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Combined Genetic Algorithm Optimization and Regularized Orthogonal
Least Squares Learning for Radial Basis Function Networks

S. Chen,Senior Member, IEEE, Y. Wu, and B. L. Luk

Abstract—The paper presents a two-level learning method for
radial basis function (RBF) networks. A regularized orthogonal
least squares (ROLS) algorithm is employed at the lower level to
construct RBF networks while the two key learning parameters,
the regularization parameter and the RBF width, are optimized
using a genetic algorithm (GA) at the upper level. Nonlinear
time series modeling and prediction is used as an example
to demonstrate the effectiveness of this hierarchical learning
approach.

Index Terms—Genetic algorithms, orthogonal least squares
algorithm, radial basis function networks, regularization.

I. INTRODUCTION

T HE GA [1], [2], as a powerful nonlinear optimization
technique, has been used to learn neural-network topolo-

gies as well as the weights in fixed network structures (e.g.,
[3]–[7]). A key advantage of using the GA as a neural-network
learning method is that it is capable of achieving optimal
or near-optimal network topology and weight settings under
given training conditions. This is, however, obtained at the cost
of extensive computational requirements. In particular, direct
optimizing the network weights using GA’s is hampered by
difficulties of high evaluation cost and slow convergence.

Simpler learning can often be achieved if a neural network
has a linear-in-the-parameters structure. When the width pa-
rameter is fixed and a set of RBF centers is provided, a RBF
network has such a structure and an orthogonal least squares
(OLS) algorithm [8] has been developed for constructing
parsimonious RBF networks. Other construction algorithms
based on the parsimonious principle have been derived for
“linear-in-the-parameters” neural networks (e.g., [9]–[11]).
A well-constructed small neural network often has desired
generalization properties.

If training data are highly noisy, the parsimonious principle
alone may not be sufficient to guarantee good generalization
performance. Regularization is one of the principal techniques
for improving the generalization properties [12]–[14]. By
combining the parsimonious principle with a regularization
method, a ROLS algorithm [15] has been derived for con-
structing RBF networks under severely noisy conditions. A
good regularization parameter required by the ROLS algorithm
is usually obtained by iterations using a Bayesian formula [13].
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The regularization parameter so generated, however, may not
necessarily be the best one since the regularization parameter
is strongly coupled with some other learning parameter, as
will be demonstrated later.

We propose a two-level learning hierarchy for construct-
ing RBF networks based on the combined GA and ROLS
algorithms. Because the generalization performance is a com-
plex multimodal function on the space of the width and
regularization parameters, these two parameters are optimized
using the GA at the upper level. Given these two parameters,
the ROLS algorithm is used to construct parsimonious RBF
networks at the lower level. Since the GA only optimizes two
parameters and the lower layer only involves linear learning
problems, the computational complexity of this combined
approach is much less than that of using the GA to learn all the
network parameters directly. RBF networks produced by this
learning hierarchy have superior generalization performance as
is demonstrated by the included examples of nonlinear time
series modeling.

II. THE ROLS ALGORITHM

The RBF network considered in this paper has a single
output and a Gaussian nonlinearity with a uniform width.
Specifically, the network output is defined by

(1)

where is the network input vector, is the number of
nodes, are the weights, are the center vectors and
denotes the Euclidean norm. Although each node may have a
different width and for some applications adjusting individual
widths can often improve performance [16], a uniform width
is sufficient for the RBF network to achieve universal ap-
proximation [17]. Using a uniform width obviously results in
a simpler learning process. Replacing the Euclidean distance
in the standard RBF network by the Mahalanobis distance
gives rise to a more general neural-network model [16],
[18]. A novel Gaussian-bar network has also been proposed
[19]. We will concentrate on the simple network model (1).
The approach developed, however, is not restricted to this
particular Gaussian RBF network and can readily be applied
to multioutput RBF networks [20].

Assume that a training set of samples
is available, where is the desired network output cor-
responding to the network input . In order to obtain
a “linear” regression model, each is considered as a
candidate center, that is, for , and a
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fixed width is given. By defining

(2)

we can express the desired output as

(3)

where is the error between and the actual network
output . By introducing

(4)

(5)

(6)

(7)

(8)

we can rewrite the system (3) in the matrix form

(9)

The ROLS algorithm is an efficient forward subset selection
procedure for constructing a smaller subset model from the
full regression model (9).

Let an orthogonal decomposition of the regression matrix
be , where satisfies
for , and is an upper triangular matrix with unit
diagonal elements. The system (9) can be rewritten as

(10)

where

(11)

is the orthogonal weight vector. The ROLS algorithm selects
a subset of significant regressors based on the following
regularized error criterion:

(12)

where is a regularization parameter. The detailed
selection procedure can be found in [15] and will not be
repeated here.

In this “linear” learning approach, the width parameteris
fixed to some constant. Obviously, it is desirable to adjust the
width during learning. However, nonlinear learning methods
would be required since the network output is strongly nonlin-
ear with respect to. The ROLS algorithm adopts the evidence
procedure [13] to estimate a regularization parameter. Given
an initial guess of , the algorithm constructs a subset model.
This in turn allows an updating of using the formula

(13)

where

(14)

is the number of good parameter measurements [13] and
is the size of the subset model. After a few iterations, an

Fig. 1. Usually assumed characteristics of mean square error as a function of
regularization parameter. Notice that this generalization curve is not generally
correct.

appropriate value can usually be found. The regularization
parameter so determined, however, may not be an optimal
one, as will be shown later.

III. T HE COMBINED GA AND ROLS LEARNING

To understand the motivations of using a global optimization
method to learn the regularization parameter and width, it is
best to examine the generalization performance as a function
of these two parameters. It is often observed that regularized
learning exhibits the characteristics of Fig. 1 [12], [15]. This
appears to suggest that generalization performance curves may
have a single low flat region, and a gradient algorithm such
as the iterative evidence procedure of (13) will be able to
lead to a good in this region. It should be emphasized that
the evidence procedure in general can only obtain a local
optimal value of and Fig. 1 does not provide a complete
picture. In fact, the generalization performance is a highly
complicated multimodal function on the space ofand .
The characteristics of Fig. 1 may only be obtained under a
particular value of .

We use a simple example to demonstrate these points.
Consider the modeling of the scalar function

(15)

by a Gaussian RBF network. The training data was generated
from , where the Gaussian noise had a zero
mean and variance 0.02 andwas taken from the uniform
distribution in . The training data had a signal-to-noise
ratio (SNR) of 14 dB. Given values of and , the ROLS
algorithm constructed RBF networks. The learning procedure
was terminated when the regularized error reduction ratio [15]
was smaller than a preset threshold. RBF models constructed
had five to seven nodes depending on the values ofand .
The generalization performance, the mean square error (MSE)
between the noise-free system output and the network
response , was computed. The inverse of this MSE as
the function of and is depicted in Fig. 2.

Even for such a simple example, the complexity of the
generalization performance surface is apparent. A gradient
method cannot in general find the global optimal values of
and . Furthermore, performance improvement by achieving
the global optimum is very significant. We propose a two-level
learning scheme by combining the GA and ROLS algorithms,
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Fig. 2. Surface of the inverse generalization performance on the space of� and �.

Fig. 3. Schematic of two-level learning hierarchy for RBF networks.

as illustrated in Fig. 3. At the upper level, the GA, with a
population size of , learns the width and the regularization
parameter based on the fitness function values provided by
the lower level. The lower level consists of theparallel
ROLS algorithms, one for each pair of and provided
by the GA. The data set is divided into a training set and
a validation set. Theth ROLS algorithm constructs a RBF
network using the training data set with givenand . The
generalization performance, the MSE over the validation data
set, of the resulting RBF model is computed. The inverse of
this generalization performance is the fitness function value
for the given and .

With the goal being to find a global optimum solution as
quickly as possible, we adopt the so-called micro-GA [21].
This version of GA uses a population that is much smaller than
typically employed. In the original work [21], it was reported
that the micro-GA can find optimal regions faster than standard
GA’s for selected optimization problems. However, allowing
a single sequence of a micro-GA to converge may not be very
useful apart from quickly locating local optima. Therefore, af-
ter such convergence, the population is reinitialized randomly
while the best individual found up to that point is copied into
the newly generated population. This iterative reinitialization
is repeated until no further improvement is evidenced. The two
parameters, and , are each coded into a 16-bit string, and
a population size of is used. The crossover rate is set to
1.0, with the number of crossover points typically set to four.

No mutation is employed, as the reinitialization routine serves
to introduce diversity. Tournament selection [21] is employed
to determine parents for reproduction.

The computational complexity of the proposed two-level
learning scheme is determined by the total number of function
evaluations at the upper level. Assume that the micro-GA con-
verges after generations and the complexity of the ROLS
algorithm is . Then the complexity of the combining
GA and ROLS learning scheme is

(16)

Since the micro-GA is only used to optimize the two key
parameters and the lower level involves linear learning prob-
lems, the overall computational requirement of the proposed
scheme is well within the computing power of a standard PC.
The micro-GA employed is specifically designed to minimize
the required number of function evaluations at the upper
level. In contrast, using a GA directly to determine the network
structure as well as to learn all the network parameters [5]–[7]
will require far more extensive computation.

IV. NONLINAR TIME SERIES APPLICATION

Nonlinear time series modeling and prediction are used to
illustrate the combined GA and the ROLS learning approach.

A. Example 1

This was the simple example of modeling the scalar func-
tion (15) used to generate Fig. 2. To demonstrate superior
generalization properties of the regularized learning under
severely noisy conditions, we used the two-level learning
hierarchy to construct Gaussian RBF networks for different
SNR conditions with and without regularization. Both the
training and testing sets contained 100 noisy samples. The RBF
models constructed had five to eight centers depending on the
SNR of the training data. For the case of no regularization, the
lower level employed the OLS algorithm and the upper level
only learned the width .
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Fig. 4. Generalization performance with and without regularization for ex-
ample 1.

Fig. 5. Convergence behavior of the GA for example 1 with a SNR of 14 dB.

Fig. 4 depicts the generalization performance, the MSE
between the noise-free system output and the actual
RBF model output , for these two cases. It can be seen
that the simple regularization technique employed has superior
generalization performance under highly noisy training condi-
tions. For the training data of SNR = 14 dB, it was observed
that the optimal regularization parameter
and width , corresponding to the highest peak

in Fig. 2, was achieved by the combined GA
and ROLS learning. To examine the convergence behavior of
the GA, Fig. 5 plots the best fitness value versus the number
of fitness function evaluations with a SNR of 14 dB.

B. Example 2

The second example was Mackey–Glass time series predic-
tion. The data was generated using the following equation:

(17)

where and initial conditions for
. A sampling step size of 2 s was used, and Gaussian

white noise was added to the time series samples, giving
rise to a SNR of 40 dB. A data set of 1000 noisy samples

were obtained with the first 500 samples used as
the training set and the last 500 samples as the validation
set. The input vector to the Gaussian RBF predictor atwas

. The RBF predictors were
constructed with and without regularization. Again in the case
of no regularization, the upper level only learned. The RBF
predictor constructed with regularization had 18 centers while
the predictor obtained without regularization had 24 centers.
The multistep prediction accuracies over the validation set

Fig. 6. Multistep prediction performance for Mackey–Glass time series.

Fig. 7. Multistep prediction performance for sunspot time series.

were then computed and the results are plotted in Fig. 6. From
Fig. 6, it can be seen that better generalization performance
was achieved with regularization when the prediction step is
large.

C. Example 3

This example was sunspot time series prediction based
on the 280 sunspot observations over the years 1700 to
1979. The observations of 1752 to 1979 were used as the
training set and the observations of 1700 to 1767 were
used as the validation set. Two Gaussian RBF models of
25 centers were constructed using the two-level learning
hierarchy with and without regularization. The model input
vector consisted of eight past observations. The normalized
multistep prediction accuracies of the two resulting models
over the validation set are plotted in Fig. 7, where it can be
seen that the combined GA and ROLS learning has superior
generalization performance. The convergence speeds of the
two-level learning hierarchy with and without regularization
are illustrated in Fig. 8.

V. CONCLUSIONS

A two-level learning hierarchy has been developed for RBF
networks by combining the GA with the ROLS learning.
The GA at the upper level finds the global optimum of the
width and regularization parameters while the ROLS algorithm
at the lower level automatically constructs RBF networks.
It has been shown that the generalization performance is
a complex multimodal function on the space of the width
and regularization parameters, and significant performance
improvement can be achieved by searching a global optimal
solution. The proposed method is computationally more effi-



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999 1243

Fig. 8. Convergence behavior of the GA for sunspot time series modeling.

cient compared with using the GA directly to construct the
network model. Time series modeling and prediction have
been used to demonstrate superior generalization properties
of the combined GA and ROLS learning approach.

REFERENCES

[1] J. H. Holland, Adaptation in Natural and Artificial Systems.Ann
Arbor, MI: Univ. Michigan Press, 1975.

[2] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[3] D. J. Montana and L. Davis, “Training feedforward neural networks
using genetic algorithms,” inProc. 11th Int. Joint Conf. Artificial Intell.,
San Mateo, CA, 1989, pp. 762–767.

[4] L. Yao and W. A. Sethares, “Nonlinear parameter estimation via the
genetic algorithm,”IEEE Trans. Signal Processing,vol. 42, pp. 927–935,
1994.

[5] V. Maniezzo, “Genetic evolution of the topology and weight distribution
of neural networks,”IEEE Trans. Neural Networks,vol. 5, pp. 39–53,
1994.

[6] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary
algorithm that constructs recurrent neural networks,”IEEE Trans. Neural
Networks,vol. 5, pp. 54–65, 1994.

[7] S. A. Billings and G. L. Zheng, “Radial basis function network config-
uration using genetic algorithms,”Neural Networks,vol. 8, no. 6, pp.
877–890, 1995.

[8] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares
learning algorithm for radial basis function networks,”IEEE Trans.
Neural Networks,vol. 2, pp. 302–309, 1991.

[9] M. Brown and C. J. Harris,Neurofuzzy Adaptive Modeling and Control.
Englewood Cliffs, NJ: Prentice-Hall, 1994.

[10] T. Kavli, “ASMOD: An algorithm for adaptive spline modeling of
observation data,”Int. J. Contr.,vol. 58, no. 4, pp. 947–968, 1993.

[11] L. X. Wang and J. M. Mendel, “Fuzzy basis functions, universal
approximation, and orthogonal least-squares learning,”IEEE Trans.
Neural Networks,vol. 3, pp. 807–814, 1992.

[12] C. Bishop, “Improving the generalization properties of radial basis
function neural networks,”Neural Comput.,vol. 3, no. 4, pp. 579–588,
1991.

[13] D. J. C. MacKay, “Bayesian interpolation,”Neural Comput.,vol. 4, no.
3, pp. 415–447, 1992.

[14] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural-
network architectures,”Neural Comput.,vol. 7, pp. 219–269, 1995.

[15] S. Chen, E. S. Chng, and K. Alkadhimi, “Regularised orthogonal least
squares algorithm for constructing radial basis function networks,”Int.
J. Contr., vol. 64, no. 5, pp. 829–837, 1996.

[16] M. T. Musavi, W. Ahmed, K. H. Chan, K. B. Faris, and D. M. Hummels,
“On the training of radial basis function classifiers,”Neural Networks,
vol. 5, no. 4, pp. 595–603, 1992.

[17] J. Park and I. W. Sandberg, “Universal approximation using radial-basis-
function networks,”Neural Comput.,vol. 3, pp. 246–257, 1991.

[18] S. Lee and R. M. Kil, “A Gaussian potential function network with
hierarchically self-organizing learning,”Neural Networks,vol. 4, pp.
207–224, 1991.

[19] E. J. Hartman and J. D. Keeler, “Predicting the future: Advantages of
semilocal units,”Neural Comput.,vol. 3, no. 4, pp. 566–578, 1991.

[20] S. Chen, P. M. Grant, and C. F. N. Cowan, “Orthogonal least squares
algorithm for training multioutput radial basis function networks,” in
Proc. Inst. Elect. Eng.,vol. 139, pt. F, no. 6, pp. 378–384,1992.

[21] K. Krishnakumar, “Micro-genetic algorithms for stationary and nonsta-
tionary function optimization,” inProc. SPIE Intell. Cont. Adapt. Syst.,
1989, vol. 1196, pp. 289–296.


