g. a highlighted piece of text

would represent a link to a particular part of the audio sample and if the user clicked

on this text, the link would be followed and the audio sample would be played from the

relevant position.

2.7.2 The Implementation

The tool was implemented using Visual Basic because it was easy to learn and use. Other

RAD tools were not really considered because the Audio-Linker application had to be

developed quickly, with the resources at hand. Visual Basic provided an environment

where components, called OCXs19, can easily be made to interact with each other. By

inserting several of these components into a Visual Basic form, which represents the

main application window, the Audio-Linker tool could be rapidly developed.

Several OCX controls were used for the application and they were:

� A `Slider' control, which was used to graphically represent the audio sample. This

control consists of a horizontal bar which represents the length of the audio �le

and a vertical slider which was programmed to represent the current position in

the audio �le. By moving the slider, the user can move to di�erent areas within

the audio �le. By holding down a particular keyboard key and sliding the vertical

bar, a user could easily select a portion of the audio �le to be linked to or from.

� A `MMControl' control. This is a multimedia MCI20 control that consists of a row

of buttons, i.e. play, stop, pause etc., which allows the user to manipulate visual

and audio media. In the Audio Linker, this control was set to play WAV sound

�les. This control, however, has enough functionality to support MIDI, CD Audio,

CD-ROM drives and AVI (Microsoft's proprietary audio/video format) �les.

� A `RichTextBox' control, which was used to display a text �le, in either plain

ASCII or rich text. This control was used to create links from text to audio.

19OCX is an extension to Microsoft's Object Linking and Embedding (OLE) which allows users to
embed objects e.g. Word documents, �le dialog boxes, text boxes etc., into other documents.

20Media Control Interface. This is a set of high-level, device-independent commands that control
audio and visual peripherals.

CHAPTER 2. BACKGROUND 31

� A `Timer' control, which was run whenever the play button was pressed. The

timer would then poll a certain function after a few seconds, which would update

the vertical bar in the `Slider' control.

� A `FileDialog' control, which was used to open project �les.

When the application is executed, an \Open" �le dialog box is displayed. This is

used to load a project �le, which contains the name of the WAV audio �le, the name

of the text �le and the links, into the application. The �le does not have to contain

any links since they can be created in the application and then saved in the �le. When

the project �le has been loaded, the `MMControl' control buttons are activated and the

text is displayed in the `RichTextBox' box. By clicking on the \Play" button the audio

�le is played and if the current position of the audio �le is in between the start and end

points of an audio link, the link is followed and the relevant text is highlighted. This is

shown in Fig. 2.4. An array in the program is used to store the links.

To test the application a simple project �le was created, using paragraphs of text

from a book and an audio transcript of this text. Links were then created from each

paragraph of the text, to the relevant position in the audio �le. When the audio �le

was played back, a sentence of text from each paragraph would be highlighted, when

the equivalent position was reached in the audio �le. If the user moved the vertical

slider and hence changed the current position in the audio �le, again a sentence of text

would be highlighted in the relevant paragraph. These two methods are used to follow

links between audio and text. By clicking the right mouse button anywhere within a

paragraph, the position in the audio �le and hence the slider would move to the start of

the audio version of that paragraph. This method is used to follow links between text

and audio.

In conclusion, this tool has shown that links can easily be created from audio to

text and vice-versa, without the need of the Open Hypermedia System (OHS), such

as Microcosm. The Audio-Linker was also considerably faster than Microcosm in the

creation and resolution of the links. This tool, however, does not have all of the extra

functionality, see Section 2.6.3, that Microcosm does and therefore it can not be

directly compared to this OHS. With modi�cations and enhancements it could be used

in conjunction with an OHS, so that links could be easily created from audio to other

CHAPTER 2. BACKGROUND 32

types of media and vice-versa.

CHAPTER 2. BACKGROUND 33

Figure 2.4: The Audio Linker Application

Chapter 3

Streaming Media Protocols

Chapter 3 describes a family of protocols that are being used to support the real-time

delivery of multimedia data. It speci�cally concentrates on the Real Time Streaming

Protocol which is designed to be an open standard. This chapter also gives an overview

of streaming audio players and the software tools they use to create streaming multi-

media presentations.

3.1 The Traditional Protocols - TCP/IP

The Transmission Control Protocol / Internet Protocol is the main protocol suite used

with the Internet. Halsall [34] describes how originally Local Area Networks (LANs)

were used to connect di�erent computers on a local site, e.g. computers within an

o�ce or building. This allows users to share and distribute information across the local

network. Large enterprises, however, usually have several sites situated in di�erent areas

of the same country and more recently, di�erent countries as well. To connect sites that

are situated within the same country, companies lease transmission lines between those

sites, from the public carriers such as British Telecom. This forms aWide Area Network

(WAN). To connect sites that are situated in other countries, companies use di�erent

types of communication, for example satellites, optic �bres across land and / or sea etc.

The networks that are formed from this type of communication are called Internetworks

or just Internets.

TCP/IP consists of a suite or a layered stack of two core protocols and they are the

internet and transport protocols. The Internet Protocol (IP) provides a number of core

34

CHAPTER 3. STREAMING MEDIA PROTOCOLS 35

functions that assist the process of internetworking across dissimilar networks. These

are:

1. Addressing. There are three types of address used with the current version of the

internet protocol (IPv4), unicast, broadcast and multicast. Unicast addressing is

used when a packet of information or datagram is to be sent to a single destination.

Broadcast addressing is used when a message is to be delivered to every host on a

destination LAN. A multicast address is used to deliver a datagram to a speci�c set

of hosts, called a multicast group. This type of addressing is called IP Multicast.

Hosts can join a multicast group at anytime and receive the datagrams that are

sent to the group.

2. Fragmentation and reassembly. If the datagrams sent by a host are larger than the

packet sizes used by a particular part of the internet, the datagrams will have to

be fragmented into smaller chunks so that they can be transmitted. When these

smaller packets are received, they have to be reassembled into the original sized

packet, so that they can be used.

3. Routing. This is used to determine which subnets, within the internet, the data-

grams must travel to get to the destination host. This could involve travelling

over several di�erent LANs or WANs.

4. Error reporting. This consists of several functions that will detect errors, for

example the process of reassembly could cause several packets to be discarded,

and report them back to the IP in the source host. Halsall [34] describes these

functions in more detail.

The transport protocols are designed to sit on \top of" the internet protocol men-

tioned above. They provide two modes of operation, connection-oriented or connection-

less. A connection-oriented protocol creates a connection between the transmitter and

the receiver before the data is actually transmitted. This is also known as a reliable

transport service since the data is guaranteed to get to the destination. The Transmis-

sion Control Protocol (TCP) is an example of this type of service.

A connectionless protocol, as the name suggests, does not form a connection and there-

fore can not guarantee that the data will be delivered. This mode of operation reduces

CHAPTER 3. STREAMING MEDIA PROTOCOLS 36

the overhead associated with each message transfer because no network connection is

established prior to the transmission. TCP/IP provides a connectionless protocol called

the User Datagram Protocol (UDP).

When users want to transmit information over the internet, using an internet-aware

application, the information is �rst passed to the transport protocol layer. This layer will

determine the type of delivery mechanism, e.g. TCP or UDP, to use. The information is

then passed to the internet protocol layer, which attaches extra information, for example

the destination host address etc.

When a host receives information from the internet, the internet protocol will carry

out several tests on the packets of information received. For example error reporting,

which could result in the re-transmission of particular packets, reassembly of packets

etc. The information is then passed to the transport protocol layer which strips o� any

information to do with the delivery mechanism. The resulting information can be used

by the internet-aware application. A more thorough description of this can be found in

Halsall [34].

3.2 The Real-time Transport Protocol (RTP)

The Real-time Transport Protocol was developed by the \Audio-Video Transport Work-

ing Group"1 and has recently become an internet standard. RTP is described in the

IETF's RFC 1889 [35] speci�cation as being a protocol providing end-to-end delivery

services, such as payload type identi�cation, timestamping and sequence numbering,

for data with real-time characteristics, e.g. interactive audio and video. It can be used

over unicast or multicast networks. RTP itself however, does not provide all of the

functionality required for the transport of data and therefore applications usually run

it \on top" of a transport protocol such as UDP2, which is discussed in more detail in

the previous section.

RTP usually works in conjunction with another protocol called the Real Time Control

Protocol (RTCP)3, which provides minimal control over the delivery and quality of the

data. It performs four main functions and these are:

1Formed by the Internet Engineering Task Force (IETF).
2RTP can also be used with other transport or underlying network protocols.
3It is also known as the RTP Control Protocol.

CHAPTER 3. STREAMING MEDIA PROTOCOLS 37

1. Feedback Information. This is used to check the quality of the data distribution.

During an RTP session, RTCP control packets are periodically sent by each par-

ticipant to all the other participants. These packets contain information such as

the number of RTP packets sent, the number of packets lost etc., which the re-

ceiving application or any other third party program can use to monitor network

problems. The application might then change the transmission rate of the RTP

packets to help reduce any problems.

2. Transport-level identi�cation. This is used to keep track of each of the participants

in a session. It is also used to associate multiple data streams from a given

participant in a set of related RTP sessions, e.g. the synchronisation of audio and

video.

3. Transmission Interval Control. This ensures that the control tra�c will not over-

whelm network resources. Control tra�c is limited to at most 5% of the overall

session tra�c.

4. Minimal Session Control. This is an optional function which can be used to convey

a minimal amount of information to all session participants, e.g. to display the

name of a new user joining an informal session.

When an RTP session is initiated, an application de�nes one network address and two

ports for RTP and RTCP. If there are several media formats such as video and audio,

a separate RTP session with its own RTCP packets is required for each one. Other

participants can then decide which particular session and hence medium they want to

receive.

Overall RTP provides a way in which real-time information can be transmitted over

existing transport and underlying network protocols. With the use of a control protocol,

RTCP, it provides a minimal amount of control over the delivery of the data. To ensure

however, that the real-time data will be delivered on-time, if at all, RTP must be used

in conjunction with other mechanisms and / or protocols that will provide a reliable

service.

CHAPTER 3. STREAMING MEDIA PROTOCOLS 38

3.3 The Real Time Streaming Protocol (RTSP)

The Real Time Streaming Protocol is a proposed Internet standard which is being

jointly developed by Netscape Communications, RealNetworks4 and Columbia Univer-

sity. The current RFC [36] describes RTSP as being an \application-level protocol",

which controls the delivery of streaming media with real-time properties. This media

can be streamed over unicast or multicast networks. RTSP itself does not actually de-

liver the media data; this is handled by a separate protocol and therefore RTSP can be

described as a \network remote control" to the server that is streaming the media.

The underlying protocol, that is used to control the delivery of the media, is deter-

mined by the scheme used in the RTSP Uniform Resource Locator (URL)5. The schemes

that are supported on the internet are \rtsp:" which requires that the commands are

delivered using a reliable protocol, e.g. TCP, \rtspu:" which identi�es an unreliable

protocol such as UDP and \rtsps:" which requires a TCP connection secured by the

Transport Layer Security (TLS) [37] protocol. Therefore, a valid RTSP URL could be

\rtspu://foo.bar.com:5150", which requests that the commands be delivered by an un-

reliable protocol to the server \foo.bar.com", on port 5150. A more detailed description

of the URLs used in RTSP is given in Section 3.2 of the RFC [36].

RTSP is intentionally similar in syntax and operation to the latest version of the

HyperText Transfer Protocol (HTTP/1.1) [38], which will soon become an internet

standard. There are several reasons for this and they include:

� Any future extensions to HTTP/1.1 can also be added to RTSP, with little or no

modi�cation.

� RTSP can be easily parsed by standard HTTP or MIME parsers.

� It can adopt HTTP's work on web security mechanisms, caches and proxies.

Pizzi and Church [39], however, describe one of the fundamental reasons why RTSP is

based upon HTTP/1.1; the previous version of HTTP (v1.0), which is currently being

used by most web servers and browsers, was not designed to cope with the transmission

of real-time data over the internet. What limited capabilities HTTP/1.0 has in this

4Formerly known as Progressive Networks.
5This is a formatted string that identi�es via a name, location, or any other characteristic a resource,

e.g. an audio �le, on the internet.

CHAPTER 3. STREAMING MEDIA PROTOCOLS 39

area have already been exhausted. By making RTSP similar in operation and syntax

to HTTP/1.1 the designers have essentially provided HTTP-level services to real-time

streaming data.

Although RTSP is similar to HTTP/1.1, there are several areas in which it di�ers.

One of these areas is RTSP's need to maintain state in almost all situations. In RTSP, as

mentioned previously, the data is streamed via a separate protocol which is independent

of the control channel. For example, TCP could be used for the control of the stream,

whilst UDP is used for the actual delivery6. Thus the data will still be delivered by

the media server, even if it receives no RTSP control commands. Since most servers

are designed to handle more than one user at a time, the server needs to be able to

maintain \session state", i.e. whether it is setting up a session, the \SETUP" state;

playing a stream, the \PLAY" state etc. This will allow it to correlate RTSP requests

with the relevant stream. HTTP/1.1, however, is a stateless protocol; there is no need

to save the state of each client.

Another area in which HTTP/1.1 and RTSP di�er is in the way the client and the

server interact. With HTTP/1.1 the interaction is one-way; the client issues a request

for a document and the server responds. With RTSP both the client and the server can

issue requests.

RTSP is really more of a protocol framework rather than a protocol itself because it

provides:

� A way to control the delivery of multiple data streams.

� A means for choosing the actual delivery channels such as UDP, multicast UDP

and TCP.

� A way to choose a delivery mechanism such as RTP.

RTSP URLs, which are described earlier in this section, are used to control the delivery

of the multiple data streams. The type of delivery channel and delivery mechanism,

however, are usually implementation speci�c, e.g. coded into the implementation of the

RTSP server. Early implementations of these servers support UDP, multicast UDP,

TCP and RTP.

6RTP over UDP can also be used, although RTSP is not tied to RTP.

CHAPTER 3. STREAMING MEDIA PROTOCOLS 40

To create a presentation which could be a live videoconference or the simple trans-

mission of stored data, a presentation description is used. This contains a common

time axis and information about one or more media streams, e.g. RTSP URLs, dura-

tion, start time etc. A simple presentation description could, therefore, contain just one

audio stream, whilst a more complex example could contain an audio, video and text

stream running in parallel.

RealNetworks have developed the RealMedia architecture, that can be used to create

presentations. It consists of several components of which one of them is a scripting

language called the Real Time Session Language (RTSL). This language is used to de�ne

the content of a RealMedia presentation and therefore is used to create the presentation

description.

The World Wide Web Consortium (W3C) have also developed a scripting language

called the Synchronised Multimedia Integration Language (SMIL). Bugaj et al. [40]

describe SMIL as a language that allows the integration of independent multimedia

objects into a synchronised multimedia presentation. SMIL is very similar to RTSL and

it can be used in the same way.

Chapter 4

The Sound Viewer Tool

This chapter covers two main areas. The �rst is an overview of the original Sound Viewer

application and how it has been used. The second is the design and implementation of

an extension to the Sound Viewer, which will allow the creation and traversal of links

to and from streaming audio. A brief discussion of how this new tool can be used is

also given.

4.1 The original Sound Viewer Tool

4.1.1 An Overview

The Sound Viewer tool was developed by Stuart Goose at the University of Southamp-

ton, to provide \a generic and meaningful visual representation of audio within a hy-

permedia context". A paper by Goose and Hall [32] describes the development of the

Sound Viewer tool and discusses some of the unique properties of the audio domain,

which is described in more detail in Section 2.2.

This paper discusses how audio has helped in many applications; for example audio

con�rmation of particular types of action possibly reduces the number of errors and

non-speech sounds have been successfully used in the navigation of a screen interface for

blind users. The human voice, however, is the main medium in which we communicate

with each other and so it is natural to assume that it would form an integral part of

multimedia and hypermedia systems. As shown in Sections 2.3, 2.4 and 2.6 most

systems support a variety of media such as text, animations, video and pictures. Audio

41

CHAPTER 4. THE SOUND VIEWER TOOL 42

is supported but with many systems it is just associated with a particular event e.g. a

button being clicked upon, the system shutting down etc.

The main reason why audio has not attracted as much attention as other media is

due to its lack of visual identity. Visual media such as text, pictures and videos all have

speci�c graphical applications to create and modify them e.g. word processors, graphics

programs etc. With the Sound Viewer a suitable graphical metaphor for sound had to

be found and so existing methods were reviewed. They are:

1. The Scrollbar method. This uses a graphical scrollbar, to represent the length of

an audio �le. By moving the position indicator, the user can seek to a di�erent

position in the �le. Microsoft's Media Player and the simple AudioLinker tool,

see Section 2.7, use the scrollbar approach.

2. The Waveform method. Several samples of the audio �le are taken at a given rate

and the results are then drawn, forming a waveform, onto the screen. This seems

to be one of the most popular ways of representing sound. Microsoft's Sound

Recorder uses this method.

3. The Piano Roll. This displays a single octave of a piano keyboard, drawn vertically,

on the left hand side of the display. A single line representing the \play" head

scrolls from left to right, at regular time intervals, over markers representing a key

depression. This method is most commonly used in programs that manipulate

Musical Instrument Digital Interface (MIDI) �les e.g. Cakewalk's Pro Audio.

4. The Manuscript / \Score" method. This represents audio using a musical score,

e.g. �ve horizontal parallel lines (the stave) represent pitch and musical notes

drawn on this stave produce the music. Again this is used with MIDI �les.

5. No visualisation (Sound engineers). The majority of sound editing by studio

engineers is performed manually without any visual tools. The equipment used

provides �ne control over the start and stop positions within the audio recording

and playback facilities for further re�nements of these positions. Time and position

indicators are used for noting and re-locating speci�c sequences.

Di�erent sound formats have di�erent ways in which they can be rendered on a display.

For example MIDI can be expressed well using the manuscript and piano roll method,

CHAPTER 4. THE SOUND VIEWER TOOL 43

whilst it can not be displayed using waveforms. Also MIDI can not be used for speech.

Microsoft's proprietary WAV format is usually displayed using waveforms and can be

used for both music and speech. However, the waveform itself is of little use to the

average user who can not relate the sound to its corresponding waveform. The scrollbar

method is really just a means to move within the audio �le itself and therefore, it can

be used for all of the sound formats e.g. WAV, CD-Audio, MIDI etc.

Each of these methods have their own advantages and disadvantages and the Sound

Viewer tool was designed to represent WAV, MIDI and CD-Audio in an uniform way. It

would be very confusing if the tool displayed a waveform for a WAV �le and something

completely di�erent for a MIDI �le. Therefore it was decided that more priority would

be given to the visual authoring of the anchors, rather than how the audio was displayed.

Goose and Hall [32] describe several other objectives required for the manipulation of

audio by a hypermedia author / user and they are:

� To have full control over the audio device.

� To discern the current position and duration of the sound sequence.

� To have the ability to select a portion of the sequence, playback and re�ne that

selection in preparation for creating an anchor.

� To identify any links present in the sequence.

� To traverse links to and from the sequence in an intuitive manner.

The host hypermedia system that manages the link information created to and from

the Sound Viewer, is called Microcosm. This \open" system is discussed in more detail

in Section 2.6.3.

4.1.2 The Interface

The user interface of the Sound Viewer consists of several components and these are the

audio controls, the windows that represent the audio and are used to view the links, two

position counters and two selection indicators. Each of these components are shown in

Fig. 4.1.

The audio controls are similar to the ones used with cassette decks and compact disc

machines and consist of buttons with the labels \Play", \Pause" and \Repeat". There

CHAPTER 4. THE SOUND VIEWER TOOL 44

Figure 4.1: The Sound Viewer Interface.

are also two extra buttons; the \Memory In" which stores the current position / time

within the �le and the \Memory Out" button which, if pressed, displays a list box of all

the stored positions. The user can double-click on any of these, to move to that position

in the �le.

The Sound Viewer has two white windows which span the width of the main applica-

tion window. The larger of the two windows is called the detail window and the smaller,

the overview window. The overview window represents the length of the audio �le and

within this window is a highlighted rectangle, which represents the exploded view seen

in the detail window above. Users can change the width of this rectangle, so that the

smaller the rectangle the higher the zoom factor and vice versa. The middle of this

rectangle is represented in the detail window as a thin vertical line.

When an audio �le is played, the highlighted rectangle moves from left to right, which

gives a visual clue to the current position in the audio sequence. The vertical line also

moves to the middle of the detail window and when the end of the audio sample has

been reached, it will scroll o� to the right. If the highlighted rectangle passes over

any links, the links scroll horizontally across the detail window as well. The links are

displayed in the overview window as horizontal lines and in the detail window as shaded

CHAPTER 4. THE SOUND VIEWER TOOL 45

rectangles with simple text descriptions of the link. The overview window is really just

an enhanced scrollbar and by moving the rectangle or the position indicator the user

can seek to a position within the �le.

There are two position counters and two selection indicators underneath these win-

dows. The two counters represent the duration of the �le and the elapsed time since the

start of the track. The indicators are used to select a portion of the sound �le which is

conventionally highlighted in black. This selection can then be used to create an anchor.

When the Sound Viewer is executed, outside of the Microcosm environment, all of

the components mentioned above are shown, apart from the detail window. This is

displayed when an audio �le is loaded. The position counters and selection indicators

are all set to zero and the audio sequence controls are dimmed, since they can not be

used at this stage. To load an audio �le, the Sound Viewer uses a project �le which

has a \.SOU" extension. This �le contains the type of audio format e.g. MIDI, WAV

etc., the audio sample's �lename, the start and stop time of the sample and a simple

description of the �le. There is also an option to automatically play the �le when it

is loaded. After a project �le has been parsed and the audio �le has been loaded, the

detail window is shown and the position counters are updated. The audio sequence

controls are also updated e.g. the \Play" button is undimmed so that the �le can be

played.

Within the Microcosm environment, the application is usually executed when the user

follows a link to a \.SOU" �le or when the user explicitly uses Microcosm to open an

\.SOU" �le. In both cases the Sound Viewer automatically loads the project �le.

To create and traverse links to and from the Sound Viewer tool, the Microcosm system

which manages all of this link information, must be running in the background. With

this system running, a user must follow several steps to create a link and these are:

1. Using the selection indicators, a user selects a portion of an audio �le to be the

start point of a link.

2. The user selects the \Start Link" option from the \Action" menu. This starts the

creation of a link and a \Start Link" dialog box is displayed.

3. The user then selects \End Link" from the \Action" menu of a Microcosm-aware

application or Microcosm's own universal viewer. This ends the link and the \End

CHAPTER 4. THE SOUND VIEWER TOOL 46

Link" dialog box is displayed.

4. The user then clicks on the \Complete..." button, in either of the two dialog

boxes. This brings up the \Linker" window which allows the user to type in a

brief text description of the link and choose the type of link to be created. At the

moment the Sound Viewer only supports speci�c links (from one point to another)

because intensive sound processing would be required for the generation of generic

or local links.

5. By clicking on the \Ok" button, in the \Linker" window, the link is forged and a

message is sent by Microcosm to the Sound Viewer to show the link information in

its windows, e.g. a horizontal line in the overview window and a shaded rectangle,

with the text description of the link, in the detail window.

To follow / traverse a link, from the Sound Viewer, a user can either double-click on

the shaded rectangle (the link) in the detail window or press the \play" button. By

pressing this button, the highlighted rectangle in the overview window will move from

left to right, which will cause the shaded rectangles (the links) in the detail window to

do the same. As these links pass under the vertical line, in the detail window, they are

automatically traversed. This is shown in Fig. 4.3. In this picture an audio �le is being

played and it contains two links; one to a window containing a picture and the other

to a text window. These links are immediately followed as the vertical line passes over

them.

4.1.3 The Implementation

The original Sound Viewer was implemented using Microsoft's Visual C++ for Windows

v1.52. The graphical interface to the viewer was created using one of the components

of this application; the Resource Editor. This editor allows the user to create dialog

boxes, icons, fonts, menus and other resources, which can then be used in the main

application. For the Sound Viewer, this editor was used to create a dialog box with a

menu, two text boxes for the counters, two list boxes for the selection indicators and

�ve buttons for the audio controls. The detail and overview window were created using

speci�c functions in the Visual C++ language. The dialog box was then used as the

graphical user interface (GUI) to the program, see Fig. 4.1.

CHAPTER 4. THE SOUND VIEWER TOOL 47

Goose and Hall [32] describe in their paper how the Sound Viewer tool was divided

into a number of modules. For example one of the modules would handle the graphics,

whilst another would handle the audio (see Figure 6 in [32]). This helped to reduce the

complexity of the programming task.

This paper also describes how the audio module consists of two layers. The �rst layer

is a suite of audio device independent functions, that separate the user from the lower

layer audio device controls. The second layer consists of a suite of functions for each of

the audio formats supported by the Sound Viewer. These are speci�c audio functions

that are called by the �rst layer and rely heavily on Microsoft's Media Control Interface

(MCI). MCI provides several functions that allow users to control di�erent types of

media, e.g. opening, playing, stopping and closing a WAV audio or AVI video �le.

A simple visual representation of these two layers is shown in Fig. 4.2. Each of

the \?" in this diagram can be replaced with a speci�c audio control command, e.g.

\Open", \Close", \Play", \Stop" etc. Therefore if a user clicks on the \Play" button,

the \PlayAudioDevice" function is called. This function will then call \GetAudioDe-

viceType", which will return the format of the audio �le. If the �le is a WAV �le, the

\PlayWAV" function is called, which in turn calls the relevant MCI function.

The modular design of the Sound Viewer and the creation of an abstract layer, be-

tween the user interface and the audio controls (MCI), ensures that any new and emerg-

ing audio formats can be easily supported.

4.1.4 The original Sound Viewer case study

To test the original Sound Viewer tool, a simple demonstration had to be developed.

It was decided that certain items from the Churchill archives, stored at the University

of Southampton, could be used. The archives contain several movie clips and text

transcripts of Winston Churchill's Sinews of Peace speech at Westminster College. For

the demonstration it was decided that the audio from the movie clips would be used, in

conjunction with pictures and the text transcript of the speech.

To create the demonstration, links were created between the relevant pieces of the

media, e.g. between the text transcript and the relevant portion of the audio sample,

between the audio and JPEG pictures etc. These links were created using Microcosm,

see Sections 2.6.3 and 4.1.2.

CHAPTER 4. THE SOUND VIEWER TOOL 48

Audio Device
Independent Functions

Specific Audio
Functions

AudioDevice?

CD? MIDI? WAV?

Is MIDI? Is Wav?

GetAudioDeviceType()

Is CD?

Figure 4.2: The Audio Device Layers.

Once the links had been created between each of the media objects, the demonstration

could then be used. A user could bring up the text transcript of the speech and click on

a highlighted link. This would cause the Sound Viewer tool to be displayed and the user

could then play the audio sample. Fig. 4.3 shows a small sample of a demonstration.

In this screen-shot, the Sound Viewer tool has been activated. Within the viewer's

detail window there are two links (represented as two rectangles). When the user presses

the \Play" button, the audio sample is played and the highlighted rectangle in the

overview window moves from left to right. This causes the links to move and pass under

the thin black line in the detail window above. As the links pass under this line they are

automatically followed and in the diagram, Fig. 4.3, one of the links displays a picture

of Winston Churchill and the other, the text transcript of his speech.

CHAPTER 4. THE SOUND VIEWER TOOL 49

Figure 4.3: The original Sound Viewer demonstration.

4.2 The streaming Sound Viewer

4.2.1 An Overview

Over the last few years the World Wide Web, see Section 2.4, has steadily grown

from being a simple hypertext system to a more sophisticated hypermedia system, that

supports moving pictures, audio and video. Traditionally when a user clicks on a link

to a page that contains a sound and / or a video sequence, the user had to wait until

the entire media �le had been downloaded, before it could be played. If the network

connection was slow and / or the �le was very large, this could take a considerable

amount of time. Therefore software and hardware manufacturers started to develop

CHAPTER 4. THE SOUND VIEWER TOOL 50

protocols that could stream the media over the networks. These are discussed in more

detail in Chapter 3.

If a user clicks on a link to a streaming audio �le, a request is sent to a streaming audio

server which splits the appropriate �le into smaller packets. These packets are then sent

to the client (user's computer) using the new protocols. A client-side streaming media

application then bu�ers the incoming packets until a certain amount has been received.

It can then play the contents of the bu�er. If the network connection is good, there is

no perceivable delay in the delivery of the data. Otherwise there is a slight delay as the

application waits for the packets.

The Soundviewer tool was developed as a hypermedia application to visually create

and traverse links to and from the audio domain. Audio �les can be loaded into this

tool and then the Microcosm link creation mechanism can be used to create the links.

These audio �les, however, can be quite large e.g. 31.5 seconds of stereo sound can

generate a 347.7 kilobyte WAV �le. Audio and video sequences, which contain far more

information, can consume copious amounts of hard disk space. With the streaming audio

techniques mentioned previously in this section, it is possible to store this information

on a separate streaming media server. Users can then access the audio by using a

streaming media protocol, which would save valuable amounts of disk space.

To implement this concept, the functionality of the Soundviewer was extended so that

streaming audio could be supported. This was achieved by changing the tool from a

simple application to a streaming audio client, that could communicate with the media

server. Several protocols exist that provide suitable methods for a media server to

communicate with a client and vice-versa. Chapter 3 discusses two of these protocols

and they are the Real-time Transport Protocol (RTP) and the Real Time Streaming

Protocol (RTSP). RTP is an internet standard whilst RTSP is a proposed internet

standard. Before it can become a standard, however, it has to go through several

re�nements and at least two basic implementations of the client and the server have to

be written. This is a requirement of the Internet Engineering Task Force (IETF), which

is a part of the internet standards committee. The RTSP drafts and implementations are

publicly available and allow prospective users to comment on any area of the protocol.

This ensures that the protocol remains an \open" standard.

Since RTSP provides most of the functionality required to create a streaming version

CHAPTER 4. THE SOUND VIEWER TOOL 51

of the Sound Viewer and an initial implementation of the protocol is already available

for public use, it was decided that this protocol would be used with the Sound Viewer.

The following sections describe the design and implementation of this streaming audio

tool.

4.2.2 The Design

As described in the previous section, Section 4.2.1, IETF requires at least two imple-

mentations of a proposed internet standard before it can become an actual standard.

As a result the developers of RTSP, see Section 3.3, have created a simple client and

a server, that will stream WAV audio �les over the internet. This code is available for

Microsoft Windows (both 95 and NT) and UNIX machines. By combining a modi�ed

version of this client with the original Sound Viewer, a streaming Sound Viewer client

was created. The RTSP server, however, was not modi�ed since its functionality does

not need to be changed.

To integrate the RTSP client into the Sound Viewer, the viewer's audio module was

extended. The audio module consists of two layers, see Section 4.1.3; an abstract

audio device independent layer and a suite of lower-layer functions for each of the

supported audio formats. For RTSP, a new set of these functions were created. A small

modi�cation was also made to the abstract layer so that it could detect a new audio

device type, e.g. RTSP. A simple diagram showing how RTSP is integrated into these

layers is shown in Fig. 4.4.

Each of the \?" in this diagram can be replaced with a speci�c audio control com-

mand, such as \Open", \Play", \Stop" etc. If RTSP is the audio format being used

and the user clicks on the \Play" button, the \PlayRTSP" function will be called.

One of the fundamental design decisions, for the streaming Sound Viewer, was that

the interface would look exactly the same as the original tool. As far as the end user is

concerned the viewer looks the same and can be used in exactly the same way. A few

changes were made to the project �le, which is described in Section 4.1.2, but apart

from this, however, all of the underlying network connections to the RTSP server and

the actual delivery of the audio data will be transparent. For example a fast network

connection gave the impression that the sample being streamed from the server was

actually on the local machine. Network congestion, however, can cause the viewer to

CHAPTER 4. THE SOUND VIEWER TOOL 52

Audio Device
Independent Functions

AudioDevice?

CD? MIDI? WAV?

Specific Audio
Functions

?RTSP

GetAudioDeviceType()

Is MIDI?Is CD? Is Wav? Is RTSP?

Figure 4.4: The Audio Device Layers with RTSP.

pause playback until enough data had been received.

With the original Sound Viewer, a project �le is used to store information about the

audio sample, e.g. the �lename, start and stop times etc. This �le is then loaded into

the tool. The contents of this �le for the streaming version of the viewer, however, had

to be changed. For example:

� A new audio format type would need to be supported, e.g. RTSP. The original

viewer only recognised three types of audio in the project �le: CD, MIDI and

WAV.

� The location of the audio �le would have to be changed from a local path to an

RTSP URL. This URL would be used to locate the media server.

� The start and stop times of the audio sample would have to be removed because

the �le is stored on a separate media server. The length of the �le would only be

known when this information is retrieved from the server.

When this new project �le is loaded into the streaming viewer, the URL (which includes

the �lename of the audio sample on the server) is read in and a connection is then formed

CHAPTER 4. THE SOUND VIEWER TOOL 53

between the viewer and the media server. At this stage the Sound Viewer has e�ectively

become an RTSP client. Fig. 4.5 shows the interaction between the streaming Sound

Viewer and the media server, when the viewer requests a connection to be formed.

The connection that is formed between the viewer and the server is called the control

channel. The type of channel used will depend on the RTSP URL, see Section 3.3. The

viewer uses this channel to send commands to the server. Initially a \get" command is

sent, with the �lename of the audio sample, to the server. Figures 4.6 and 4.7 show

the interaction between the viewer and the server, when the RTSP \get" command is

issued.

The media server processes this command and returns information about that audio

�le, e.g. the �le length in bytes, the duration in milliseconds etc., to the viewer. This

information is used to update the duration counter and initialise certain components

within the Sound Viewer tool.

When the \Play" button is pressed in the viewer, the \p" command is sent to the

server. This command can also contain a range to play, which is described in more detail

in the RTSP standards track, see [36]. The server will process this command, divide the

audio sample into packets and then stream these to the viewer. The delivery mechanism

for this audio data is separate from the control channel and it might be reliable or

unreliable1, e.g. TCP or UDP respectively. The developers initial implementation of

the RTSP server uses UDP and therefore, there is no guarantee that the packets will be

delivered to the viewer. Fig. 4.8 shows the interaction between the streaming Sound

Viewer and the media server, when the play command is sent to the server.

With the original Sound Viewer two events occur when the audio �le is played and

they are:

1. The highlighted rectangle in the overview window moves from left to right. This

graphically represents the current position in the audio �le.

2. The \Elapsed" position counter also changes to display the current position. This

is usually in milliseconds or minutes and seconds, depending on the user's prefer-

ences.

Both of these components use a Media Control Interface (MCI) function to obtain this

1This is usually implementation speci�c.

CHAPTER 4. THE SOUND VIEWER TOOL 54

position. MCI, however, will only work with �les stored on the local machine. With

the streaming Sound Viewer, the audio sample is stored on a media server which is

another machine connected to the internet. Therefore this function can not be used

with the streaming viewer. To overcome this problem a virtual time unit (VTU) was

created. This calculates the current position within the �le, based on the number of

packets received from the RTSP server, the length of the �le in bytes and the duration

of the �le in milliseconds. The VTU was then used to move the highlighted rectangle

and change the \Elapsed" position counter.

As mentioned previously, MCI can only be used with media �les stored on the local

machine. Therefore MCI will not work with RTSP, since the audio �les are stored on

other machines (media servers). The developers of the RTSP client, however, overcame

this problem by using Microsoft's lower-level audio speci�c functions. These functions

were incorporated into the lower-layer of the Sound Viewer's audio module. There was

no need to modify the MCI controls for the other supported audio formats, since their

functionality has not changed.

4.2.3 The Implementation and case study

The main problem that was encountered, in the implementation of the streaming Sound

Viewer tool, was that the original viewer was designed for a 16 bit open hypermedia sys-

tem (Microcosm), see Sections 2.6.3 and 4.1.1. Therefore the original Sound Viewer

code had to be compiled using a 16 bit compiler, e.g. Microsoft Visual C++ for Windows

1.52. Both the RTSP client and server, however, were designed to be 32 bit applications;

requiring a 32 bit compiler, for example Microsoft Visual C++ v4 for Windows 95 or

NT. As a result, the streaming viewer could not be created by simply \inserting" the

relevant RTSP client code into the original Sound Viewer code. The resulting program

would contain 16 and 32 bit code, which would not compile.

To overcome this problem, the RTSP client was converted into a 16 bit application.

This new code was then integrated into the original Sound Viewer code to form the

streaming viewer application. For example the functions in the RTSP client that handle

the streaming audio were inserted into the lower layer of the audio module, see Sections

4.1.3, 4.2.2 and Fig. 4.2.

Another possible solution would of been to convert the Sound Viewer into a 32 bit

CHAPTER 4. THE SOUND VIEWER TOOL 55

application. However, there is no 32 bit implementation of Microcosm and so the

functionality required to create, modify and follow links would have been lost; the

tool would have e�ectively become a standalone application that could play local and

streaming audio �les.

Overall the process of integrating the RTSP client into the original Sound Viewer

tool was relatively straight-forward. New code had to be created to handle the virtual

time unit (VTU), see Section 4.2.2 and the interface between the RTSP client and the

Sound Viewer's graphical user interface (GUI). This new code, to handle the interface,

was designed to ensure that all of the network connections to the RTSP server were

transparent to the user.

To test the streaming Sound Viewer, a demonstration similar to the original case

study, see Section 4.1.4, was created. Again the Churchill archives, at the University

of Southampton, were used. Links were created between the audio samples (which are

now stored on a separate media server) and the relevant pieces of the archive. This is

shown in the diagram Fig. 4.9.

In this screenshot, when the \Play" button has been pressed, a command is sent to

the media server to stream the audio to the Sound Viewer. When the Sound Viewer

receives enough information, the audio is played and the virtual time unit is updated.

As the VTU is updated, the highlighted rectangle in the overview window moves from

left to right, which causes the links to pass under the thin black line in the detail window.

This results in the links being automatically followed.

CHAPTER 4. THE SOUND VIEWER TOOL 56

HANDLE_HELLO_REPLY
(DISCARD)

HANDLE_HELLO_REPLY
(DISCARD)

interface_hello(...)
(initialises dialog box)

Client Server

ParseURL

Open "rtsp://..."

handle_event(CMD_OPEN)

SEND_HELLO_REQ

server_connect (Start TCP)

HANDLE_HELLO_REQ

SEND_REPLY (200 if OK)

SEND_HELLO

HANDLE_HELLO_REQ

SEND_REPLY (200 if OK)

Figure 4.5: Client / Server interaction for the RTSP \open" function

CHAPTER 4. THE SOUND VIEWER TOOL 57

HANDLE_GET_REQ
(check that "filename" exists)

SEND_GET_REPLY
(Contains file size, samples
per sec, bits per sec etc.)

setup_stream(...)
(read in information
about the file)

HANDLE_GET_REPLY
(handles the information
sent e.g. file size etc.)

SEND_SETUP_REQ
(Creates a UDP stream)

ServerClient

get "filename"

SEND_GET_REQ

HANDLE_GET_REPLY

handle_event(CMD_GET)

set_stream_settings(...)

Figure 4.6: Client / Server interaction for the RTSP \get" function

CHAPTER 4. THE SOUND VIEWER TOOL 58

HANDLE_SETUP_REQ
(sets up the UDP / RTP port)

interface_new_session(...)
(enables the ‘play’ and ‘pause’
buttons on the dialog box)

Client Server

SEND_SETUP_REPLY

SEND_REPLY (200 if OK)

HANDLE_SETUP_REPLY

Figure 4.7: Client / Server interaction for the RTSP \get" function (cont'd)

CHAPTER 4. THE SOUND VIEWER TOOL 59

add_play_range(...)
(if there is a range)

end_of_streams(...)
(start from the beginning)

HANDLE_PLAY_REQ
(check for errors)

start_stream(...)
(if there is a play range, seek to
the start position and prepare the
UDP socket for transmission)

stream_event(...)
(stream the file over UDP)

interface_start_play(...)
(initialises the ‘play’ dialog
box)

Client Server

(‘Play’ button pressed)

handle_event(CMD_PLAY)

SEND_PLAY_RANGE_REQ

OR

SEND_PLAY_REPLY

HANDLE_PLAY_REPLY

Figure 4.8: Client / Server interaction for the RTSP \play" function

CHAPTER 4. THE SOUND VIEWER TOOL 60

Figure 4.9: The streaming Sound Viewer.

Chapter 5

Conclusion

This report has discussed how audio has been used in a variety of multimedia, hyper-

media and \open" hypermedia systems. With most of these systems however, audio is

used as just another part of a presentation or as a side-e�ect when the user clicks on a

button / link. This is not synonymous to the way sound is used in everyday situations.

Humans generally use a mixture of the �ve senses to interact with the outside world,

whilst the majority of the systems mentioned above use the sense of sight as the primary

means to convey information. This is mainly due to the complexity of the other senses.

The aim of this research was to develop a tool that allows users to create links to and

from streaming audio. There are several existing standards, MHEG and HyTime, that

could have been used to do this. MHEG and HyTime however, are quite complex and

have primarily been designed to help create easy-to-use client/server systems and well-

structured documents, respectively. The audio domain has been supported by earlier

versions of HyTime (SMDL), however these standards have focused speci�cally on the

visual domain.

Streaming audio is being used quite extensively on the World Wide Web (WWW).

On older web browsers, a user would click on an \audio" link to play an audio �le.

The browser would then download the entire �le to the user's PC and then activate a

local sound tool to play the sample. This process of downloading the �le could take a

considerable amount of time especially if the audio �le was large and / or the network

connection was poor. Streaming the audio can take considerably less time because

the �le does not have to be downloaded �rst. The WWW however, is known as a

61

CHAPTER 5. CONCLUSION 62

\closed" hypermedia system because all of the link information is embedded within the

documents. Also, there are no mechanisms within the HyperText Markup Language

(HTML), the language used to markup documents for the WWW, to create links from

within an audio �le or stream.

Multimedia authoring tools and the WWW can be used to create links to audio. These

systems however, can not create links from within an audio �le or stream. Therefore

to overcome this problem existing hypermedia systems were examined. Originally these

systems only allowed the creation of links to and from text. Over time, as technology

improved, new systems were developed that could support di�erent types of media as

well as text. These systems however, used proprietary document formats with embed-

ded links, which made them very di�cult to extend for di�erent media types. At this

time, these systems had limited support for audio.

In 1987 researchers realised that they needed to develop more \open" systems, which

could share data and store link information separately from the actual content. Several

\open" hypermedia systems have been developed and they include Intermedia, Micro-

cosm and Hyper-G. The majority of these systems have, again, used the sense of sight

as the primary means to convey information.

In 1994, however, an audio tool was developed for the Microcosm system. It is called

the SoundViewer tool and it allows users to easily create links, from within an audio

�le, to di�erent types of media. Microcosm also allows the creation of links to this tool

and hence the audio, as well. The SoundViewer, however, only allows users to load �les

that are stored on the local machine. To create links to and from streaming audio, the

tool had to be changed to a streaming audio client, so that it could communicate with

a streaming audio server.

To create this new streaming SoundViewer client, the functionality of the tool had to be

enhanced using a new streaming protocol; the Real Time Streaming Protocol (RTSP).

RTSP has just recently become a proposed standard and it is described as being a

\network remote control", e.g. it allows users to play, pause, stop or move to any

position within the audio stream. This protocol is used by the tool to communicate

with the server and bu�er any incoming audio streams. The streaming SoundViewer

can still be used with local audio �les.

To conclude, the sense of sight has always been regarded as the primary means to

CHAPTER 5. CONCLUSION 63

convey information, for normally sighted people. As a result the other senses have not

really been used; although this is slowly changing as technology improves. This report

has shown that it is possible to use the audio domain and recent developments in audio

technology, in ways that have traditionally been used for the visual domain.

5.1 Future Work

This section describes several further areas of research and it also gives a brief outline

of the schedule required to cover the main aspects of this work. Several areas are going

to be investigated and they are:

1. Content Based Navigation (CBN) using speech recognition software and RTSP as

the delivery mechanism.

2. The next generation of internet protocol, IPv6. The current protocol (IPv4) was

not originally designed to handle streaming media. IPv6 however, has several new

mechanisms that can handle this type of media.

3. Distributed linkbases. The Microcosm system stores link information in linkbases

on the local machine. The streaming SoundViewer could be enhanced if dis-

tributed linkbases were also supported; possibly by using the Distributed Link

Server (DLS).

The schedule for this work is given below.

� March - April

- Research into speech recognition software and the speech API's.

- Investigation into how the streaming audio can be fed into a speech recogni-

tion engine.

- Familiarization of speech software development kits (SDKs).

� May - July

- Research into the IPv6 \
ow" control mechanism and incorporate IPv6 into

the RTSP code.

- General RTSP improvements.

CHAPTER 5. CONCLUSION 64

- Incorporating RTSP into the DLS.

- Testing and evaluation.

� August - October

- Design of speech recognition tool to be used with RTSP and the DLS.

- Testing and evaluation.

� November - December

- Write up of the thesis.

Bibliography

[1] A. Dix, J. Finlay, G. Abowd and R. Beale, Human-Computer Interaction. Prentice

Hall Europe, 2nd ed., 1998.

[2] Brian C. J. Moore, An Introduction to the Psychology of Hearing. Academic Press,

4th ed., 1997.

[3] P. Georghiades and G. Jacobs, \Mixed Media," Personal Computer World, vol. 20,

pp. 225{242, November 1997.

[4] T. J. Berners-Lee, R. Cailliau, J. F. Gro� and B. Pollerman, \World Wide Web: An

Information Infrastructure for High-Energy Physics," in Proceedings of the Work-

shop on Software Engineering, Arti�cial Intelligence and Expert Systems for High

Energy and Nuclear Physics, (La Londe-les-Maures, France), CERN, World Scien-

ti�c, January 1992.

[5] Arturo A. Rodriguez, Martin Fisher and Brian Markey, \Scripting Languages

Emerge in Standards Bodies," IEEE Multimedia, pp. 88{92, Winter 1995.

[6] Thomas Meyer-Boudnik and Wolfgang E�elsberg, \MHEG Explained," IEEE Mul-

timedia, pp. 26{38, Spring 1995.

[7] Lloyd Rutledge, John Buford and Roger Price, \Mobile Objects and the Hyoc-

tane Distributed Hyperdocument Server," Computers & Graphics, vol. 20, no. 5,

pp. 633{639, 1996.

[8] Robert Joseph, PhD and J�orgen Rosengren, MSc, \MHEG-5: An Overview,"

http://www.fokus.gmd.de/ovma/mug/archives/documents/mheg-reader/. . .

rd1206.html, December 1995.

65

BIBLIOGRAPHY 66

[9] Lars Geyer, Michael Baentsch, Lothar Baum, Georg Molter, Ste�en Rothkugel,

Peter Sturm, \MHEG in Java - Integrating a Multimedia Standard into the Web,"

http://thunder.informatik.uni-kl.de:8080/MHEG5Engine/, 1996.

[10] L. A. Carr, D. W. Barron, H. C. Davis and W. Hall, \Why use HyTime?," Elec-

tronic Publishing, vol. 7, pp. 163{178, September 1994.

[11] An ArborText Inc. SGML White Paper, \SGML: Getting Started," tech. rep.,

ArborText, Inc., http://www.arbortext.com/wp.html, c
1992, 1995.

[12] Stephen R. Mounce, \A Brief Discussion of the Standard Music Description Lan-

guage," http://www.techno.com/SMDL.html, 1990.

[13] Anton Eliens, Martijn VanWelie, Jacco van Ossenbruggen and Bastiaan Schonhage,

\Jamming (on) the Web," in The 6th International WWW Conference Proceedings,

(Santa Clara, California, USA), W3C, April 1997.

[14] Steven R. Newcomb, Neill A. Kipp and Victoria T. Newcomb, \The \HyTime"

Hypermedia / Time-based Document Structuring Language," Communications of

the ACM, vol. 34, pp. 67{83, November 1991.

[15] Steven R. Newcomb, \Multimedia Interchange Using SGML / HyTime (Part 1:

Structures)," IEEE Multimedia, pp. 86{89, Summer 1995.

[16] Steven R. Newcomb, \Multimedia Interchange Using SGML / HyTime (Part 2:

Principles and Applications)," IEEE Multimedia, pp. 60{64, Fall 1995.

[17] J. Conklin, \Hypertext: An Introduction and Survey," IEEE Computer, vol. 1(9),

pp. 17{40, September 1987.

[18] V. Bush, \As we may think," in Atlantic Monthly, pp. 101{108, July 1945.

[19] D. C. Engelbart and W. K. English, \A Research Center for Augmenting Human

Intellect," AFIPS Conference Proceedings, vol. 33, no. 1, 1968.

[20] T. H. Nelson, \Literary Machines," Mindfull Press, 1987.

[21] F. G. Halasz, \Re
ections on NoteCards: Seven issues for the next generation of

Hypermedia Systems," Communications of the ACM, vol. 31, pp. 836{852, July

1988.

BIBLIOGRAPHY 67

[22] R. M. Akscyn, D. L. McCracken and E. A. Yoder, \KMS: A distributed hypermedia

system for managing knowledge in organisations," Communications of the ACM,

vol. 31, pp. 820{835, July 1988.

[23] N. Yankelovich, B. J. Haan, N. K. Meyrowitz and S. M. Drucker, \Intermedia:

The Concept and the Construction of a Seamless Information Environment," IEEE

Computer, vol. 1, pp. 81{96, January 1988.

[24] Stuart Goose, A Framework for Distributed Open Hypermedia. PhD thesis, Uni-

versity of Southampton, Faculty of Engineering and Applied Science, Department

of Electronics and Computer Science, June 1997.

[25] Nechemia Daniel Beitner, Microcosm++: the development of a loosely coupled ob-

ject based architecture for open hypermedia systems. PhD thesis, University of

Southampton, Faculty of Engineering and Applied Science, Department of Elec-

tronics and Computer Science, September 1995.

[26] Frank Halasz and Mayer Schwartz, \The Dexter Hypertext Reference Model,"

Communications of the ACM, vol. 37, pp. 30{39, February 1994.

[27] K. C. Malcolm, S. E. Poltrock and D. Schuler, \Industrial Strength Hypermedia:

The Requirements for a Large Engineering Enterprise," in Proceedings of the ACM

Hypertext '91 Conference, (San Antonio, Texas, USA), pp. 13{25, December 1991.

[28] A. M. Fountain, W. Hall, I. Heath and H. C. Davis, \MICROCOSM: An Open

Model for Hypermedia with Dynamic Linking," in Hypertext: Concepts, Systems

and Applications, INRIA, Cambridge University Press, November 1990.

[29] H. C. Davis, W. Hall, I. Heath, G. J. Hill and R. J. Wilkins, \Towards an Inte-

grated Environment with Open Hypermedia Systems," in Proceedings of the ACM

Conference on Hypertext, (Milan, Italy), pp. 181{190, ACM, December 1992.

[30] W. Hall, I. Heath, G. J. Hill, H. C. Davis and R. J. Wilkins, \The Design and

Implementation of an Open Hypermedia System," Computer Science Technical Re-

port 92-19, University of Southampton, Department of Electronics and Computer

Science, UK, 1992.

BIBLIOGRAPHY 68

[31] Wendy Hall, \Ending the Tyranny of the Button," IEEE Multimedia, vol. 1, pp. 60{

68, Spring 1994.

[32] Stuart Goose and Wendy Hall, \The Development of a Sound Viewer for an Open

Hypermedia System," in The New Review of Hypermedia and Multimedia, vol. 1,

pp. 213{231, 1995.

[33] Paul H. Lewis, Hugh C. Davis, Steve R. Gri�ths, Wendy Hall and Rob J. Wilkins,

\Media-based Navigation with Generic Links," in Hypertext '96, (Washington DC,

USA), pp. 215{223, 16th-20th March 1996.

[34] Fred Halsall, Data Communications, Computer Networks and Open Systems. Ad-

dison Wesley, 3rd ed., 1992.

[35] Audio-Video Transport Working Group, H. Schulzrinne, S. Casner, R. Fred-

erick, V. Jacobson, \RTP: A Transport Protocol for Real-Time Applications

(RFC: 1889)," tech. rep., Network Working Group, http://src.doc.ic.ac.uk/-

packages/rfc/rfc1889.txt, January 1996.

[36] H. Schulzrinne, A. Rao and R. Lanphier, \The Real Time Streaming Proto-

col (RFC 2326)," tech. rep., Internet Engineering Task Force (IETF), http://-

src.doc.ic.ac.uk/packages/rfc/rfc2326.txt, April 1998.

[37] Tim Dierks and Christopher Allen, \The TLS Protocol Version 1.0," tech. rep.,

Internet Engineering Task Force (IETF), ftp://ftp.nordu.net/internet-drafts/draft-

ietf-tls-protocol-05.txt, November 1997.

[38] R. Fielding, UC. Irvine, J. Gettys, J. Mogul, DEC, H. Frystyk, T. Berners-Lee,

MIT/LCS, \The Hypertext Transfer Protocol { HTTP/1.1 (RFC:2068)," tech. rep.,

Network Working Group, http://www.w3.org/Protocols/rfc2068/rfc2068, January

1997.

[39] Skip Pizzi and Steve Church, \Audio Webcasting Demysti�ed," Web Techniques,

pp. 55{60, August 1997.

[40] S. Bugaj, D. Bulterman, L. Hardman, J. Jansen, R. Lanphier, N. Layaida, J. Marsh,

A. Rao, W. ten Kate, J. van Ossenbruggen, M. Vernick and J. Yu, \Synchronized

BIBLIOGRAPHY 69

Multimedia Integration Language," tech. rep., The World Wide Web Consortium,

http://www.w3c.org/TR/WD-smil, November 1997.

