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Ahtract-In this paper, we present a s tudy  on 
the  Finite Word Length (FWL) implementation 
of digital controller structures. The relevant 
FWL closed-loop stability related measures are 
investigated, and  a n  algorithm is provided to 
search for the sparse controller realization that 
yields a computationally efficient structure with 
good FWL closed-loop stability performance. A 
numerical example is included to illustrate t he  
proposed design procedure. 

1 Introduction 

For reasons of speed, memory space and ease-of- 
programming, the use of fixed-point processors is more 
desired for many industrial and consumer applications. 
However, a designed stable closed-loop system may be- 
come unstable when the “infinite-precision” controller 
is implemented using a fixed-point processor due to the 
FWL (Finite Word Length) effect. It is well known 
that a linear digital controller can be implemented 
in different realizations and different controller real- 
izations have different FWL closed-loop stability be- 
havior. Many studies have addressed the problem 
of digital controller realizations with finite-precision 
considerations [ 1]-[6]. In particular, computationally 
tractable FWL closed-loop stability related measures 
have recently been derived, and the design proce- 
dures have been developed to search for optimal finite- 
precision controller realizations with maximum toler- 
ance to FWL errors [ 5 ] .  However, few study has inves- 
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tigated an important issue in FWL implementation, 
namely the sparseness consideration of controller re- 
alizations [4]. A controller realization that possesses 
many trivial parameters of 0, +1 and -1 is called a 
sparse realization. Sparse realizations are preferred in 
real-time control applications, as they are computa- 
tionally more efficient and produce less FWL errors. 
This paper address the complex problem of finding 
sparse realizations with good FWL closed-loop stability 
performance. 

2 Measure on stability and sparseness 

Consider the discrete-time control system depicted 
in Fig. 1, where the discrete-time plant model P ( z )  
is assumed to be strictly causal and C(z )  denotes the 
digital controller. Let (A,, B,, C,, 0) be a state-space 
description of P ( z )  with A, E Rmxm, B, E Rmxl  
and C, E Rqxm, and (A,,B,,C,,D,) be a state-space 
description of C ( z )  with A, E E”’”, Bc E Rnxq ,  
C, E RlXn and D, E RLxq. Then the stability of the 
closed-loop control system depends on the poles of the 
closed-loop system matrix 

- 
A =  
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If (A:, B,O, C,O, 0,") is a state-space description of the 
digital controller C(z ) ,  all the state-space descriptions 
of C ( z )  form a set 

A Sc = { (Ac, B,, C,, 0,) : A, = T-'A:T, 
Bc = T-'B,O, C, = C,OT, Dc = D,"} (2) 

where T E Rnxn is any non-singular matrix, called a 
similarity transformation. Any (Ac ,  B,, C,, D,) E Sc 
is a realization of C(z).  Denote N = ( I  + n)(q +n) and A 

Pl PI+n+l * * *  PN-l-n+l 
P2 Pl+n+2 . * *  PN-I-n+2 

... 
PI+, PZ1+2n ' . .  PN 

We will also refer to X as a realization of C(z) .  n o m  
( l ) ,  we know that 2 is a function of X 

(4) 
A 
= MO+MlXh12 

When the fixed-point format is used to implement the 
controller, X is perturbed into X + AX due to the 
FWL effect, where 

APN 
and each element of A X  is bounded by f such that 

( 6 )  
A E 

P(AX) = lAPil5 5 
For a fixed-point processor that uses B f  bits to imple- 
ment the fractional part of a number, E = 2-'f, and 
p(AX) is a norm of the FWL error AX. With the 
perturbation AX, a closed-loop pole A,(x(X)) of the 
originally stable system is moved to X,(z(X + AX)), 
which may be outside the open unit disk and hence 
causes the closed-loop to become unstable. 

Notice that the parameters 0, +1 and -1 are trivial, 
since they require no operations in the fixed-point im- 
plementation of X and do not cause any computation 
error a t  all. Thus Ap, = 0 when pi = 0, +1 or -1. Let 
us define the function 

(7) 
0, if p = 0, +1 or - 1 
1, otherwise 

To derive an FWL stability related measure for X, we 
first notice that when A X  is small 

A AX, = Xi(X(X + AX)) - X,(X(X)) 

It follows from the inequality 

derived easily from Cauchy inequality, that 

where N ,  is the number of the non-trivial elements in 
X. Define 

If p(AX) < pl(X), it follows from (10) and (11) that 
lAX,I < 1 - IXl(2(X))l. Therefore 

IXi(z(X + AX))] 5 IAXil+ l&(x(X))l < 1 (12) 

which means that the closed-loop system remains sta- 
ble under the FWL error AX, In other words, for 
a given controller realization X, the closed-loop sys- 
tem can tolerate those FWL perturbations AX whose 
norms p(AX) are less than pl(X). The larger pl(X) 
is, the bigger FWL error AX that the closed-loop sys- 
tem can tolerate. Hence p1(X) is a stability related 
measure describing the FWL closed-loop stability per- 
formance of a controller realization X. Furthermore, 
p , ( X )  is computationally tractable, as shown in the 
following theorem which was proved in [SI. 

Theorem 1 Assume that z ( X )  = Ill0 + Il11XM2 
given in (4) is diagonalizable with {A,} = {A,(X(X))} 
as its eigenvalues. Let z, be a right eigenvector of z ( X )  

A corresponding to the eigenvalue A,. Denote M ,  = 
[ 2 1  ... z , + ~  ] and Adv = [ y1 . . .  Ym+n ] = 
n/ l zx ,  where 3-1 represents the transpose and conjugate 
operation and y, is called the reciprocal left eigenvector 
corresponding to A,. Then 

A 

where the superscript * denotes the conjugate opera- 
tion and T the transpose operation. 

3 Optimal controller realizations with sparse 
structures 

The optimal controller realization with a maximum 
tolerance to FWL perturbation in principle is the solu- 



Then the optimiza However, we do not know how to so 
pl(X) includes 6 ( p , )  is not a continu 

difficulty, we consider a lower bound of pl(X) 
respect to controller elements p , .  To get around this det(T)#O 

Furthermore, the optimal similarity transformation 
Topt can be obtained by solving for the following un- - 

p,(X) = min (15) constrained optimization problem 

w =  max f ( T )  (25) TER""" 

with a consideration that det(T) = 0 is very rare. 
The unconstrained optimization problem (25) can be 
solved, for example, using the simplex search algo- 
rithm. The corresponding controller realization is then 

a € {  l , . . . ,m+n) - 

Obviously, /Jl(x) 5 P i ( x )  and Pi(X) is a Cont~~Uous 
function. 1 5 s  relatively easy tooptimize PI ( X I .  Let 
the "optimal" controller realization xop, bT the Soh- 
tion of the problem 

A 
w = max p l ( X )  

XESc - 
Notice that Xopt is generally not the optimal solution 
of the problem of (14) and may not have a sparse struc- 
ture. However, it can easily be obtained by the follow- 
ing optimization procedure. 

3.1 Optimization of p1 
Assume that an initialcontroller realization is given 

as 

From (2) and (4), we have 

and 

Obviously, ' ; i ( X )  has the same eigenvalues as ~(XO), 
denoted as {Ay}. From (19), applying theorem 1 results 
in 

I O  
0 T7 x=xo 

(20) 
For a complex-valued matrix M E C('+n)X(q+n) with 
elements mt3,  define the F'robenius norm 

given by Xopt = X(T0pt). 

3.2 Stepwise transformation algo 
As the optimal sparse realization that maximizes 

is difficult to obtain, we will search for a suboptimal 
solution of (14). More precisely, we will search 
realization that is sparse with a large enough 
of p1. Since Xopt maximizes 21 and 11 is a 
bound of p1, Xopt will produce a satisfactory value of 
P I ,  although it usually contains no trivial elements. 
We can make Xopt sparse by changing one non-trivial 
element of X,,, into a trivial one at a step, under 
the constraint that the value of p1 does not 
too much. This process will p rozce  a 
ization Xspa with a satisfactory value of 
that, even though p1(XS,) < fi(Xopt), it is possible 
that pl(Xspa) > pl(Xopt). In other words, Xspa may 
achieve better FWL stability performance than Xopt. 
We now describe the detailed stepwise procedure for 
obtaining Xsp. 
Step 1: Set s to a very small positive real number (e.g. 

The transformation matrix T is initially 
set to Topt so that X ( T )  = Xopt. 

Step 2: Find out all the trivial elements { T I , . . .  , ~ r }  

in X(T)  (a parameter is considered to be trivial 
if its distance from 0, +1 or -1 is less than 
Denote < the non-trivial element in X ( T )  that is 
the nearest to 0, +1 or -1. 

Step 3: Choose S E RnXn such that 
i) - p, (X(T + sS)) is close to - pl (X(T)) .  
ii) {q1,*--,71,) in X(T) remain unchanged in 
X ( T  + 7s). 

Defiue the cost function 
1 

iii) < in X ( T )  is changed to as near to 0, +1 or 
-1 as possible in X(T + 7s). 

1 

AT) = *c(,ml:;+n) 
exist, Zps = T and terminate the 

algorithm. 
a' i7 ] @ I  [ T o 7 ] l l  

(WF 
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Step 4: T = T + rS. Ff in #(a) is non-trivial, go to 
step 3. If becomes trivial, go to step 2. 

The key of the above algorithm is step 3, which 
guarantees that Xspa = X(T,,) cont 
ial elements and has good performance 
1.11. We now discuss how to obtain S. First, 
V e c ( M )  the vector containing the col 
trix M stacked in column order. With a very small r ,  

- 

condition i) means 

7 
(Vec  (9)> V e c ( S )  = o 

Condition ii) means 

1 

Denote the matrix 

V e c ( S )  must belong to the null space N ( E )  of E. If 
N ( E )  is empty, V e c ( S )  does not exist and the algo- 
rithm is terminated. If N ( E )  is not empty, it must 
have basis {b l  , . . , 6t }, assuming that the dimension of 
N ( E )  is t .  Condition iii) requires moving ( closer to 
its desired value (0, +l or -1) as fast as possible, and 
we should choose V e c ( S )  as the orthogonal projection 
of Vec  (3) onto N ( E ) .  Noting condition iv), we can 
compute V e c ( S )  as follows 

a , = b 7 V e c ( $ )  E R ,  V z E { l , . . . , t }  (29) 

V e c ( S )  = f- & E Rn2 

is chosen in the following way. If ( is 
nearest desired va 

, the derivatives 
!k i?C &ZL ... &L are needed. Denote e, as 
the ith elementary vector with the ith unit element 
and the rest of the elements being all zero 

dT 7 d T '  dT 3 3 dT 

M 
M ,  denote 'O@?f$ = '1 '.. 1. We provide the 

2872 

L M I  
following lemmas without giving proofs. 

%emma 1 For H E Rmxn with elements hJk, J E 
Cnxq and G = H J  with elements g1+1 

(32) -- OgLr - e l e ,  e: Je,  
ahjk 

7 e le f  . . . eien * dH =D(ef)  [ i i i ] D(Je,) (33) 

emef . . . emf2 

Lemma 2 For H E RnXq with elements hjk, J E 
CmXn and G = J H  with elements glr, 

-- dglr  - e f  Je, e l e ,  
ahjk (34) 

Lemma 3 For nonsingular H E Rmxm with elements 
hjk and its inverse H-' with elements L l r r  

Now let. the elements of U-' be ii,k for j E 
( l , . . . , m + n }  a n d k c  { l , . . . , m + n } ,  where 

(35) 
L J 

For any element 21, in X = U-lXoU, 

can be calculated from lemma 1 to 3. Considering . .  

we can calculate 3, g, . . . ,%. 



Denote Table 1: Comparison for different realizations 
1 

R&lization P1 PI N* io = arg min 
t E { l . . - m + n )  all [ 0 ] [ o ] /I 

0 T7 0 T-l XO 4.3890 x 2.5854; 9 
( 4 5  Xopt 6.6854 x 6.6854 x 25 . .  

and XS, 8.4007 x 3.5478 x 16 

L J L  J 

then applied to make Xopt sparse and obtain Tspa and 
Let wlr be the elements of W, and 6 j k  for j E 
{ l , . . . , m + n )  a n d k c  { l , . . . , m + n }  be theelements 
of U w T .  Similar to the derivation of *, we have 

XSW. 

Table 1 compares the three different realizations XO, 
Xopt and Xspa of the example, respectively. Obviously, 
the sparse realization Xspa has the best FWL stability 
performance. 

m+n m+n 

3 = l  k & l  

(43) 

(44) 

5 Conclusions 

dT 

based on lemmas 1 to 3. Since 

1 
Based on the FWL closed-loop stability related mea- 

sure with sparseness considerations, we have addressed 
an optimial realization problem and given a solution 
strategy. A practical stepwise procedure has also been 
presented to obtain sparse controller realizations with 

PI = - 
fi JCE:” wi+wlr 

we can calculate 
m+nm+n c c W“dT* (45) satisfactory FWL closed-loop stability performance. 

dPl * dwlr 
dT fillW113F ( = I  +=I  

- -.=- 

4 An illustrative example 

The discrete-time plant model P ( t )  is given by 

1 1.00e5 1.94 5.93 -6.23 
-4.96e - 2 2.36e3 2.37 2.37 

-1.52e2 2.37e3 2.38 2.39 
1.59e2 2.37e3 2.39 2.37 

A,  = x 

r 3:05e-3 1 
-1.24e - 2 
-1.24e - 2 c,=[1 0 0 0 1  

1 -8.87e-2 1 
The initial realization of the controller C(z) is given by 
a controllable canonical form 

0 0 0 -3.31e- 1 
1 0 0  

0 0 1  
1 0 :::8 1 ’  
T r l i  r -1.61e - 31 

-1.60e - 3 

-1.57e - 3 

The optimization problem (25) is constructed, and the 
simplex search algorithm obtains the solution Topr and 
the corresbonding optimal realization Xopt that max- 

mation algorithm is 
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