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Abstract

An artificial neural network visual model is developed, which extracts multi-scale edge features
from the decompressed image and uses these visual features as input to estimate and compensate
for the coding distortions. This provides a generic postprocessing technique that can be applied
to all the main coding methods. Experimental results involving post-processing the JPEG
and quadtree coding systems show that the proposed artificial neural network visual model
significantly enhances the quality of reconstructed images, both in terms of the objective peak

signal to noise ratio and subjective visual assessment.

1 Introduction

Image coding is always a trade-off between the coding bit rate and the coded image quality. In-
creasing coding bit rate can generally improve quality, but this is limited by channel bandwidth
or storage capacity. Postprocessing offers an alternative to enhance decompressed image with-
out increasing bit rate. Traditional postprocessing methods [1]-[9] employ filtering to smooth
blocking artifacts, and are limited to fixed-block transform coding or vector quantization. Since
filtering also causes oversmoothing on image edges, these methods are not appropriate for ap-
plications which require genuinely good image quality with minimum distortions. In addition,

these existing methods cannot be applied to non-block or variable-block coding systems.

A recent work [10], specifically designed for the JPEG coding system, overcomes the over-
smoothing problem of traditional postprocessing methods by directly compensating for coding
distortions. It employs 64 neural networks, one for each spatial frequency component in JPEG
transform coding, to estimate the quantization errors. Notice that in this method processing for

image quality improvement takes place before decompression and, therefore, it alters the existing



JPEG coding system. The experimental results reported in [10] gave an average improvement of
0.63 dB in the peak signal to noise ratio (PSNR), which is better than those achieved by most
of the traditional filtering approaches.

Motivated by the biological visual system [11]-[13], we develop a generic postprocessing
technique based on an artificial neural network visual model (NNVM). This NNVM consists
of a visual feature extractor to extract edge information from the decoded image, and a one-
hidden-layer neural network to estimate the coding distortions using the visual features of the
decoded image. Unlike the method proposed in [10], our method employs a single neural network
to estimate coding distortions and image quality improvement takes place on the decompressed
image. Therefore, an existing coding system need not be altered at all, and our method can
be applied to all the main coding systems. We apply the proposed postprocessing technique to
the JPEG [14] and quadtree (QT) [15] coders. The latter is a variable-block coding method,
and existing postprocessing methods, including the method of [10], cannot be applied to this
kind of coding systems. OQur experimental results confirm that the NNVM achieves significant

improvements on the quality of reconstructed images for both the JPEG and QT coding systems.

2 The NNVM for postprocessing

We adopt a generic approach depicted in Fig.1. In this model, the distortion image, which is
defined as the difference between the original and decoded images, is estimated. The estimate
is added to the decoded image to correct coding losses. The choice of this architecture has
an obvious advantage, as the original coding system is not touched and postprocessing is an
added component. Notice that, in the technique [10], distortion estimation takes place within
the JPEG coding system before the decoding subsystem, which effectively changes the original
coding system design. Obviously, relationship between the decoded and distortion images is
highly complex. It is known that the main coding distortions are edge distortions, including
blurred edges and blocking artifacts [16]. Blurred edges are the result of information losses
during compression. For block-based coding methods, visual discontinuities between adjacent
blocks result in exotic “edges” along block boundaries called blocking artifacts. These edge
distortions are the main visual disturbances for human observers viewing images. Reducing

these distortions can significantly improve quality of reproduced images.

We turn to biological visual systems for inspiration. It is known that feature detectors in
visual cortex, called simple, complex and hypercomplex cells, respond to edges patterns of an
image at different scales [11]-[13]. Simple cells have rectangular receptive fields and respond to

bars or edges with specific orientations. By combining the responses of a number of simple cells, a



complex cell generates its response over a larger receptive field. The effective stimuli for complex
cells are still bars and edges. A hypercomplex cell generalizes the responses of a few complex cells
and responds to bars and edges over a wider area of the visual field. A hypercomplex cell forms
a basic information unit in perceiving a visual image. Picture perception is accomplished at a
higher level of the central nerve system based on these basic information units. This motivates
our model for recovering coding distortions shown in Fig. 2. A decoded image of size N x NV is
divided into blocks of size n X n, and pixels of each block are fed into a visual feature extractor,
which extracts edge features of the block. These edge features are fed into a one-hidden-layer
neural network, which produces an estimate of the corresponding distortion image block. We

will refer to n X n as the postprocessing block size.

Edge features are extracted as multi-scale first-order derivatives. To calculate derivatives for
an n X n block in different scales, the block is recursively divided into 4 equal-size sub-blocks
until the sub-block size is reduced to 2 x 2. For a generic sub-block X of size n; X ng, a pair of

horizontal and vertical derivatives (dy,d,) are calculated as:
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where X(4,7)is the pixel value at position (¢,7)in Xs. The multi-scale derivatives are normal-
ized to the range (—1, 1) and arranged in a vector form d = [dy dy - - -dp]". The total number

of derivatives, M, is given by
log, n

_22(). (2)

The hidden-layer outputs of the NNVM are given by

M
hsz(Zvl,k-dl+vo,k), 1<k<H, (3)
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where H,, is the number of hidden neurons, and the outputs of the NNVM are given by

Hy,
k=1

where a is a scaling factor. The activation function f is the usual bipolar sigmoid function. The

total number of adjustable parameters, Pyyyas, for the NNVM is

=1
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The network weights V; ; and Wi(¢,7) are learnt using the backpropagation algorithm.

To collect training data for a coding system, an N X N training image is compressed and

decompressed. The corresponding distortion image is then obtained. The decoded and distortion
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images are divided into n X n blocks. As an image can only provide pairs of training data,
many images should be used to collect sufficient training data samples. The choice of the block
size n X n has important influence on the complexity and performance of the model. Ideally, the
block size should be as large as possible. However, too large a block size would make computation
and storage impractical. For post-processing block-based coding systems, the postprocessing
block size should be larger than the coding block size, so that blocking artifacts at coding block
boundaries can be corrected. The number of the hidden-layer neurons, H,, can be determined
during training by starting with a small hidden layer and gradually increasing the hidden layer
size until the performance stops improving. As training is done off-line, on-line postprocessing
only involves passing a decoded image through the trained NNVM. Computational overhead of

this postprocessing is very small in comparison with the coder complexity, and is typically less

than 1% of the coder computational requirements.

3 Experimental results

The proposed postprocessing technique is generic and can be applied to all the main coding
methods. A detailed study, including postprocessing of four different coders and performance
comparison with existing methods, can be found in [16]. Here, we apply the NNVM to the JPEG
[14] and QT [15] coders. QT coding has variable coding block sizes, and existing methods [1]-][10]
are impractical for post-processing this kind of coder. We collected sixteen images of size 512 x
512 with 8 bits per pixel (bpp), namely “peppers”, “airplane”, “goldhill”, “lake”, “announcer”,
“cornfield”, “windows”, “yacht”, “Lena”, “littlegir]”, “Zelda”, “boats”, “cablecar”, “hatgirl”,
“kids” and “soccer”, from Internet archives for our experiment. The first eight images were used

to provide training data, and the other images were used as test images.

An adequate postprocessing block size was 16 x 16, as the JPEG coding system has a standard
8 x 8 coding block size and majority of coding block sizes used by the QT coder were found to
be 8 x 8 or smaller. Qur experimental results suggested that H, = 40 was sufficient, because
performance improvement was leveled out for H, > 40. Table 1 summarizes the JPEG coder
PSNR values and the NNVM postprocessing gains for the eight testing images, respectively,
given two different coding bit rates. Fig. 3 shows the face portions of JPEG coded and NNVM
post-improved “Lena” images, for a visual evaluation. In the same way, the PSNR values of
the QT coder and the postprocessing gains obtained by the NNVM are given in Table 2. Fig. 4
compares the face portion of QT coded “Lena” image with that of the NNVM improved image.

Performance comparison with the method of [10] is not straightforward, as the experimental

conditions were not identical. In particular, PSNR values of the original JPEG coder used in



[10] was not provided. Notice that the better PSNR a coding system has, the more difficult to
achieve postprocessing gain. Nevertheless, comparison can be made in terms of PSNR gain and
our NNVM is better. From Table 2, it can be seen that the NNVM is very effective for enhancing
the QT coder. It is worth emphasizing again that the existing postprocessing techniques cannot

be applied to the QT coding system.

Coding Coding bit rate=0.25 bpp Coding bit rate=0.5 bpp
image Coding PSNR | NNVM gain | Coding PSNR | NNVM gain
Lena 28.85 0.81 31.67 0.71

Littlegirl 29.04 0.79 32.26 0.69
Zelda 29.98 0.80 33.22 0.55
Boats 28.23 0.81 31.01 0.77

Cablecar 27.84 0.79 30.96 0.71
Hatgirl 30.60 0.75 34.15 0.58
Kids 28.19 0.69 31.56 0.64
Soccer 27.34 0.73 30.76 0.68

| Average | 2876 | 077 | 3195 0.67 |

Table 1: PSNR values (dB) of JPEG coding and NNVM postprocessing gains (dB).

Coding Coding bit rate=0.25 bpp Coding bit rate=0.5 bpp
image Coding PSNR | NNVM gain | Coding PSNR | NNVM gain
Lena 29.66 0.91 32.39 0.84

Littlegirl 29.87 0.96 32.42 1.01
Zelda 31.38 1.00 33.90 0.89
Boats 28.72 0.85 31.80 0.77

Cablecar 27.83 0.91 30.59 0.93
Hatgirl 33.29 1.14 36.86 0.80
Kids 28.38 0.92 31.14 0.98
Soccer 25.83 1.11 28.32 1.23

| Average | 2937 | 0.98 32.18 0.93 |

Table 2: PSNR values (dB) of QT coding and NNVM postprocessing gains (dB).

4 Conclusions

A generic postprocessing technique for image coder enhancement has been developed based on an
NNVM. This NNVM is inspired by the mechanism of visual perception in visual cortex. Unlike
traditional postprocessing methods which basically smooth blocking artifacts to achieve better
viewing quality, the proposed technique corrects actual coding losses. As a result, our method
is applicable to all the major coding methods while existing methods have limited applications.
Experiments of applying the proposed technique to the JPEG and QT coders demonstrate that

the NNVM achieves significant improvements on the quality of reconstructed images.
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Figure 1: A generic postprocessing approach for image coding.
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Figure 2: Schematic of the neural network visual model.



(a) JPEG coded (PSNR=28.85 dB) (b) NNVM (PSNR gain=0.81 dB)

Figure 3: Face portions of the JPEG coded (bit rate=0.25 bpp) and NNVM post-improved
images of “Lena.”

(a) QT coded (PSNR=29.66 dB) (b) NNVM (PSNR gain=0.91 dB)

Figure 4: Face portions of the QT coded (bit rate=0.25 bpp) and NNVM post-improved images
of “Lena.”



