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strictly proper. The planP(z) = S, P(s)H}, has a realizatiof4. €
R™*™m B. € R™*!, C. € R™™, 0). The controllerC(z) has a
realization(4. € R"*", B, € R"*%, C. € R'*", D. € R'™*1),
The realizations of”(z) are not unique. If A., B., C., D.) is a

Optimizing Stability Bounds of Finite-Precision realization of C'(z), so is(7~'A.7, T~'B., C.T, D.) for any

PID Controller Structures similarity transformatiorZ € R"*™. The corresponding realization
(4, B, C, D) of the closed-loop system is given by
S. Chen, J. Wu, R. H. Istepanian, and J. Chu (4. + B.D.C. B:Cl}
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Abstract—This paper investigates a recently derived lower bound (A, 0 B. 01[D. C C. 0
stability measure for sampled-data controller structures subject to finite- =\~ } + { . } { © 46} { . }

wordlength (FWL) constraints. The optimal realization of the digital PID
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controller with FWL considerations is formulated as a nonlinear opti- =M+ M XMy = A(X)

mization problem, and an efficient strategy based on adaptive simulated r
annealing (ASA) is adopted to solve this complex optimization problem. }
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A numerical example of optimizing the finite-precision PID controller 0

structure for a simulated steel rolling mill system is presented to illustrate
the effectiveness of the proposed strategy.
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identity matrix, and

. INTRODUCTION -
DC CC }

Controller implementations with fixed-point arithmetic offer the ad- X = B. A.

vantages of speed, memory space, cost, and simplicity over floating-
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continuous Define BUj" as the smallest integer that is not less than

e(s) ‘m‘ %s) —log, 11(X) — 1 + Bx. B%™ can be used as an estimate of
P(s)
i Bl |

B™® Another tractable stability robustness measure with FWL
considerations given in [6] is defined as

L] A
h -\ A .
hold digital  sampler pe(X) = | Jin (9)
device controller ~ (period k) =S

Fig. 1. Sampled-data system with digital controller realization.

FWL effects, shown in (3) at the bottom of the page. Each elemeftiS also a lower bound ofio(X). Similarly, an estimateB:;™ of

of AX is bounded bye/2, that is, B¥*" can be computed based pa(X). Since
-~ A € 2
w(AX) = max |Api| < = 4 N v - N o2
1<i<N 2 Z g/\l < NZ gkl (20)
where N = (I 4+ n)(¢ + n). For a fixed-point processor aB, = 9P Ix =l 9Pilx

bits, e = 27(P+=Fx) "and2”x is a normalization factor. With the
perturbationA X, A; may be moved to\;. The sampled-data system
is unstable if and only if there exista;| > 1. Define

we haveps(X) < p1(X) < po(X). Itis clear thatu: (X), which
is closer topo(X), is a better stability robustness measure, and can
provide a better estimate dB;"".

po(X) 2 inf{u(AX): A(X) + MiAX M, is unstablé. (5)

It describes the stability robustness of the realizafiono the FWL lll. OPTIMAL REALIZATION OF PID CONTROLLER
effects [1]. However, explicitly computing the value pf(X) is STRUCTURES WITH FWL CONSIDERATIONS
still an unsolved open problem. ) Since there are different realizations for a givéfiz) and the
To overcome the difficulty in the computation pf(X), a lower  gapility robustness measure (X) is a function of the realization,
bound ofuo(X) has recently been derived [4]. Define it is of practical importance to find a realization such tha{X)
A . 11— is maximized. Such a realization is optimal in the sense that it has
m(X) = 15213%” Nlax | | ©) maximum stability robustness to FWL effects. The digital controller
8]); . implemented with an optimal realization means that the stability

j=1 of the closed-loop system is guaranteed with a minimum hardware
We have the following theorem from [4]. requirement in terms of word length. In this section, we specifically
Theorem 1: A(X)+M; AX M, is stable whem(AX) < u;(X). discuss the optimal realization problem of digital PID controllers.
Comparing (6) with (5), it is easily seen thai(X) is a lower The digital PID controllerC'(z) is an ordern = 2 system.
bound ofyo (X ). The following lemma from [4] shows that, (X) We will assume thatC'(z) is “single-input single-output,” that is,
can be computed easily. l=g=1 Let(A] € R***, B) e R**', CJ € R"**, D} € R)
Lemmal:Llet {\;,1 < i < m + n} be the eigenvalues of be a controllable canonical realization 6f(z), and let (4. €
A(X), and letz; andy, be the right eigenvector and reciprocalR™*"™, B- € R™*!, C. € R'*™) be a realization of the plant
left eigenvector corresponding to;, respectively. Then, see (7) at£(z). Then the initial control matrix is
the bottom of this page, whef® denotes the transpose operation and Do o
* is the conjugate operation. Xo=| " &
Let B;"" be the smallest word length that can guarantee the BY A°
closed-loop stability. WherX is implemented with a digital control
processor ofBB; bits, it is easily seen that the closed-loop sampleddny realization of C(z) can be represented as

€ R¥*3. (12)

data system is stable if (T7'AYT, 77'B?, C7T, DY) or
9—(Bs—Bx) oAl 0 -1 0
Apr Ap> e Apg+n
) Apgtnt1 Apgtn2 o APa(gtn)
AX = . : . ©)
Ap(l-&-n—l)(:q-&-n)-&-l Ap(l-‘,—n—l)(q-‘,—n)-{-fz T Ap(l-‘rn)(q-l—n)
r % X, ON; 7
op1 dp2 Igtn
N, A, N,
% _ Opgint1 Ipg+n+2 Opa(gin) — AH’;.,*:JM{ (7)
oX i T
AN AN, o AN
-ap(l-l—n—l)(q-l—n)-‘rl ap(1+n—1)(q+n)+2 ap(l+71)(q+1L) J
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where 7 € R**? anddet(7) # 0. The transition matrix of the Then
closed-loop system is

B 4 0 B. 0 c 0 v = min{vy, v2}. (23)
acn=[y o]+ |5 L]S L | | |
0 0 0 I 0 I, If v = v and(Topt1, Yopi1, Wope1) IS the optimal solution of (21),
_ [[m ()_] }Z(XU) [[m 0 } (13) the optimal solution of (17) is given as
0 7 0 7 1 |z 1
. - - IZZ)pt — —|: optl Yopt1 :| (24)
Let \Y be theith eigenvalue ofi(X,). From (13), applying Lemma Wopt1 | 0 1/@opta
1, we have If v = v2 and(zopt2, Yopt2, Uopt2, Wopt2) IS the optimal solution of
O\ {1 0 } O\ {1 0 } (14) (22), the optimal solution of (17) is given as
0X|y_y, 0 TN]oX|(_y 0 T°7] S {%W (Zopt2Yopt2 — 1) /uom} 25)
From (6), (7), and (14), we can define the optimal realization o Wopt2 |Uopt2 Yopt2
problem of digital PID controllers as the following optimization The proof of Theorem 2 is given in the the Appendix. Because
problem: fi(x, y, w) and fo(x, y, u, w) are nonsmooth and nonconvex func-
A . 1— |\ tions, it is very difficult for a conventional optimization method to
v = max p(Xr) = max  min 3 o (15) obtain a global minimum solution. To overcome this difficulty, we
- i adopt an efficient global optimization strategy based on the ASA
= Op; X=X, [7]-10]. Space limitation precludes a detailed description of the ASA
For the complex-valued matrid/ € C™*" with elements}M; ;, algorithm here.
define
m on IV. APPLICATION EXAMPLE
[| M 2 Z Z |M;, ;. (16) We consider the implementation of a finite-precision PID controller
i=1 j=1 for a steel rolling mill system. The continuous-time plant model

P(s) was developed in [11]. The entire digital PID control system

The optimization problem (15) is equivalent to is simulated. Discretizing’(s) with the sampling period = 0.001

% yields P(z):
, RSP 0.9951  —9.7260  0.0049
Ve e T IO A. = [0.0010 0.9884 —0.0010
1 0 1 0 0.0067 13.3732 0.9933
e 19 {0 71}@’{0 T‘T} o 0.2486
det(7T )0 B. = 10.0001
where 0.0006
O, C.=[1 0 0]
X |y, D. =[0]. (26)
®i = 1— A9 (18) A stabilized PID controller for vibration suppression and disturbance
rejection is designed:
are eigenvalue sensitivity matrices. It is difficult to handle the 0.00269s 14.26
constraintdet(7) # 0 directly in numerical optimization. The ———— —0.435 - . (27

0.001s+1 5

following theor_em shows ttla.‘t the ?ptlmlzatlon problem (17_) can krﬁserting the bilinear transformation into (27) gives rise to the digital
solved by solving the two “simpler” problems. First, we define PID controller:

filw, y, w) _ 0.01426 1.1956

C(z)= - + 1.3512. 28
w 0 0 1/w 0 0 (2) z—1 z—0.3333 (28)
= max 0 = 0 [®] 0 1/z 0 (19) The initial realization ofC(z) is set to the controllable canonical
1<i<m+2 o
= 0 y 1/z 0 -y x|, realization:
and 40 — 1 0
w 0 0 “e7 0 0.3333
fo(w, y, u, w) = max 0 x U 0 -1
i< B, =
EEro @y - D/fu oy c-1
1w 0 0 C? =[0.01426 1.1956]
@i 0 y —uyle @0 D® =[1.3512]. (29)

0 (A-azy)/u ]|,

Notice that the data given above are shown to only four significant

Theorem 2: Let digits in fractional part.

vy = 161(10121@ fi(e, g, w) (21) From A(X,), the poles of the ideal closed-loop system are
y€(—o0,400) computed and given as
wE(0 o) A 0.9089 £ 0.2371i
and As.a | = |0.9431 +0.0725i (30)
v = min folx, y, u, w). (22) s 0.9422

€ (= 00,4 00)

€(—oc,+oo) . . . epe e .
Y e (0 1o0) wherei = y/—1. The corresponding eigenvalue sensitivity matrices

wE(0,+00) are shown in (31) at the bottom of the next page.
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Fig. 2. Typical convergence performance of the ASA in optimizing: (a) cost funcfiq, y, w) with initial (z, y, w) = (1.0, 0.0, 1.0) and (b)
cost function f2(x, y, u, w) with initial (=, y, v, w) = (1.0, 1.0, 1.0, 1.0).

For the optimization problem (21), the ASA algorithm always
converged to the solution

(Topts Yopt1, Wopt1) = (2.3704, 3.3598, 0.2004)

TABLE |
LOWER StABILITY BOUNDS, ESTIMATED MINIMAL BIT LENGTHS AND TRUE
MINIMAL BIT LENGTHS FORDIFFERENT CONTROLLER REALIZATIONS

; _ e e Realization 11 Bmin 2 pmin pmin
o _ with v, = 136'58_9" (32) X, 0.001900 | 10 | 0.001100 | 10 7
The realization corresponding t@opt1, Yoptis Wopt1) IS Xoptr 0.007321 9 0.004706 9 4
1.3512 0.1687 2.7560 x84, [ 0.008929 7 0.004896 8 4
Xept1 = | 0.5888 1 0.9450 (33) x$9,  |0.008929 7 0.004896 8 4
—0.4750 0 0.3333

The cost functionf: (x, y, w) in a typical run is shown in Fig. 2(a). _ o
It is worth pointing out that, in the previous study [5], a conventiondlPtimization process converges fast, as confirmed in Fig. 2. From

- tiongy (D -(2) o
optimization method, the Rosenbrock algorithm, failed to achieve thigPle |, two realizationsY,,;, and X, have the same stability

global optimum. For the optimization problem (22), two solutionlower bound measure and the same es.timate ofminimum word length.
were found by the ASA, and they are The largest absolute parameter value is 1.6101)6@?12 and 1.7925

(r(l) MO TRCY ) — (27967, 0.1540, 0.3512, 0.2563) for Aiﬁz For practical implementation, therefoﬂé},i)L2 is preferred.
“opt2r Jopt2» Yopt2® Topt2 | T . 5 Vet y VeIt 5 V&t
with v, = 111.9901  (34)

2 2 2 2 ;
(xg;m, v, s, wg;ﬂ) = (—3.0481, —0.1868, 0.2895, (.4824) V. CONCLUSIONS

with vz = 111.9899. (35) Based on a new lower bound measuring stability robustness of
The corresponding realizations are sampled-data systems with FWL considerations, the optimal real-
13512 1.7925  0.6277 ization of an FWL PID controller can be interpreted as a nonlinear
X(Ei)m = -0.4553 0.6204 —0.1664 (36) optimization problem. An efficient global optimi_zation stratggy based
Z0.6273 —0.6548  0.7129 on the ASA has been adopted to solve this FWL optimal real-
1.3512 0.6274  —0.5069 ization prolblem. The theoretlce}l results have begn ve.rlfled using
~(2) . o - the numerical example of a simulated steel rolling mill system.
Kopip = |70.6274 - 0.7129  0.1852 (37) This method can be extended to other finite-precision controller
1.6101 0.5883 0.6204 P

realizations. In this work, the main emphasis has been focused on
the stability issues of digital controller structures subject to FWL

' f constraints. Ongoing work will explore the integration of the proposed
realization is eitherY ), or X{),. ASA optimization procedure with the closed-loop performance and

Table | summarizes the stability lower bound measures, estimatggarseness consideration of controller realizations.

and true minimal bit lengths that can ensure closed-loop stability for
different controller realizations. The results given in Table | show APPENDIX
that ., (X) is a better measure of stability robustness, as it providesDefine then x n diagonal matrix set¢,, EN {U = diagu:, us,
a larger stability bound and a better estimateBgf® compared with - - - un): u; € {—1,1}, 1 < i < n}. From the definition (16), we
u2(X). The ASA optimization strategy is very effective, and théave the following.

The cost functionfs(x, y, v, w) in a typical run is shown in
Fig. 2(b). Sincev = min{v1, v»} = v», the optimal PID controller

[ 5.3222£2.4117¢ 16.3783 F 16.1509; —6.4294 F 6.8389i
®,,0 =]-0.2336£0.2303¢  0.5165 £ 1.1835¢ 0.4878 F 0.1992¢
7.6870 £ 8.1766¢ 40.9014 F 16.6993i —6.4145 F 16.8486¢
0.6130 £ 6.0505¢ 55.7394 £ 35.2729¢  0.1727 F 9.9017¢
P34 = | —0.7948 F 0.5030¢ —9.6135 £ 3.41614 1.1885 £ 0.9662:¢
| —0.2065 £ 11.8384i 99.6482 £ 81.0121¢ 2.6112 F 19.1031:
[ —8.0215 —138.6951 13.1745
o5 = 1.9778 34.1969 —3.2483 (31)
|—15.7514 —272.3494 25.8702
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Lemma2: VM € C"*", Uy € &, andUs € &,,

Proof of Theorem 2:Define the sets

WM. = |M|l. and ||MUs

=M.

G 2 {7: {“ fﬂ:n ER.t2 €ER, t3 ER,
ts ta

ty € R, tity — tots # 0}

and
» 2 min max L0 D, L 0
VT oreq gm0 TT 70 T,
= min filz, y, w). (44)
ze(0,4o0)
y€(—o00,+00)
wE(0,+o0)

If v = w1 and (xopt1, Yoptis Wopt1) IS the solution of the optimiza-

tion problem (44)

/ t ot
glé{’fz{(; tz:|:t1€R,t2€R«,MER,H V=
Wopt1 0 0
tity # 0} =  max 0 Topt1 0
1sism2 0 Yoptl 1/i]:opt1
G2 {7 - L’fl ﬂ;tl ER, t2 €R, s ER, Vwops 0 0
'3 L4 . éi 0 1/moptl 0
ti € R ts £ 0, tity — tots # 0}. (38) 0 “tep o 1
'woptl 0 0
Construct the optimization problems = X o 0 Zopur ’0
0 Yopti l/ropﬂ
A 1 0 1 0 1/lU t1 0 0
N ) (I)l' v 39 op
Vi Hgg 1 BN L) '71} L) 7! } Hq (39) - P, 0 1/xepe1 0 |wopt1 (45)
and 0 —Yopt1  Toptl s
A 1 0 1 0
v = min | max L) 'T'T}(I)i {() T*T} Hq (40) " which means that
Obviously, (o = (1 U ¢, and thereforey = min{v, v»}. Define  — 1 {wupu Yoptl } (46)
the function sgft): sgnx) = 1 for » > 0 and sgia) = —1 for P wepnt | 00 Laopu

2 < 0. Consider the optimization problem (39). Utilizing Lemma 2,

VY7 € ¢ andVi € {1, -

1 01,1 o
o ]2 o

-+, m+ 2} we have

1 0 0 1 0 0
=|lo & o|®lo 1/t 0
0 ty ty 0 —to/(t1ts) 1/t4

1/+/|t1t4] 0 0
0 \/|f1/1'4 P,
0 sgnts) to/\/tm \/|1‘1/t1
VItita]
0 \/|t4/t1| )

0 —sgn(ta)tz//|tita] /It /ta] ] ||,

Define
|7‘1|
x = € (0, +0)
[ta]
y =sgn(ts)——= € (—o0, +o0)
\/| 1ta]
1
w=——= € (0, +).
Vitita
Then
filz, y, w)
w 0 0 1/w 0 o0
2 max |10 @ 0 (& 0 L/a 0
1<i<m+2 0 y 1/,{1,’ O —y r
C e Y0760
T <m0 TT 0 TT .

is the optimal solution of the problem (17).
By considering (40) in a similar way, we can prove the rest of
Theorem 2.
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