
A Distributed Scientific Data Archive Using the Web, XML and
SQL/MED

Mark Papiani Jasmin L. Wason Alistair N. Dunlop Denis A. Nicole

Department of Electronics and Computer Science,
University of Southampton, Southampton, SO17 1BJ, UK.

{mp|jlw98r|dan}@ecs.soton.ac.uk

Abstract

We have developed a web-based architecture
and user interface for fast storage, searching and
retrieval of large, distributed, files resulting
from scientific simulations. We demonstrate that
the new DATALINK type defined in the draft
SQL Management of External Data Standard
can help to overcome problems associated with
limited bandwidth when trying to archive large
files using the web. We also show that
separating the user interface specification from
the user interface processing can provide a
number of advantages. We provide a tool to
generate automatically a default user interface
specification, in the form of an XML document,
for a given database. This facilitates deployment
of our system by users with little web or
database development experience. The XML
document can be customised to change the
appearance of the interface.

1. Introduction

We have been working with the UK Turbulence
Consortium [1] to provide an architecture for archiving
and manipulating the results of numerical simulations.
One of the objectives of the consortium is to improve
collaboration between groups working on turbulence by
providing a mechanism for dissemination of data to
members of the turbulence modelling community. The
consortium is now running simulations on larger grid
sizes than has previously been possible, using the United
Kingdom's new national scientific supercomputing
resource1. One complete simulation, comprising perhaps
one hundred timesteps, requires a total storage capacity

1 A 576 processor Cray T3E-1200E situated at the
University of Manchester, which forms part of the
Computer Services for Academic Research (CSAR)
service run on behalf of the UK research Councils.
http://www.csar.cfs.ac.uk/

of some hundreds of gigabytes. This necessitates new
web-based mechanisms for storage, searching and
retrieval of multi-gigabyte datasets that are generated for
each timestep in a simulation. In particular, an
architecture is required that can minimise bandwidth
usage whilst performing these tasks.

The Caltech Workshop on Interfaces to Scientific Data
Archives [2] identified an urgent need for infrastructures
that could manage and federate active libraries of
scientific data. The workshop found that whilst databases
were much more effective than flat files for storage and
management purposes, trade-offs existed as the
granularity of the data objects increased in size. If a
database is being created to manage metadata describing
scientific results, then ideally the database should also be
used to store the actual scientific result data in a unified
way. However for large output files it becomes costly and
inefficient to store the data as binary large objects
(BLOBS) within the database.

We describe a solution that uses an implementation of
the new SQL:1999 (formerly known as SQL3, see for
example [3]) DATALINK type, defined in SQL
Management of External Data (SQL/MED) [4], to
provide database management of scientific metadata and
large, distributed result files simultaneously with
integrity. We apply this technology to the web, by
providing a user-interface to securely manage large files
in a distributed scientific archive, despite limited
bandwidth.

A database table containing an attribute defined as a
DATALINK type can store a URL that points to a file on
a remote machine. Once a URL has been entered into the
database, software running on the remote machine
ensures that the file is treated as if it was actually stored
in the database, in terms of security, integrity, recovery
and transaction consistency. We use this mechanism to
allow large result files to be distributed across the web.

Our system generates a user interface, from a
specification defined in Extensible Markup Language
(XML) [5], to a database that supports DATALINKs. We
have created an XML Document Type Definition (DTD)
to define the structure of the XML file.

Our architecture provides the following features for
scientific data archiving:
1. The system can be accessed by users of the scientific

archive, who may have little or no database or web
development expertise. Users are presented with a
dynamically generated HTML query form that
provides a search interface akin to Query by
Example (QBE) [6]. We generate this interface
automatically from an XML user interface
specification file (XUIS). The XUIS specifies the
web interface to a particular object-relational
database (which may contain BLOBS and
DATALINK types). This file is constructed
automatically using metadata extracted from the
database catalogue but can be customised to provide
specialised features in the interface.

2. The default interface specification adds a novel data
browsing facility to maintain a web-based feel.
Contrary to Manber’s statement that finding ways to
include browsing in even relational databases would
be a great step [7], we show that one simple way to
browse relational databases is to follow relationships
between tables, implied by referential integrity
constraints defined in the database catalogue. We use
this principle to provide hypertext links in displayed
results that access related information.

3. Large result files can be archived at (or close to) the
point where they are generated. For the UK
Turbulence Consortium, this means that files can be
archived at the Manchester site on a local machine
that is connected via a high-speed link to the
supercomputer. By entering the URLs of these files
into a DATALINK column of a remote database (via
a web-based interface to the remote database),
database security and integrity features can then be
applied to the files. An alternative to this, which
achieves similar database security and integrity for
result files, is to use a web interface to upload a file
across the Internet and then store it as a BLOB in a
centralised archive at the new location. However,
this alternative is not feasible for large files due to
limited Internet bandwidth. Even if a file can be
transferred to a centralised site, additional processing
cost is incurred (which is not present with the
DATALINK mechanism) when loading the file as a
BLOB type into the database.

4. Because simulation results are stored in unmodified
files, existing post-processing applications, that use
standard file I/O techniques, can be applied to the
files without having to rewrite the applications. An
alternative would be to modify applications to first
access result objects from a database but this would
be very undesirable for many scientific users who
often apply post-processing codes written in
FORTRAN.

5. The Caltech workshop [2] recommended ‘cheap
supercomputers for archives’. The report suggests
that research is necessary to establish whether high-
performance computing resources, built from

commodity components, are viable for data-intensive
applications (as well as compute-intensive
applications as has been shown to be the case in for
example, the Beowulf project [8]). We are using our
architecture to build a large scientific archive from
commodity components, with many distributed
machines acting as file servers for a single database.
Security, backup and integrity of the file servers can
be managed using SQL/MED. This arrangement can
provide high performance in the following areas:

• Data can be distributed so that it is physically located
closest to intensive usage.

• Data distribution can reduce access bottlenecks at
individual sites.

• Each machine provides a distributed processing
capability that allows multiple datasets to be post-
processed simultaneously. Suitable user-directed
post-processing, such as array slicing and
visualisation, can significantly reduce the amount of
data that needs to be shipped back to the user. These
post-processing codes can be associated with remote
data files using the XUIS.

6. The XUIS could be customised to define access to
autonomous databases in a loosely coupled federated
database system (FDBS)2.

The rest of this paper is structured as follows. Section 2
begins with a high level description of our architecture.
We next describe how we use XML to specify user
interfaces. We then describe the default user interface our
system provides for a scientific data archive, including
searching and browsing capabilities. We explain the
functionality that SQL/MED brings to our architecture.
Section 3 describes future directions for this research,
including post-processing of the distributed result files
and extending the system to a federated database
architecture. Finally we draw some conclusions from our
work.

2. System Architecture and User Interface

This section starts with a high level view of our
architecture. We then describe how XML is used to
specify the functionality of the user interface. We show
how our system supports two kinds of information
retrieval, searching and browsing. We illustrate four
different types of browsing links that our system can
include automatically in web pages displaying query
results. ‘DATALINK browsing’ is particularly important
in our architecture for managing large, distributed
scientific data files. This section ends, therefore, with an
overview of the DATALINK type defined in the draft
SQL/MED standard.

2 We use the definition of ‘loosely coupled FDBS’ by
Sheth and Larson [9] to mean that there is no central
administration in terms of creation of, and access to, the
data.

2.1 System Architecture

The architecture of our system is shown in Figure 1. It
consists of a database server host (located at
Southampton University) and a number of file server
hosts that may be located anywhere on the Internet. All
of these hosts have an installed web server to allow
HTTP (or HTTPS – HTTP plus Secure Socket Layer)
communications directly from a web browser client.

Figure 1: System architecture.

A user of our system initially connects to the web
server on the database server host. The URL of our
system invokes a Java servlet [10] program. The first
time the servlet is invoked it builds the database user
interface from the XUIS. Thereafter separate threads
within the servlet process handle requests from multiple
web browser clients. Each user is first presented with a
login screen. Once a user has been verified, interaction
with the database is possible via HTML pages that are
dynamically generated by our servlet code. These pages
consist of HTML forms, Javascript and hypertext links.

The database server stores metadata describing the
scientific information such as, simulation titles,
descriptions and authors. This data is stored locally in the
database and is accessed by our servlet code using Java
Database Connectivity (JDBC) [11]. The data is
represented by tables with attributes defined as standard
SQL-types, BLOB types, or CLOB (Character Large
object) types. The latter types are used in our system to
store small image/video files, executable code binaries or
small ASCII files containing source code or descriptive
material for the turbulence simulations.

For scientific data archiving, an essential feature of our
interface is the novel use of remote file severs which
store files referenced by attributes defined as
DATALINK SQL-types. These file servers manage the
large files associated with simulations, which have been
archived where they were generated. When the result of a

database access yields a DATALINK value, our interface
presents this to the user as a hypertext link that can be
used to download the referenced file from a file server.
The URL contains an encrypted key that is prefixed to
the required file name. This key is verified by
DATALINK file manager code (running on the file
server host) which intercepts attempts to access any files
controlled by the remote database. Without this key, files
cannot be accessed on the file server host, either via the
locally installed web sever or directly from the file
system by a locally connected user.

We have limited our discussion here to the distributed
nature of our architecture, which consists of a central
database that can also manage external files on remote
hosts. Section 3 describes an extension to the architecture
to allow FDBS access.

2.2 XML Specification of the User Interface

Our system is started by initialising the Java servlet
code with an XUIS. This initialisation can take several
seconds but it is a one-off cost that is not repeated during
subsequent requests from users. A default XUIS can be
created prior to system initialisation using a tool that we
provide. This tool, written in Java, uses JDBC to extract
data and schema information from the database being
used to archive simulation results. This default XUIS
conforms to a DTD that we have created. The default
XUIS can be customised prior to system initialisation.
 The XUIS contains table names, column names,
column types, sample data values for each column, and
details of primary keys and foreign keys that participate
in referential integrity constraints. The XUIS also allows
aliases to be defined for table and column names.

In the next two sections we explain how this
information is used to provide an interface with searching
and browsing capabilities.

2.3 Searching and Browsing Data

Users of our interface can then begin to locate
information in the scientific archive by searching or
browsing data or by using a combination of both
techniques.

2.3.1 Searching

To search for data a user selects a link to a query form for
a particular table. This provides a QBE-like interface.
The majority of users of our scientific data archives are
frequent repetitive, simple queries. For this category of
user, a form-based visual query system (VQS) represents
a better alternative than an iconic VQSs or diagrammatic
VQSs [12]. Form-based interfaces also facilitate non-
expert users by capitalising on the natural tendency of
people to organise data into tables [12].

On the query form, the user selects the fields to be
returned. Also for each field present, restrictions may be
put on the values of the data. Restrictions consist of an
operator (=, <, >, >=, <=, <>, like and not like) and a

Figure 2: Result table from querying SIMULATION table.

text entry which can include wildcards. The operator is
selected from a drop down list. Sample values for the text
entry are also available in a drop down list. We provide
these features to minimise two of the major problems
inherent in text based query languages, such as SQL.
These are a semantic one in choosing the correct
attributes and relationships between them, and a syntactic
one in building the correct textual expression that
corresponds to the chosen query. By offering the user
choices of column names, table names and operators, the
instance of syntactic error can be reduced. Providing
column names and sample values can aid substantially in
narrowing the semantic meaning of a domain [13]. For
example, a column called ‘TITLE’ in a personnel
database could be used to store values such as ‘Mr’,
‘Mrs’, ‘Dr’, etc., or it could store a person’s job title
such as ‘Chief Engineer’. A sample value will quickly
clarify the intended meaning. Our interface randomly
selects ten sample values to be displayed for each simple
attribute type. The drop-down list of samples displays the
SQL-type by default as this also provides useful
information. The table names, column names, data types
and sample values used in the query form are obtained
from the XUIS used to initialise the system.

When the user submits a query to the database a result
page is returned to the user in the form of a table whose
columns are the marked fields and whose rows are the
data items that satisfy any restrictions entered.

Users familiar with the structure of a database can get
answers to particular queries using the query mechanism
alone. However we also provide a convenient data
browsing mechanism.

2.3.2 Browsing

After a result table is returned from the initial searching
step the user is in browsing mode. Figure 2 shows a
sample result table after performing a query on the

SIMULATION table in the schema of Figure 3. In this
mode the user may examine the table, print or save the
data, scroll backward and forward through the pages
returned from the database, or browse related
information. Figure 2 shows that the SIMULATION
result table contains data corresponding to simple SQL-
types, such as the title and date for a simulation. It also
contains a number of hypertext links from the
SIMULATION_KEY, DESCRIPTION and
AUTHOR_KEY columns. Our interface automatically
inserts several different types of link that we describe
below.

The SIMULATION result table (figure 2) displays a
link on each AUTHOR_KEY attribute. This is because
AUTHOR_KEY is a foreign key in the SIMULATION
table that references the AUTHOR table (see Figure 3).
Selecting a link on an AUTHOR_KEY value will retrieve
full details of the author by displaying the appropriate
row from the AUTHOR table. Since a primary key
occurs exactly once in its table, following a foreign key
link returns a single row.

The inverse relationship provides a primary key link to
a table in which the primary key value appears as a
foreign key. Since a foreign key may occur any number
of times in a table, following a primary key link may
change the number of rows in the table returned to the
user. Also because primary keys may appear in several
tables as a foreign key, there may be a choice of tables to
browse to. Referring to Figure 3, SIMULATION_KEY is
the primary key of the SIMULATION table.
SIMULATION_KEY links to three tables where it
appears as a foreign key; the RESULT_FILE table,
CODE_FILE table and VISUALIATION_FILE table.
Each individual SIMULATION_KEY value of Figure 2
therefore contains a primary key link . Selecting one of
these values will return all the rows that the key appears
in from one of the referenced tables. The particular table

is indicated in the currently checked radio button in the
column header.

Figure 3: Sample database schema for UK
Turbulence Consortium.

The table of data returned by our software interface
may be quite large. Cells associated with simple values,
such as numbers or short character strings, display the
actual values. As well as simple types, we also use BLOB
and CLOB types, to store small files that can be uploaded
over the Internet. Cells associated with these types
display a LOB link to the object. Clicking on such a link
causes the data associated with the cell to be
rematerialised and returned to the client. The link
displays the size of the object in bytes, which may help
users decide whether they want to retrieve the object. For
example, Figure 3, indicates that the DESCRIPTION
attribute in the SIMULATION table is a CLOB type.
Selecting this link will retrieve the description and
display it directly in the browser window since it contains
character data. For binary data (e.g. a stored image or
executable) selecting the link will allow the user to
retrieve the data as a file.

The sample schema of Figure 3 also contains three
attributes of the DATALINK SQL-type. These
DATALINK attributes serve the main purpose of our
architecture – to archive large scientific data via the web.
The attributes in the Turbulence Consortium schema of
Figure 3 are used for storing result files, code files, and
visualisation files. These values are displayed as a
filename in a result table, with a hypertext link that

contains an encrypted key, required to access the file
from the remote file server. This key is explained in more
detail in section 2.4.

All of the link types that are described above are
generated automatically in our system from information
contained in the XUIS. This indicates which columns are
of the BLOB, CLOB and DATALINK type and also
contains details of primary key to foreign key
relationships. A default XUIS will automatically contain
these relationships if referential integrity constraints have
been defined in a database. However, during
customisation of the XUIS it is possible to add
relationships between tables, for browsing purposes, even
if the database does not specify these constraints.

2.4 SQL/MED: The New DATALINK Type

Both ANSI and ISO have accepted the proposal for SQL
Part 9: Management of External Data [4], which includes
the specification of the DATALINK type. ISO
progressed SQL/MED from working draft to committee
draft in December 1998. If things go according to
schedule it should become a standard in late 2000.

DATALINKs provides the following features for
database management of external files:

1. Referential Integrity – An external file referenced by
the database cannot be renamed or deleted.

2. Transaction Consistency – Changes affecting both
the database and external files are executed within a
transaction. This ensures consistency between a file
and its metadata.

3. Security – File access controls can be based on the
database privileges.

4. Coordinated Backup and Recovery – The database
management system can take responsibility for
backup and recovery of external files in
synchronisation with the internal data.

Our interface uses IBM’s implementation of the
DATALINK type [14, 15] that is available for DB2
version 5.2. We used the version of this software
available for IBM’s AIX operating system. This uses a
DB2 database that stores the data associated with
standard types internally, plus DATALINK specific
software running on the remote file servers to manage
external data. This software processes SQL INSERT ,
UPDATE and DELETE statements that affect
DATALINK columns, to link and unlink files for the
database. It manages information about linked files, and
previous versions of linked files for recovery purposes. It
also intercepts file system commands to ensure that
registered files are not renamed, deleted and optionally,
check the user’s access authority.

An example of the SQL syntax for creating a table with
a column containing a DATALINK SQL-type is given
below (refer to the RESULT_FILE table in the schema of
Figure 3):

CREATE TABLE RESULT_FILE (
download_result DATALINK
 LINKTYPE URL
 FILE LINK CONTROL
 READ PERMISSION DB
 …
 RECOVERY yes,
file_name VARCHAR(150) NOT NULL,
file_size_byte INTEGER, …

The LINKTYPE URL parameter indicates that values
stored in the DATALINK column are specified using
URL syntax. This has the advantage of identifying the
remote file server host, directory structure and filename.
The FILE LINK CONTROL parameter specifies that a
check should be made to ensure the existence of the file
during a database insert or update. Read permission can
be set to DB (database) of FS (filesystem). If the database
manages read permission then files can only be accessed
using an encrypted file access token, obtained from the
database by users with the correct database privileges.
Without a valid token, the DATALINK software denies
the read request. The RECOVERY yes parameter
indicates that the DATALINK software coordinates
backup and recovery between the referenced files and the
database. Further details of these parameters, and
additional parameters that can be specified in the
DATALINK column definition, are available in [4].

A DATALINK value can be entered via a standard
SQL INSERT or UPDATE statement. The value takes the
form:

http://host/filesystem/directory/filename

The filesystem part of this URL is a specially mounted
DATALINK File System (DLFS) in our AIX version of
the software. The directory and filename are standard
UNIX file systems. If read permission is managed by the
database, an SQL SELECT statement retrieves the value
in the form:
http://host/filesystem/directory/access_token;filename

The file can then be accessed from the filesystem in the
normal way using the name:

access_token;filename
or, by using the full URL if the file is placed on a web
server (as in our system). The access tokens have a finite
life determined by a database configuration parameter.
This can be set to expire after an interval set in seconds.

3. Future Work

3.1 Processing of Data Files Prior to Retrieval

An advanced customisation feature we are
implementing is the ability to associate operations with
SQL data types, or database attributes, through
modification of a new ‘operation’ element in the XUIS.
An operation can, for example, allow a post-processing

code (stored internal or external to the database, as a
BLOB or DATALINK value) to be associated with a
database column that stores arrays of simulation data (as
a DATALINK). The post-processing code then provides
additional interface functionality, such as array slicing
and visualisation, for the data contained in this attribute.

3.2 Federated Database Access

Our system can be modified to provide a ‘multidatabase
language system’ (in the taxonomy by Bright et al. [16])
in which heterogeneous databases can be accessed at the
user interface level through a query language and tools
that can integrate data from different sources without a
global schema. We are implementing this functionality
by extending the DTD for the XUIS to contain multiple
database user interface definitions. The relationships,
which currently allow browsing of related data in
associated tables, will be extended to allow browsing to
related data in tables in disjoint databases. Queries can be
shipped to remote database using JDBC drivers that
operate over networks. As well as FDB browsing a new
element will allow several tables to be grouped into a
‘supertable’. A supertable will present a single view of
the grouped tables for query purposes. Columns that
participate in the supertable will be limited to columns
assigned the same alias name in the XUIS. This FDB
functionality, although limited, will serve a useful
purpose of allowing not only distribution of result files,
but also distribution and autonomous administration of
the database containing the simulation metadata stored
internally in the database.

4. Conclusions

We have constructed a prototype system3 to meet a
requirement of the UK Turbulence Consortium to make
available to authorised users, large result files from
numerical simulations, with a total storage requirement in
the hundreds of gigabyte range.

Our interface is specifically aimed at users with a
scientific background who are not familiar with SQL. As
such, we aim to help users locate scientific data files of
interest, using an intuitive searching and browsing
mechanism in keeping with a web-based look and feel.
One of the implications of this is that we automate the
interface construction so that it requires little database or
web development experience to install and access. This is
a generic, schema-driven system that can be used to
manage many different types of large, distributed data
archives. We achieve the automated construction by
allowing the user interface specification to be defined in
an XML file used to initialise the system and by

3 A demonstration system is available at URL
http://www.hpcc.ecs.soton.ac.uk/~turbulence/database.
Login with username and password both equal to guest.
The guest account has the limitation that data files cannot
be downloaded.

providing a tool that can generate a default XML
specification.

Separating the user interface specification from the
user interface processing can provide a number of
further advantages:
• The user interface, although schema driven, can

be customised to use aliases for table and
column names and to present different sample
values.

• Hypertext links to related data can be specified in the
XML even if there are no referential integrity
constraints defined for the database.

• Different Users (or classes of user) can have
different XML files thereby providing them with
different user interfaces to the same data.

Our architecture uses distributed commodity
computing, that combines the new SQL DATALINK
type, defined in SQL/MED, with a web-based interface to
the data. This architecture provides web access to large,
distributed files but maintains database security, integrity
and recovery. As far as we are aware, this is the first use
of this technology for web-based scientific data
archiving.

Bandwidth is a limiting factor in our environment. We
greatly reduce bandwidth requirements by avoiding
costly network transfers associated with uploading data
files to a centralised site. Data distribution also reduces
retrieval bottlenecks at individual sites. Post-processing
of data files can further reduce the bandwidth
requirements of file retrieval.

Our on-going work is exploring ways to extend the
XML user interface specification to allow operations to
be specified for database columns, so that a user can
extend the interface by including post-processing codes.
These codes can then be applied dynamically to the data
on the file servers to reduce the volume of data being
returned. Finally, extensions are being implemented to
define access to autonomous databases in a loosely
coupled multidatabase environment.

5. Acknowledgements

The UK Turbulence Consortium (EPSRC Grant
GR/M08424) provided data for this project. IBM’s DB2
Scholars programme provided us with DB2 licenses. The
DB2 Data Protection and Recovery Team at IBM were
extremely helpful when responding to technical questions
regarding DB2’s DATALINK implementation.

References

[1] Sandham, N.D. and Howard, R.J.A. Direct
Simulation of Turbulence Using Massively
Parallel Computers. In: A. Ecer et al., eds.
Parallel Computational Fluid Dynamics '97,
Elsevier, 1997.

[2] Williams, R., Bunn, J., Reagan, M., and Pool, C.,
T. Workshop on Interfaces to Scientific Data

Achives, California, USA, 25-27 March, 1998,
Technical Report CACR-160, CALTECH, 42pp.
http://www.cacr.caltech.edu/isda

 [3] Eisenberg, A. and Melton, J., SQL:1999, formerly
known as SQL3, SIGMOD Record , 28(1), March,
1999.

[4] Mattos, N., Melton, J. and Richey, J. Database
Language SQL-Part 9:Management of External
Data (SQL/MED), ISO/IEC Committee Draft, CD
9075-9 (ISO/IEC JTC 1/SC 32 N00197),
December, 1988.
ftp://jerry.ece.umassd.edu/isowg3/dbl/YGJdocs/
ygj023.pdf

[5] Extensible Markup Language (XML) 1.0, W3C
Recommendation, 10 February, 1998.
http://www.w3.org/TR/REC-xml

[6] Zloof, M., M. Query By Example. American
Federation of Information Processing (AFIPS)
Conf. Proc., Vol. 44, National Computer
Conference, 1975, 431-8.

[7] Manber, U. Future Directions and Research
Problems in the World Wide Web. Proc ACM
SIGMOD Conf., Montreal, Canada, June 3-5,
1996, 213-15.

[8] Warren, M., S., et al. Avalon: An Alpha/Linux
Cluster Achieves 10 Gflops for $150k. Gordon
Bell Price/Performance Prize, Supercomputing
1998. http://cnls.lanl.gov/avalon/

[9] Sheth, A., and Larson, J. Federated Database
Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM
Computing Surveys, Vol. 22(3), 1990, 183-236.

[10] Davidson, J., D., and Ahmed, S. Java Servlet API
Specification, Version 2.1a, November, 1988.

 http://java.sun.com/products/servlet/index.html
[11] White, S., Hapner, M. JDBC 2.0 API, Sun

Microsystems Inc., Version 1.0, May, 1998.
http://java.sun.com/products/jdbc/

[12] Catarci, T., Costabile, M., F., Levialdi, S., and
Batini, C. Visual Query Systems for Databases: A
Survey. Journal of Visual Languages and
Computing , 8, 1997, 215-60.

[13] Haw D., Goble, C., A., and Rector, A., L.
GUIDANCE: Making it easy for the user to be an
expert. Proc. of 2nd International workshop on
User Interfaces to Databases, Ambleside, UK, 13-
15th July, 1994, 19-44.

[14] Quick Beginnings, IBM DB2 File Manager for
AIX, Version 5.2. Part Number 04L6231, IBM
Corporation, 1998, 85pp.

[15] Davis, J., R. DATALINKS: Managing External
Data with DB2 Universal Database, White paper,
IBM Corporation, August, 1997.
http://www.software.ibm.com/data/pubs/papers/

[16] Bright, M., W., Hurson, A., R., and Pakzad, S., H.
A taxonomy and Current Issues in Multidatabase
Systems. IEEE Computer, 25(3), 1992, 50-60.

