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Abstract-In this paper, we plresent a study on-

the Finite Word Length (FWL) implementation
of digital controller structures. The relevant
FWL closed-loop stability related measures are
investigated, and an algorithm is provided to
search for the sparse controller realization that
yields a computationally efficient structure with
good FWL closed-loop stability performance. A
numerical example is included to illustrate the
proposed design procedure.

1 Introduction

For reasons of speed, memory space and ease-of-
programming, the use of fixed-point processors is more
~ desired for many industrial and consumer applications.
However, a designed stable closed-loop system may be-
come unstable when the “infinite-precision” controller
is implemented using a fixed-point processor due to the
FWL (Finite Word Length) effect. It is well known
that a linear digital controller can be implemented
in different realizations and different controller real-
izations have different FWL closed-loop stability be-
havior. Many studies have addressed the problem
of digital controller realizations with finite-precision
considerations [1}-[6]. In particular, computationally
tractable FWL closed-loop stability related measures
have recently been derived, and the design proce-
dures have been developed to search for optimal finite-
precision controller realizations with maximum toler-
ance to FWL errors (5]. However, few study has inves-
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tigated an important issue.in FWL implementation,

_ namely the sparseness consideration of controller re-
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alizations [4]. A controller realization that possesses
many trivial parameters of 0, +1 and -1 is called a
sparse realization. Sparse realizations are preferred in
real-time control applications, as they are computa-
tionally more efficient and produce less FWL errors.
This paper address the complex problem of finding
sparse realizations with good FWL closed- Ioop stablllty
performance.

2 Measure on stability and sparseness

Consider the discrete-time control system depicted
in Fig. 1, where the discrete-time plant model P(z)
is assumed to be strictly causal and C(z) denotes the
digital controller. Let (A4,, B,,C,,0) be a state-space
description of P(z) with A; € R™™, B, € R™X!
and C, € R™™™, and (A, B¢, C., D.) be a state-space
description of C(z) with A, € R™*™,. B, € R™9,
C. € R™™ and D, € R4, Then the stability of the
closed-loop control system depends: on the poles of the
closed-loop system matrix

~_[ A:+B.D.C, B.C.
2l B ot B

Fig. 1. Discrete-time control system
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If (A2, BY, C?, DY) is a state-space description of the
digital controller C(z), all the state-space descriptions
of C(z) form a set

Sc £ {(Ac Be,Ce, D) : A. = T AL,
B. =T 'B? C.=CT,D. = D%} 2)

where T € R™*™ is any non-singular matrix, called a
y g

similarity transformation. Any (Ac, B.,C.,D:) € S¢ -

is a realization of C(z). Denote N 2 (l+n)(g+n) and

a [ D. C.
X =18 a
[ P1 Pl+n+1 PN—~l-n+1
P2 Di+n+2 PN—l-n+2
= . . . 3)
L Pl+n  P2+2n PN

We will also refer to X as a realization of C(z). From
(1), we know that A is a function of X

0

I

A, 0 B, 0
(5 o]+ [ % 1]x
Mo + My X M, (4)

When the ﬁxed-point format is used to implement the
controller, X is perturbed into X + AX due to the
FWL effect, where

C:

A(X) 0

Apr Apiin+r ApN—i—nt1
Apy  Apiint2 ApN-i-n+2

AX g | ) 'n ' n (5)

Apiyn  Apattan Apn
and each element of AX is bounded by § such that
N €
AX) = i< = 6
WAX) = poax,, |6pil < 5 ©)

For a fixed-point processor that uses By bits to imple-

ment the fractional part of a number, ¢ = 2787, and

pw(AX) is a norm of the FWL error AX. With the
perturbation AX, a closed-loop pole A;(A(X)) of the
originally stable system is moved to A:(A(X + AX)),

which may be outside the open unit disk and hence

causes the closed-loop to become unstable.

Notice that the parameters 0, +1 and -1 are trivial,
since they require no operations in the fixed-point im-
plementation of X and do not cause any computation
error at all. Thus Ap; = 0 when p; =0, +1 or —1. Let
us define the function

(p) = { )

To derive an FWL stability related measure for X, we
first notice that when AX is small i

, if p=0,+4Tor =1
1, otherwise

VIV (‘(x +8X)) = A(AX))
g* Ap,d(p). Vi€ {1, )8
j=1
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It follows from-the inequality

3 N, P ? . Ns
(ZGJ) SNS Zaf,
\Jj=1 i=1

derived easily from Cauchy inequality, that

(9)

AN < \JN,Z 32 |Ap; [ 8(;)
j=11°%3
12
< p(AX)J (pj), i (10)

where N, is the number of the non-trivial elements in
X. Define

omn 1 - NAX))]
- \/N za(p,)I%I

If u(AX) < (X)), it follows from (10) and (11) that
|AX;| < 1= |A(A(X))|. Therefore

[A(AX +AX))| < 1AXM] + [X(A(X))] <1

which means that the closed-loop system remains sta-
ble under the FWL error AX. In other words, for
a given controller realization X, the closed-loop sys-
tem can tolerate those FWL perturbations AX whose -
norms p(AX) are less than uy(X). The larger ¢, (X)
is, the bigger FWL error AX that the closed-loop sys-
tem can tolerate. Hence uy(X) is a stability related
measure describing the FWL closed-loop stability per-
formance of a controller realization X. Furthermore,
p1(X) is computationally tractable, as shown in the
following theorem which was proved in [6].

pa (X (11)

(12)

Theorem 1 Assume that A(X) My + M1 XM,
given in (4) is diagonalizable with {\;} = {\:(4(X))}
as its eigenvalues. Let x; be a right eigenvector of A(X)
corresponding to the eigenvalue A;. Denote M &
N

[ z) Im+in ] and My = [ Y1 Ym+n ] =
M7 ™, where H represents the transpose and conjugate
operation and y; is called the reciprocal left eigenvector
corresponding to A;. Then

(13)

where the superscnpt * denotes the con_]ugate opera-
tion and 7 the transpose operation.

3 Optimal controller realizations with sparse
structures

The optinial controller realization with a maximum
tolerance to FWL perturbation in principle is the solu-



tion of the following optimizat’i’oh problem where . -ax-"v»r R
&, __‘ ‘ IX ;-Xo
1

A 288 2=Xe (23)
= ; 0
vSEmaxm(X) (19 C1=1X :
the opti ti blem (16
However, we do not know how to solve (14) becau Then’” @ optimization pro em (16) is eqmvalent to
#1(X) includes 6(p;) is not a continuous function wi w= max  f(T) ‘ (24)
respect to controller elements p;j. To get around this ff.ﬁ?)’;: ‘

difficulty, we consider a lower bound of (X o
Y #(X) Furthermore; the optimal similarity transformation

‘ . 1— I)\»( A(X ))| Topt can be obtained by solving for the following un-
m(X) = ic {1““21 +n} \/"__'—_‘ (15) constrained optimization problem
’ N3 |3 _
w=_max f(T) (25)
Obviously, p1(X) < p1(X) and gy (X) is a continuous with a consideration that det(T) = 0 is very rare.
function. It is relatively easy to optimize p;(X). Let The unconstrained optimization problem (25) can be
the “optimal” controller realization Xope be the solu- solved, for example, using the simplex search algo-
tion of the problem rithm. The corresponding controller realization is then
w2 max #1(X) (16) given by Xope = X (Tope)- ,
X€Sc — .
3.2 Stepwise transformation algorithm
Notice that X, is generally not the optimal solution As the optimal sparse realization that maximizes j;
of the problem of (14) and may not have a sparse struc- is difficult to obtain, we will 'search for a suboptimal
ture. However, it can easily be obtained by the follow- solution of (14). More precisely, we will search: for a
ing optimization procedure. realization that is sparse with a large enough value
of #1. Since Xopy maximizes u; and yj is-a lower
3.1 Optimization of py bound of p;, Xopt Will produce a satisfactory value of
Assume that an initial controller realization is given g1, although it usually contains no trivial elements.
as ‘ D° ) We can make X,p¢ sparse by changing one non—trivial.
Xo = [ B° A% ] 17) element of X, into a trivial one at a. step, gnder
. _ c the constraint that the value of u; does not reduce
From (2) and (4), we have . : too much. This process will: produce a sparse real-

ization Xpa with a satisfactory value of uj. Notice:

X=X(T)= { é qu }Xo [ é g ] (18) that, even though p1(Xspa) < p1(Xope)s it is possible
. that u; (Xepa) > #1(Xopt). In other words, X5, may

achieve better FWL stability performance than Xop.

d
an : We now describe the detailed stepwise procedure for
A(X) = [ (f) T(')“ ]Z(Xo) [ (I) f([)‘ ] (19) obtaining X,pa.
Step 1: Set r to a very small positive real number (e.g.

Obviously, A(X) has the same eigenvalues as A(Xo), 10-%). The transformation matrix T is initially

denoted as {A\?}. From (19), applying theorem 1 results set to Topt so that X(T') = Xop.

n . Step 2: Find out all the trivial elements {n1,---, 7}
oA [ o }on I 0 in X(T) (a parameter is considered to be trivial
X |yexy LO TT | 8X|x_x, 10 T77 if its distance from 0, +1 or -1 is less than 10~%).

o 20) Denote £ the non-trivial element in X/(T') that is

For a complex-valued matrix M € Cl#n)x(a+n) with the nearest to 0, +1 or -1.

elements m;;, define the Frobenius norm Step 3: Choose S € R™" such that

A lng+n 1) 1 (X (T + 78)) is close to u1 (X(T)). _
M= sz:jmij , (21) ii) {m,--.n} in. X(T) remain unchanged in
i=1j=1 X(T +785).

Define the cost function iti) £ in X(T) is changed to as near to 0, +1 or

1 -1 as possible in X(T + 75).

J@) = amin ¢_ To. [T 0 1 iv) ISlp = 1.

Lo 17 i 1f S does not exist; T,p, =T and termmate the
: : o 2 ' algonthm
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Step 4: T =T+7S. If £ in X(T) is non-trivial, go to
step 3. If £ becomes trivial, go to step 2.

The key of the above algorithm is step 3, which
guarantees that Xgpa = X(Tipa) contains many tri
ial elements and has good performance as measured
4#1. We now discuss how to obtain S. First, de
Vec(M) the vector containing the columns of the mia-

trix M stacked in column order. With a very small 7,

condition i) means

(v (%))

Condition ii) means

. (26)

(Vec (%’%))T Vece(S) =

(vee(

Denote the matrix

(vee (38"
(e}

“\\T
| (Vee(%))" |
Vec(S) must belong to the null space N(E) of E. If
N{E) is empty, Vec(S) does not exist and the algo-
. rithm is terminated. ' If N'(E)"is not empty, it must
have basis {by, - -, b}, assuming that the dimension of
N(E) is't. Condition iii) requires moving £ closer to
its desired-value (0, +1 or -1) as fast’as possible, and
we should choose Vec(S) as the orthogonal projection

: (27)
%%%))T Vec(S)=0

-

a
g]

e

e RUr+1xn* (98

Y

of Vec ( ) onto N(E). Noting condition iv), we can

compute ,Vec(S) .as follows
a,~.=b'~TVe-c“ﬁ ER'ViE{l-n t} (29)

L “I‘, dT ) 1 y
. ¢, -
Lv=) aib;€ R (30)
=1 -

Vee(S e R T (31
(8) = \/vT .31

_The sign in (31) is chosen in the followmg way If € is
larger ‘than its nearest desired value, the mmus 31gn is
taken otherw1se the plus sxgn is used

“.the

In the above algorlthm, derivatives
duy de dmy . dn. are needed. .. Denote e; as
AT dTdr " " ar © i

. the ith elementary vector with the zth unit element
and the rest of the elements’ bemg all zero For matrix

M, denote D(M) ={ ] . We provide the
) y

- following lemmas without giving proofs.
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Lemma 1 For H € R™*"™ with elements hjx, J €

C™*9-and G = HJ with elements g;r,

aglr

T, T
By e/ eje Jer (32)
d ele'lr ele?:
= =De]) t | DUer)  (33)
eme'{ emez

Lemma 2 For H € R™*? with elements hj, J €
C™*" and G = JH with elements g;,,

ath =€ JeJek (23 (34)
d : €1} eleqT
L =D J)| . | Dle,)  (35)
enel e,.e;r

Lemma 3 For nonsingular H € R™*™ with elements
h;x and its inverse H~! with elements hy,,

8;7.1,-
By = —e] H 'e;el H™ (36)
di e‘e'{ elc£
' = DT H™Y) L DH )
dH o L
Em€q €m€n,
(37)

Now let the elements of U™! be dj for j €

{1,---,m+n} and k € {1,---,m + n}, where
I 0
U= [0 T] (38)
For any element iy in X =U"1 XU,
dl[r %n%n Oxy, du,;c Az, (39)
('Ju];c dU aU

can be calculated from lerhma. 1 to 3. Considering ,

dz;, dzlr \
ar =0 g 1 (40)
’ o On, o1,
we can calculate 5%, T g



Denote

B " Table 1: Comparison for different realizations
19 = arg ie(l,rP-l,Ez-f-n} \/N I 0 o. I 0 Realization M “ N,
0o TT| |0 77 F Xo 4.3800 x 10-12  2,5854 x 10712 g
(41) Xopt 6.6854 x 10~  6.6854 x 10~5 25
and Xspa 8.4007 x 1075 3.5478 x 10°5 16
I 0 I 0 -7
W= [0 TT] 2, [0 T-T] =UTo, U7 (42)

Let wi; be the elements of W, and 4 for j €

{1,--- ,m+n} and k € {1,---,m+n} be the elements
of U7, Similar to the derlvatxon of %’5,1‘.“-, we have
+nmt T
dwlr i guase Swyy diiji Jwyy 0
= [0 I](;;BukdUT ouT I
(43)
based on lemmas 1- ‘to 3. Since
1
M= (44)
\/_\/Zm+n m-iiﬂ wlrw"
we can calculate
dﬂi m+nm+n dwlr
dar — N ||Wuil ZZ; 2_: T
4 An illustrative example
The discrete-time plant model P(z) is given by
1.00e5 1.94 593 -6.23
105 —4.96e —2 2.36e3 2.37 2.37
A =107} 1622 237¢3 238 239
1.59¢2 2.37¢3 2.39 237
3:05e — 3
—1.2de — 2 _
Ba=| 124e-2 | G=[1000]
~8.87¢ —2

The initial realization of the controller C(z) is given by
a controllable canonical form

0 0 0 -33le-1
4|1 00 1.99
c7 101 0 -3.98 !
0 0 1 3.33
1 ~1.61e-377
B2 = [o] 2= | Cisgeog| Db =808~
0 —1.57e -3

The optimization problem (25) is constructed, and the
simplex search algorithm obtains the solution Top, and
the correspondmg optimal reahzatlon Xopt that max-
imizes ;q The stepwlse transformatlon algorithm 1s
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then applied to make X,p, sparse and obtain T;pe and
Xspa-

Table 1 compares the three different realizations Xj,
Xopt and Xspa of the example, respectively. Obviously,
the sparse realization X p, has the best EWL stability
performance.

5 Conclusions

Based on the FWL closed-loop stability related mea-
sure with sparseness considerations, we have addressed
an optimial realization problem and given a solution
strategy. A practical stepwise procedure has also been
presented to obtain sparse controller realizations with
satisfactory FWL closed-loop stability performance.
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