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Abstract-The paper investigates adaptive equalization of time- 
dispersive mobile ratio fading channels and develops a robust 
high performance Bayesian decision feedback equalizer (DFE). 
The characteristics and implementation aspects of this Bayesian 
DFE are analyzed, and its performance is compared with those 
of the conventional symbol or fractional spaced DFE and the 
maximum likelihood sequence estimator (MLSE). In terms of 
computational complexity, the adaptive Bayesian DFE is slightly 
more complex than the conventional DFE but is much simpler 
than the adaptive MLSE. In terms of error rate in symbol 
detection, the adaptive Bayesian DFE outperforms the conven- 
tional DFE dramatically. Moreover, for severely fading multipath 
channels, the adaptive MLSE exhibits significant degradation 
from the theoretical optimal performance and becomes inferior 
to the adaptive Bayesian DFE. 

I. INTRODUCTION 

DAPTIVE EQUALIZATION is an important technique A for combatting distortion and interference in communi- 
cation links. Equalizer design for future public land-mobile 
telecommunication systems, which include mobile radio ser- 
vice, must overcome problems that are much more complex 
than those encountered in fixed-link communications. In a fast 
frequency-selective fading environment, it is critical that an 
equalizer is able to adapt itself rapidly to changing channel 
conditions. From the viewpoint of signal detection, there 
are basically two categories of equalizers, namely sequence- 
estimation and symbol-by-symbol-decision equalizers. 

The optimal sequence-estimation equalizer is the MLSE 
[l]. In practice the MLSE is implemented in the form of a 
Viterbi detector (VD) with a sufficiently large fixed decision 
delay and equipped with an adaptive channel estimator. For 
time-varying channels, tracking errors in the channel esti- 
mate can be considerable, and these errors will accumulate 
in the likelihood functions, causing serious degradation in 
performance. Moreover, decision-directed adaptation during 
actual data transmission is essential for rapidly time-varying 
channels. Because of the equalizer decision delay, the channel 
estimator can only provide a past channel estimate with this 
time delay while the current channel may have changed 
significantly. This estimate error due to decision delay can 
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further degrade performance, and it precludes the use of a 
large decision delay. 

Symbol-by-symbol-decision equalizers are more commonly 
seen and are typically based on adaptive linear filter de- 
sign. These include the conventional symbol and fractional 
spaced DFE’s [2]. The linear filter approach has a very 
simple computational requirement but does not achieve the 
optimal solution for the symbol-by-symbol-decision equalizer 
structure. The realization of the optimal symbol-by-symbol- 
decision equalizer requires a nonlinear processing capability. 

The optimal solution for the symbol-by-symbol-decision 
equalizer structure without decision feedback can be derived 
by adopting a Bayesian approach. This is known as the maxi- 
mum a posteriori (MAP) symbol-by-symbol-decision equalizer 
[3]. This Bayesian equalization solution can be implemented 
by a variety of adaptive nonlinear structures based on artificial 
neural networks [4]-[7]. The same Bayesian approach can be 
extended to the decision feedback equalizer structure, and this 
is referred to as the Bayesian DFE [8], [9]. This Bayesian 
DFE is identical to a special case of the general b!ock DFE 
proposed in [lo]. How an equalizer is implemented is vital to 
adaptive applications. Simple and efficient adaptive algorithms 
have been developed [SI, [9] which make it possible to apply 
the Bayesian DFE to mobile radio fading channels. 

For stationary channels, the performance of the adaptive 
Bayesian DFE is better than that of the conventional adaptive 
DFE but is inferior to that of the adaptive MLSE [8], [9]. 
The current study shows that the adaptive Bayesian DFE has 
significant advantages over the adaptive MLSE for rapidly 
time-varying channels. Extensive simulation results demon- 
strate that the adaptive Bayesian DFE actually outperforms the 
adaptive MLSE considerably in terms of error rate for severely 
fading multipath channels. This observation is not entirely 
surprising. The Bayesian DFE makes decisions on a symbol- 
by-symbol basis and therefore does not accumulate tracking 
errors in channel estimation. Furthermore, the Bayesian DFE 
has a very short decision delay, typically 1 or 2 symbol periods 
for mobile radio channels, so it suffers less from the time delay 
in channel estimate. 

In the remainder of this paper, a derivation of the Bayesian 
DFE is given, and the nonstationary performance of the 
adaptive Bayesian DFE is studied using time-dispersive mobile 
radio fading channels. Implementation issues of the Bayesian 
DFE, which include adaptive algorithm, equalizer design and 
computational complexity, are investigated and compared with 
those of the conventional DFE and the MLSE. A computer 
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simulator for dispersive mobile radio fading channels is used 
to realize a realistic nonstationary channel environment and to 
study performance of various adaptive equalizers. Simulation 
results are provided and their implications discussed. 

11. BAYESIAN DECISION FEEDBACK EQUALIZER 

Consider the channel impulse response (CIR) a ( t )  which 
includes the effects of the transmitter filter, the transmission 
medium and the receiver matched filter. Sampling a ( t )  at the 
symbol rate gives rise to a symbol-spaced (SS) channel model 
a ( k ) ,  where k is the shorthand for kT,b and Tsb is the symbol 
period. a ( k )  is modelled by a finite impulse response (FIR) 
filter with transfer function 

n,-1 

A(z )  = 
i=O 

where nu is the channel order, and the coefficients a; are 
complex-valued and are generally time-varying. The SS sam- 
pled channel output is then defined by 

r ( k )  = .i-(k) + e ( k )  = 
n,-1 

a;s(k  - i )  + e ( k )  ( 2 )  

where ? ( k )  denotes the noiseless channel output, e ( k )  is a 
complex-valued additive noise, and { s( k ) }  is the transmitted 
symbol sequence. 

In the current study, a 4-QAM signalling scheme is consid- 
ered, that is, the constellation of s ( k )  is given by 

i = O  

s(1) = 1 + j ,  
s(2) = -1 + j ,  

s ( k )  = Re [.(k)1+ j Im [S(k)l = 
s ( 3 )  = 1 - j, (3) { s(4) = -1 - j  

where j = a. The discussion in this study however 
can readily be applied to other signalling schemes. The real 
and imaginary parts of s ( k )  can generally be assumed to 
be equiprobable and independent sequences, and they are 
mutually independent. The real and imaginary parts of e ( k )  
are both white Gaussian noise with variance a:, and they are 
mutually independent. e ( k )  and s ( k )  are also assumed to be 
uncorrelated. The task of the equalizer is to reconstruct the 
transmitted symbols as accurately as possible based on noisy 
observations r( k ) .  

The structure of a generic Ssymbol-by-symbol DFE is 
depicted in Fig. 1, where the integers m, n, and d are the 
equalizer feedforward order, feedback order and decision 
delay respectively. Fig. 1 only shows the SS case where the 
feedforward section consists of SS sampled channel outputs. 
Channel outputs can also be sampled at a rate faster than the 
symbol rate and the feedforward section can include fractional 
spaced (FS) samples. The resulting equalizer is called a FS 
equalizer. The conventional DFE is a well-known example 
of the DFE depicted in Fig. 1. The filter operation within 
the conventional DFE is linear. The optimal solution for the 
structure of Fig. 1, however, requires nonlinear processing, 
and this optimal solution can be derived using Bayes decision 
theory [8]-[10]. 

Training 

s(k-d) I 
4 
W 

Fig. 1. Schematic of symbol-by-symbol decision feedback equalizer. 

A. Bayesian Equalization Solution 

that influence the equalizer decision at k are 
For the channel (1) and a given m, the transmitted symbols 

s(k) = [ s ( k ) .  . . s ( k  - m - 72, + 2)]? (4) 

The symbol vector s ( k )  has N ,  = 4na+m-1 combinations, and 
this gives rise to N ,  states of the noise-free channel output 
vector 

( 5 )  r(k) = [ f ( k ) .  . . .i(k - m + l ) ]?  

The set of these N ,  channel output states will be denoted as 
R m , d .  The oldest feedback symbol is S(k - d - n) and the 
oldest symbol in (4) is s ( k  - m - nu + 2). Therefore it is 
sufficient to consider a feedback order 

(6)  n = n, + m - d - 2. 

The feedback vector 

i i j (k  - d )  = [ q k  - d - 1). . . q k  - d - n)]T (7) 

has N f  = 4" combinations and let these N j  feedback states 
be labelled s j , i ,  1 5 i 5 N j .  R, ,d  can be divided into N j  
subsets conditioned on .$j(k - d) = sf , i  

Rm,d = U Rm,d, i  (8) 
l < i < N f  

where 

Rm, d ,  i = { f ( k ) l i i j ( k  - d )  = S j , ; } ,  15 i 5 N j .  (9) 

Each Rm> d ,  i can further be divided into 4 subsets according 
to the value of s ( k  - d) 

E m ,  d ,  i = u IZ!z),  d ,  i (10) 
1<1_<4 

where 
R m , d , i  ( 1 )  = { i ( k ) J ~ ( k - d ) = ~ ( ' ) n n ~ ( k - d )  = s ~ , ~ } ,  

15  IS 4. (11) 

Each subset R m , d , i  contains Ns,i = N , / N f  = qd+l states, 
and the number of states in R C ! d , i  will be denoted as 
NL;; = 4 d ,  1 5 1 5 4. 



CHEN et al.: ADAPTIVE BAYESIAN DECISION FEEDBACK EQUALIZER 1939 

The optimal solution for the structure of Fig. 1 minimizes 
the average error probability in symbol detection and it must 
operate according to Bayes decision rule [ l l ] .  Under the 
assumption that the correct signal vector if (k - d )  is fed back, 
it can be shown that this optimal Bayesian DFE rule takes the 
form [9] 

(12) i(k - d )  = csgn ( f B ( r ( k ) l i f ( k  - d )  = sf,i)) 

where 

csgn (f) = sgn (Re [fl) + j sgn (1" (13) 

sgn (e) is the signum function, r ( k )  is the channel observation 
vector 

r (k )  = [ r ( k ) . . . ~ ( k - m + + ) ] ~  (14) 

and the conditional Bayesian decision function given Sf(k - 
d )  = sf,i is 

fB(r(k)lif(k - d )  = Sf, 2) 

4 N!fl 

= Ch(q)x exp(-l(r(k) - r { * ) I l 2 / p ) .  (15) 

The 4 coefficients in (15) are h(') = 1 + j ,  h(2) = -1 + j ,  
h(3) = 1 - j and h(4) = -1 - j ;  the 4 inner sums are over 

E R:! d,  i, 1 5 q 5 4, respectively; the real positive scalar 
p is equal to 2a:. The derivation of (15) can be found in [9]. 

An immediate observation is that the feedback vector is 
used to reduce computational complexity. Without decision 
feedback, all of the N ,  channel output states would be required 
in the computation of the Bayesian decision function at each 
sample k. As a result of decision feedback, only a small subset 
of N9,i  states are needed in the computation. A geometric 
explanation of how decision feedback improves equalization 
performance is given in [9]. 

The parameter p in (15) should be set to 20: thus perfect 
knowledge of the noise power at the receiver is theoretically 
required. However, p is not influential and need not be 
accurately set to 2 4 .  This insensitivity to the value of p is 
demonstrated using the channel 

A ( z )  = (0.4313 + j0.4311)( 1 - (0.5 + j ) z - l )  

q=l  1=1 

*(1  - (0.35 + j 0 . 7 ) ~ - ~ ) .  (16) 

The structure of the Bayesian DFE is defined by d = 2, 
m = 3 and n = 2. The value of p is set to 4 4 ,  c," and 
2cr:, respectively. The three symbol error rate (SER) curves 
obtained are depicted in Fig. 2, where it is seen that they are 
indistinguishable. In view of this insensitivity, p is set to the 
true noise power 20: in all the simulations that follow. 

During data transmission, Sf(k - d)  consists of detected 
symbols. When an error is made, error propagation will result. 
The effects of error propagation on the Bayesian DFE and the 
conventional DFE are demonstrated using the channel (16). 
Both equalizers have the same structure of d = 2, m = 3 and 
n = 2. The coefficients of the conventional DFE are set to the 
Wiener solution. The SER's obtained using correct symbols 
and detected symbols as feedback respectively are plotted in 
Fig. 3. 

-6 
0 5 10 1 5  20 

Effects of parameter p on the performance of Bayesian DFE. 
Signal to Noise Ratio (dB) 

Fig. 2. 
Three-tap stationary channel and detected symbols being fed back. 
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Fig. 3. Effects of error propagation. Three-tap stationary channel, con./Bay. 
DFE: conventionalBayesian DFE, det./cor.: detectedcorrect symbols being 
fed back. 

B. Adaptive Algorithm 

Two adaptive schemes have been developed for updating 
the channel output states required in the Bayesian DFE. The 
clustering approach [6]-[9] identifies these states directly using 
a clustering algorithm. This scheme is computationally very 
simple and is immune from nonlinear channel distortion. 
However, it requires a large amount of training data and is 
only suitable for stationary or slowly time-varying channels. 
The second approach estimates the channel model (1) by a 
conventional adaptive algorithm and uses the resulting channel 
estimate to calculate the subset states R:! d, i, 1 5 q 5 4. 
This approach, although computationally more complex than 
the clustering scheme, needs a much smaller training set and 
is suitable for rapidly time-varying channels. In this present 
application to severely fading channels, this second adaptive 
scheme is used. 

In this paper the estimation of the SS CIR (1) is achieved 
using the least mean square (LMS) algorithm. The channel 
estimate, defined as 
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can alternatively be updated using the recursive least square 
(RLS) algorithm. Because the successive symbols s ( k )  are 
assumed to be independent, the correlation matrix of the 

spreading ratio of 1. This is ideal for the LMS algorithm. The 
LMS algorithm not only has a much simpler computational 
complexity compared to the RLS algorithm but also has as 
good a steady state tracking performance as the RLS algorithm 

The theoretical error probability of the Bayesian DFE with 
d = 0 and assuming correct i f ( k )  can be shown to be 

estimator input vector is diagonal and has an eigenvalue Pe(laol/ae) = 2Q(laol/ae) - Q2(laoI/ae) (21) 

where 
00 

Q(laol/ae) = ~ , ~ , , ~ = ( 2 . ) - 1 ' 2 e ~ ~ ( - ~ 2 / 2 )  d ~ .  (22) 

in this situation. 
For rapidly time-varying channels, it is essential to continu- 

ously adapt the channel estimate during data transmission. This 
is achieved using decision-directed learning. The situation is 
slightly complicated by the equalizer decision delay and, at 
sample k ,  a feasible decision-directed LMS algorithm is 

t (k  - d)  = r ( k  - d )  - a T ( k  - d - l ) i , ( k  - d ) ,  
&(k - d )  = a ( k  - d - 1) + pc(k  - d)r,(k - d ) ,  } (18) 

where p is an adaptation gain, the bar above i, denotes 
complex conjugate and 

(19) 

At IC + 1, the equalizer must use this delayed estimate a ( k  - d)  
as though it were the most recent estimate a ( k )  to make a de- 
cision. The current channel model a( k + l) may have changed 
considerably. This tracking error owing to inherent decision 
delay will degrade the equalizer performance. Fortunately the 
Bayesian DFE can have a very short decision delay, typically 
1 or 2 for mobile fading channels, to minimize the effect of 
decision delay. 

It is interesting to consider this implication of decision- 
directed learning to the adaptive MLSE. Theoretically a very 
large decision delay (> 5n,) is required to realize the optimal 
MLSE performance. Such a large decision delay would in- 
troduce unacceptable channel tracking errors during decision- 
directed adaptation. A compromise must be found to accom- 
modate these two conflicting requirements, and this results 
in a modest decision delay. An alternative is to employ two 
decision delays, and this allows the VD to output two decision 
sequences. A low-delay preliminary decision sequence is used 
for channel estimation only while the final decision sequence 
adopts a sufficiently large decision delay [12]. 

C. Equalizer Design 

The structure of the Bayesian DFE is specified by d, m, 
and n. The basic structure parameter is d, which specifies 
the number of states required for computing the conditional 
Bayesian decision function and thus determines the level of 
complexity. Given d, m = d + 1 is sufficient for the Bayesian 
DEE. That is, a Bayesian DFE with m = d + 1 has the same 
performance as those with m > d + 1. The proofs of this 
conclusion can be found in [9]. Substituting this result into (6) 
gives rise to n = n, - 1. 

In the case of d = 0, m = 1 is sufficient and the Bayesian 
DFE reduces to a very simple form (see [9]). Assume that the 
channel is normalized, that is 

sa (k  - d )  = [O(k - d )  . . . O(k - d - n, + 1)IT. 

n,-1 

la212 = 1. 
i=O 

For the ideal channel with no intersymbol interference and a 
unit channel gain, the error probability in symbol detection is 
known to be Pe(l/ae). 

A pragmatic rule of selecting d is to set d = n, - 1, 
which has a heuristic explanation. In the case of d = 0, the 
decision delay covers the first channel tap ao, and the equalizer 
performance depends on the energy of a0 as shown in (21). It 
can be imagined that in general performance should depend on 
the energy of the channel taps a. to ad. Increasing d improves 
performance and d = n, - 1 is sufficient to achieve the full 
performance potential. Since computational complexity of the 
adaptive Bayesian DFE for 4-QAM symbols is an order of 
qd+' as will be shown later, it is important to choose a d 
which is as small as possible without sacrificing too much 
performance. If most of the channel energy is contained in the 
taps a0 to a,, where w < n, - 1, the equalizer delay can 
be set to d = w. For multipath mobile ratio fading channels, 
channel energy is usually concentrated near line-of-sight, and 
it is often sufficient to choose d = 1 or 2. 

D. Computational Complexity 

Computational load of the adaptive Bayesian DFE consists 
of three parts, namely the channel estimator based on the LMS 
algorithm, calculation of Rm, d ,  i based on the channel estimate 
and computation of f~ (.). Computational requirements for 
these three subtasks are listed in Table I, where complex 
arithmetic has been converted into equivalent real arithmetic. 
For d > 0, an estimated upper bound is given for the 
computation of subset states. This upper bound is obtained 
by assuming that symbol combinations in the feedforward 
section are random. In reality these symbol combinations 
exhibit regular patterns, and this redundancy can be exploited 
leading to a substantial saving in computation. 

As a comparison, computational complexity of the conven- 
tional DFE is also listed in Table I. For the conventional DFE, 
inputs to the adaptive algorithm contain channel outputs which 
are colored. Theoretically whether the RLS or the LMS is used 
can make a difference. Therefore both the cases of using the 
RLS and LMS algorithms are given. The complexity with the 
RLS is based on the full ordinary version of the algorithm 
(e.g. [13]). Because the adaptive algorithm is expected to 
continuously operate during both the training and transmission 
periods in a highly nonstationary environment, its numerical 
stability is vital. Many versions of the fast RLS algorithm may 
not be suitable for this purpose. 

Consider a channel with n, = 4. Assume that the conven- 
tional DFE is T s b / 2  FS. To cover the total channel dispersion, 
the feedforward section has 2n, - 1 = 7 coefficients and the 
feedback section has n, - 1 = 3 SS coefficients. Such a T s b / 2  
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Channel 
Estimator 

Subset 
States 

Decision 

Function 

1941 

8 x n , + 2  multiplications 
8 x n, additions 

multiplications 
additions 

I 

y : - " {4  x ( d +  1 - 2 )  x 4d+ l+4  x (n ,  - d -  1 + i ) } t  
x : b n { 4  x ( d +  1 - i) x qd+' + 4  x (n ,  - d -  1 + i )  - 2 ) t  

(2 x d + 3 )  x 4d+' 
4 x ( d + l )  x qd+' + 2  

4d+l exP(. 1 s 
multiplications 

additions 

TABLE I 
COMPARISON OF COMPUTATIONAL COMPLEXITY. t ESTIMATED UPPER BOUND FOR COMPUTING SUBSET STATES. 1 FULL ORDINARY VERSION OF RLs 

Bayesian DFE (d = 0) with LMS 
Channel 8 x n , + 2  

Estimator 8 x n, 
4 x 12, + 12 
4 x na + 10 

Subset 
States 

Decision 8 
Function 12 

multiplications 
additions 

multiplications 
additions 

multiplications 
additions 

Conventional DFE (m, n)  with RLSS 
11 X ( m  + n)' + 23 x (m + n)  I multiplications 

10 x ( m  + n)' + 13 x ( m  + n )  - 1 additions 

TABLE II 
COMPUTATIONAL COMPLEXITY FOR n, = 4 

Bayesian DFE (d = 1) with LMS 
Channel 34 multiplications 

Estimator 32 additions 
Subset 68 multiplications 
States 112 additions 

Decision 16 exP(.)s 

Total 16 exP(, 1 s 

80 multiplications 
130 additions 

182 multiplications 
274 additions 

Upper bound 212 multiplications 
for subset 208 additions 

T,b/2 FS DFE (7, 3) with LMS 
82 multiplications 
80 additions 
T,b/2  FS DFE (7, 3) with RLS 

Function 

states 

1330 multiplications 
1129 additions 

FS DFE can be represented as (7,3). For the Bayesian DFE, 
d = 1 is chosen. The computational requirements for these 
two adaptive equalizers are listed in Table 11. For the subtask 
of computing subset states required in the Bayesian DFE, both 
the estimated upper bound and the real complexity taking into 
account redundancy are listed in Table 11. 

From Table I, it can be seen that the complexity of the 
adaptive Bayesian DFE for 4-QAM symbols is of the order 
of qd+'. Since a small d is used in practice, typically 1 or 
2, the Bayesian DFE is only slightly more complex than the 
conventional DFE. The VD demands sophisticated processing 
capability while the implementation of the Bayesian DFE is 
straightforward. Even without counting this subtle difference, 
the basic complexity of the adaptive MLSE is more than that of 
the adaptive Bayesian DFE. The discussion can be extended to 

the general M - QAM case. For high order M, the complexity 
of the conventional DFE remains more or less the same as 
the 4-QAM case. The complexity of the Bayesian DFE will 
increase quickly as M increases since its complexity is of order 
Add+'. However the complexity of the MLSE will increase at 
an even more rapid pace. 

111. PERFORMANCE FOR MOBILE RADIO CHANNELS 

Equalization performance of the adaptive Bayesian DFE is 
investigated using severely fading multipath channels. The 
purpose of this investigation is to assess the nonstationary 
error rate performance of the adaptive Bayesian DFE and 
to compare the Bayesian DFE with the two other adaptive 
equalization schemes, namely the conventional DFE and the 
MLSE. 

A. Computer Simulator for Mobile Radio Channels 
A software simulator has been developed to simulate multi- 

path mobile radio fading channels. The symbol source gener- 
ates 4-QAM symbols at a symbol rate 300 kHz. The combined 
transfer function of the transmitter and receiver filters is of 
raised-cosine type with a rolloff factor 0.5. The transmitter and 
receiver filters are identical. These two filters are implemented 
as FIR filters, and the filter tap weights are samples of the 
truncated root-raised-cosine pulse with a sufficient pulse length 
of np symbol periods. The time-dispersive multipath fading 
channel is implemented as a tapped-delay-line model 

n,-1 

$(t) = C i ( t ) U ( t  - is) 
i = O  

where n, is the number of paths, S is the path delay parameter, 
the time-varying tap weights c; ( t )  are zero mean complex- 
valued Gaussian random processes and they are mutually 
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uncorrelated, and u(t)  is the transmitter filter output. The 
receiver filter output is given by the convolution 

T ( t )  = aRz( t )*(G( t )  + e(q)  (24) 

where ( t )  is the impulse response of the receiver filter and 
e ( t )  is a complex-valued Gaussian white process. To realize a 
near analogue waveform, the system blocks of the transmitter 
filter, the multipath fading medium and the receiver filter 
are operated at a system sample rate of 4.8 MHz, 16 times 
faster than the symbol rate. Considerations of computational 
efficiency prevent us from using a higher system sample rate. 

To realize Rayleigh fading characteristics, real and imag- 
inary components of each tap weight ci(t) are generated by 
passing Gaussian white sequences through digital second-order 
low pass Butterworth filters. The bandwidth of the Butterworth 
filter is of the order of Doppler frequency caused by the motion 
of the mobile. In this simulation study, a Doppler frequency 
of 100 Hz is used. The output power of the Butterworth filter 
when driven by a white noise of unit variance is calculated 
using the method given in chapter 5 of [14], and the square root 
of this filter power is used to scale each tap weight component. 
Each tap weight component is further scaled by its designed 
root mean power (RMP). 

The transmitted data are organized in blocks; a block 
consists of 20 training symbols and 60 information symbols. 
The SS sampled receiver filter outputs can be expressed as 
~ ( k )  = ?(k)+E(k) ,  where E(k) are SS samples of aRz( t )*e ( t ) .  
The signal to noise ratio (SNR) of the simulated system is 
defined as 

/ \ 

where ICp[.] denotes the expectation operator with respect to 
the random process p .  

C. Decision-directed Adaptation 

For the Bayesian DFE and the MLSE, the channel estimator 
updates u ( k )  during a training period. The channel estimate 
may then be fixed throughout a transmission period. However, 
due to the time-varying nature of the medium, the underly- 
ing channel a ( k )  can change significantly in a transmission 
period and some performance improvement can be obtained 
by decision-directed updating of the equalizer coefficients 
during transmission. The significance of this decision-directed 
learning can be demonstrated by examining the two criteria, 
namely the mean square error (MSE) criterion 

MSE = Ir(k) - a T ( k  - d - 1 ) ~ , ( k ) 1 ~  (26) 

and the mean tap weight error (MTE) criterion 

MTE = 11a(k) - &(k - d - 1)112/11a(k)112 (27) 

where s,(k) = [ s ( k ) .  . . s ( k  - n, + 1)IT is the channel input 
symbol vector. For fast frequency-selective fading channels, an 
equalizer that adopts decision-directed adaptation continuously 
during transmission performs considerably better than one 
which does not; this is illustrated using the following example. 

-10 I I I I 1 

-12 no update 0 
. “  DD update + 

- 1 L f  - 
% - 1 6  

-18 
- 
I;: -20 

-22 
-24 
-26 ’ I I I I I I 

0 10 20 30  4 0  5 0  60 
Symbol-Spaced Samples 

-5 I I I I I 

no update 0 
DD update + -10 - 

% -15 

-20  

- 2 5  

I 

z 

-30 I 1 1 I I I I 
0 10 20 30 40 50 60 

Symbol-Spaced Samples 
Variations of mean square error and mean tap error throughout Fig. 4. 

transmission. Channel has 3 symbol-spaced paths. 

The transmission medium consists of 3 SS (6 = T s b )  fading 
paths, and the RMP’s of both the real paths and the imaginary 
paths are 

[0.2463 0.6154 0.24631. (28) 

It is straightforward to verify that the equivalent SS CIR model 
is defined as 

A ( z )  = ~ - ‘ ( ~ o ( k )  + a l ( k ) ~ - ’  + Q ( ~ ) Z - ~ )  (29) 

where T = np is the transmission delay. The channel model 
(29) is perfect with u z ( k )  = c i ( k ) ,  0 5 i 5 2. The Bayesian 
DFE is employed with d = 1, and the LMS channel estimator 
is used with p = 0.05. The MSE and MTE plots are averaged 
over ensembles of 500 data blocks. If the transmitted symbols 
were known, they could be used to update the channel estimate 
during transmission, and this provides the lower bounds for 
the MSE and MTE shown in Fig. 4 under the title “correct 
update” for SNR = 25dB. If the channel estimate is fixed 
throughout transmission, the MSE and MTE will increase, 
departing away from their lower bounds as can be seen from 
Fig. 4. Fig. 4 also shows performance improvement achievable 
by decision-directed (DD) updating. 

C. Symbol Error Rate Performance 

A simulation study has been carried out to investigate 
SER’s of the adaptive Bayesian DFE, the adaptive MLSE 
and the conventional DFE. all the SER plots are averaged 
over 2000 to lo5 data blocks depending on the SNR. The 
LMS algorithm is used for each of the three equalizers 
studied. During transmission the adaptive algorithm operates 
continuously in decision-directed mode. A variety of different 
values for adaptive gain have been tested and it is found that 
p = 0.05 provides the best overall performance. The results 
shown have been obtained using this value of adaptive gain. 
The SER’s for the two DFE’s shown in this study have been 
obtained with detected symbols being fed back. 
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Fig. 5. Performance comparison for adaptive equalizer. Channel has 3 
symbol-spaced paths. 

For the Bayesian DFE and the MLSE, it is sufficient to use 
the LMS algorithm. For the conventional DFE, theoretically 
the RLS algorithm should have convergence advantages over 
the LMS. However, when we apply the conventional DFE 
based on the RLS to the channels simulated in this study, its 
performance is much worse than that based on the LMS. This 
is because, when the SER is not sufficiently small, error prop- 
agation during decision-directed learning often cases the RLS 
algorithm to diverge. The performance of the conventional 
DFE based on the RLS is not included in the present paper. 

Two versions of the adaptive MLSE have been compared. In 
the first version, the VD uses a single decision delay, and the 
detected symbol sequence is simultaneously used for channel 
estimation. In the simulation, this delay is increased until it 
reaches the point that a further increase will not improve and 
may even worsen performance. For the channels simulated, it 
is found that a decision delay of 4 to 6 is appropriate for this 
version. In the second version, the VD adopts two decision 
delays. The low-delay preliminary decision sequence is used 
for channel estimation, and the final decision sequence has a 
sufficiently long delay. For both versions, the VD is reset to the 
correct initial conditions at the beginning of every data block. 
Without this procedure, it was observed that the performance 
quickly degrades as a result of error accumulation. 

Example 1: This is the channel used in Fig. 4. The channel 
order is na = 3. Therefore the SS D E  has a structure of 
(3,2) while a T,b/2 FS DFE is defined by (5,2). The SER’s 
of the conventional SS DFE (3,2), the version-one adaptive 
MLSE with decision delay 4, and the adaptive Bayesian DFE 
with d = 1 and d = 2 are depicted in Fig. 5. The SER of 
the Teb/2 FS DFE (5,2), not shown, is slightly better than 
that of the SS DFE (3,2). The last channel tap ~ ( k )  contains 
significant energy and, as expected, the adaptive Bayesian DFE 
with d = 2 is significantly better than the adaptive Bayesian 
DFE with d = 1. 

If the transmission paths c 2 ( t )  are all known, u2(k) can be 
calculated at each k, and this true SS channel model can then 
be used to provide the theoretical SER of an equalizer. Fig. 6 
shows how an adaptive MLSE deviates from its theoretical 
bound. The second version of the adaptive MLSE has a 

I I I I I I I I  

adp. (4) 4- 
adp. (2110)  +- 
train.(10) e 

the. ( 4 )  * 

0 5 10 15 20 25 30 35 40 45 
Signal to Noise Ratio (dB) 

Fig. 6. Deviation of adaptive MLSE from its theoretical performance. Chan- 
nel has 3 symbol-spaced paths, in the curve titled “train.(lO)”, channel 
estimator uses transmitted symbols all the time with no delay. 

preliminary delay 2 and a final delay 10, and its SER is 
depicted under the title “adp.(2IlO)” in Fig. 6. The results 
clearly demonstrate that the deviation of an adaptive MLSE 
from its theoretical bound is very serious. From Fig. 6, it can 
be seen that the second version of the adaptive MLSE is only 
marginally better than the first version. The main cause of the 
performance degradation is the accumulation of tracking errors 
in likelihood functions. To support this claim, a hypothetical 
situation is simulated where the channel estimator assumes 
perfect knowledge of the transmitted symbols. This removes 
any error caused by estimation delay and by decision-directed 
adaptation. Estimation errors in this case are associated solely 
with the fact that the channel estimator is incapable of tracking 
the fast time-varying channel precisely. The VD uses this 
channel estimate to decode the transmitted symbol sequence 
with a sufficiently large decision delay of 10 symbol periods. 
The resulting SER is plotted under the title “train.(lO)” in 
Fig. 6, where it is seen that this hypothetic MLSE is only 
slightly better than the true adaptive MLSE. 

Fig. 7 compares the performance of the adaptive Bayesian 
DFE with its theoretical bound. The graphs shown in Figs. 6 
and 7 confirm that the theoretical MLSE is superior to the 
theoretical Bayesian DFE. However, the deviation of the 
adaptive Bayesian DFE from its theoretical performance is 
much less serious than that of the adaptive MLSE from 
its theoretical performance and, consequently, the adaptive 
Bayesian DFE outperforms the adaptive MLSE. 

The theoretical conventional DFE assuming perfect knowl- 
edge of the channel is also calculated. This is achieved by 
solving the Wiener equation given a(k) and noise variance at 
each k to derive the equalizer coefficients. Fig. 8 shows how 
the adaptive conventional DFE deviates from its theoretical 
bound. The curve entitled “adp.(3,2)” in Fig. 8 is the same 
curve of the conventional DFE shown in Fig. 5, where the 
equalizer coefficients are updated using the LMS algorithm. 
Because the input vector to the LMS algorithm is colored, 
the tracking performance of the LMS is considerably poorer 
compared with the case of channel estimation where the input 
vector to the LMS algorithm is white. This is an important 
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Deviation of adaptive conventional symbol-spaced DFE from its Fig. 8. 
theoretical performance. Channel has 3 symbol-spaced paths. 

factor that causes the serious performance degradation. An 
alternative adaptive scheme is to estimate the channel model 
using the LMS algorithm and to solve for the coefficients of the 
conventional DFE using the channel estimate. This however 
requires the solution of the Wiener equation at every IC and 
will increase computational complexity dramatically. The SER 
obtained using this adaptive scheme is depicted in Fig. 8 under 
the title “adp.w.(3,2)”. It should be emphasized that real-time 
implementation of this adaptive scheme is very difficult. 

Example 2: The transmission medium consists of 6 Tsb/2 
FS (6 = Tsb/2) fading paths, and the RMP’s of the real paths 
and the imaginary paths are 

[0.4704 0.2582 0.1417 0.0778 0.0427 0.02341. (30) 

It can be shown that the equivalent SS sampled CIR is given by 

(31) 

where T = np - 1 and n, = 5. There are other nonzero 
taps a;(lc) but they are all very small at every IC and can be 
neglected. For most practical purposes, the model structure 
(31) is very accurate. The SER plots of the Tsb/2 FS DFE (9, 

n,-1 

A(z )  = z - ~  1 ai(IC)z-I 
i=O 
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Fig. 9. Performance comparison for adaptive equalizers. Channel has 6 
half-symbol-spaced paths, equalizers are designed based on an accurate 
channel structure. 

4), the first version of the adaptive MLSE with decision delay 
6, the second version of the adaptive MLSE with preliminary 
delay 2 and final delay 15, and the adaptive Bayesian DFE 
with d = 2 are given in Fig. 9. For the conventional DFE, the 
standard scheme of direct updating of the equalizer coefficients 
is adopted. It can be seen that the performance gap between 
the adaptive Bayesian DFE and the adaptive MLSE is very 
large. From Fig. 9, the second version of the adaptive MLSE 
is observed again to be marginally better than the first version. 
A more detailed analysis shows that most of the channel energy 
is concentrated in a l ( k )  and a 2 ( k ) .  Thus a delay of d = 2 is 
sufficient for the adaptive Bayesian DFE. 

Since the average amplitude of ao(IC) in (31) is much 
smaller compared with that of al(IC) or a2(IC), it is interesting 
to consider performance of adaptive equalizers based on the 
simplified channel structure 

A(.) = z - n ~ ( a o ( k )  + al(k)z-l  + Z C ~ ( I C ) Z - ~  + Z L ~ ( I C ) Z - ~ ) .  

(32) 
This simplified sampled CIR is constructed by neglecting 
ao(IC) and re-numbering the rest of the taps in (31). Note that 
assuming ~ ( k )  in (31) to be zero is equivalent to adding a 
transmission delay of one symbol duration. The SER graphs 
of three adaptive equalizers designed using this less accurate 
channel structure are shown in Fig. 10. The SER of the second 
version of the adaptive MLSE with preliminary delay 1 and 
final delay 14, not shown, is similar to that of the first 
version with decision delay 6. The advantage of employing 
this simplified channel structure is a substantial saving in 
computation. For example, d = 1 becomes sufficient for the 
adaptive Bayesian DFE. Furthermore, the deterioration in SER 
should not be notable since the original ao(IC) neglected in 
(32) is not very significant. Comparing Fig. 10 with Fig. 9 
confirms this view. 

IV. CONCLUSION 

A novel adaptive Bayesian DFE has been presented, and 
its performance in a nonstationary environment has been 
investigated using a mobile radio fading channel simulator. 
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Fig. 10. Performance comparison for adaptive equalizers. Channel has 6 
half-symbol-spaced paths, equalizers are designed based on a simplified 
channel structure. 

Compared with the conventional DFE and the adaptive MLSE, 
the adaptive Bayesian DFE has significant performance and 
implementation advantages. For modulation schemes such 
as 4-QAM, the computational complexity of the adaptive 
Bayesian DFE is only slightly more than that of the conven- 
tional DFE. For fast frequency-selective fading channels, it has 
been shown that the performance of the conventional DFE with 
the standard scheme of direct adapting equalizer coefficients 
is poor. Although the theoretical MLSE provides the best 
attainable equalization performance, the adaptive Bayesian 
DFE actually outperforms the adaptive MLSE dramatically in 
a highly nonstationary environment. It has been suggested that 
the adaptive MLSE accumulates tracking errors which causes 
serious performance degradation. The adaptive Bayesian DFE 
in contrast appears to be very robust. 
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