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Abstract 

This paper examines the application of the radial basis function 
(RBF) network to  the modelling of the Bayesian equaliser. In partic- 
ular, we study the effects of delay order d on decision boundary and 
attainable bit error rate (BFR) performance. To determine the op- 
timum delay parameter for minimum BER performance, a simple BER 
estimator is proposed. 
The  implementation complexity of the RBF network grows exponen- 
tially with respect to  the number of input nodes. A s  such, the full 
implementation of the RBF network to realise the Bayesian solution 
may not be feasible. To reduce some of the implementation complex- 
ity, we propose an algorithm to perform subset model selection. Our 
results indicate that i t  is possible to reduce model size without, signi- 
ficant degradation in BER performance. 
Indexing Term: Bayesian equaliser, neural networks, RBF network, 
RER. 

1 Introduction 

It is well-known that the performance of neural network ( N N )  equaliser is 
superior to  the conventional linear equaliser for the digital communication 
symbol-by-symbol equalisation problem [l-31. The superiority of the N N  
structure is due to  its ability to  model the optimum Bayesian decision bound- 
ary better than the conventional linear systems. In many practical equal- 
isation problems, the Bayesian decision boundary is often highly nonlinear, 
and in some  cases, not linearly separable. It is thus not surprising that N N  
techniques, which are capable of modelling any nonlinear decision boundar- 
ies, have become very popular in equalisation problems. This paper  continues 
this theme and investigates the application of the radial basis function (RBF) 
network to realise the Bayesian equaliser. 

The paper  is organised as follows: In Sec. 2.1, we extend the work re- 
ported in [1,2] to  show the effects of delay order on the Bayesian equaliser’s 
decision boundary and BER performance. Our analysis show that the equal- 
iser achieves different attainable BER performance when different delay order 
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is applied under the same signal to noise (SKR) operating condition. To de- 
termine the optimum delay order, a simple RER estimate for the equaliser 
is proposed in Sec. 3. The implementation complexity of the RBF equaliser 
is also discussed, and an algorithm to select small-sized RBF models which 
approximate the Bayesian solution is presented in Sec.4 

2 Implementing the Bayesian equaliser 

An established model of a digital communication channel subjected to  inter- 
symbol interference (ISI) for a multi-level pulse amplitude modulation (2-ary 
PAM) scheme is described by the following equation [a; 41: 

n,-1 

r(/c) = s ( k  - i ) u ( i )  + e ( k )  (1) 
i = O  

where r ( k )  is the received signal a t  time le, s ( k )  is an independently identically 
distributed (i.i.d) transmitted symbol with symbol constellation defined by 
the set {*1}, u ( i )  are the channel impulse response coefficients with the 
length of the impulse response n,, and e ( k )  is the additive white Gaussian 
noise e ( k )  of zero mean and variance rf [2,4]. The equaliser uses an array of 
received signal 

r(k) = [ r ( k ) ,  ' .  ~ r ( k  - m + I)]' (2) 
to  estimate the transmitted symbol s ( k  - d ) ,  i.e. s ( k  - d ) .  The integers m 
and d are known as the feedforward order and delay order respectively. 

The transmitted symbols that affect the input vector r(k) is the transmit 
sequence s ( k )  = [ s ( k ) ,  ' .  . , s ( k  - m - n,  + 2IT. There are N ,  = 2m+na-1 
possible combinations of these input sequences, i.e. { s j } ,  1 5 j 5 N ,  [a]. In 
the absence of noise, there are N ,  corresponding received sequences Cd = 
{ c j } ,  1 5 j 5 N,,  which are also referred to as channel states. The subscript 
d in Cd denotes the delay order used. The values of the channel states are 
defined by the following equation, 

cj = F [ S j ]  15 j 5 A;, ( 3 )  
where the matrix F E Rmx(m+na-l) is 

4 a ( 0 )  a(1) . . . a ( n ,  - 1) 0 . . .  . . .  0 
0 a ( 0 )  a(1) . . .  a ( n ,  - 1) 0 . . .  0 

0 . . .  . . .  . . .  a ( 0 )  a(1) . . .  a(& - 1) 

F = [  ~ ~ ~ 

(4) 
When noise is present, the received vector r ( k )  has a Gaussian distribution 
with expected values corresponding to  the respective c j .  

The set of channel states { c j } ,  1 5 j 5 N ,  can be partitioned according 
to  the value of s (k  - d ) ,  i.e., channel states associated with s (k  - d )  = $1 
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belong to  the class Cy) ,  and channel states associated with s(k - d) = -1 
belong to the class Ci-). The response of the Bayesian equaliser prior to the 
slicer is [2], 

f(r(k>> z C pi(2rc,2)-m/2 exp(-llr(k) - c;112/2c,2) 
C,EC(+) 

- pj(2aaz)-m/2 exp(-llr(k) - cj 112/2a,2) (5) 
C j E C ( F )  

where pi and pj are the a priori probabilities of occurrence for the respective 
channel states. In the case of i.i.d transmitted symbols, p; = pj = l/Ns. The 
output of the Bayesian equaliser i ( k  - d) is sgn(f(r(k)), where sgn(.) is the 
signum function. 

From Eq. 5, it is obvious that the structure of the RBF network is identical 
to  the Bayesian equaliser [a], and that the RBF network realises precisely the 
Bayesian solution when the weights, centres and the nonlinearity of hidden 
units are set accordingly. 

2.1 Effects of delay order on decision boundaries 
The set {r(k)lf(r(k)) = 0) defines the Bayesian decision boundary and is 
dependent on the channel state values and the delay order parameter [1,2]. 
The channel states are determined by the channel impulse response and the 
equaliser feedforward order. The channel states however do not uniquely 
define the decision boundary. Given a set of channel states, the decision 
boundary can be changed by using different delay orders. 

As an example, the Bayesian decision boundaries realised by a RBF equal- 
iser with feedforward order m = 2 for channel H ( z )  = 0.5 + 1.02-1 is ex- 
amined. Fig l a  lists all the 8 possible combinations of the transmitted signal 
sequence s ( k )  and the corresponding channel states ci. Fig. l b  depicts the 
corresponding decision boundaries for the different delay orders. Note the 
dramatic change in the shape of the decision boundaries for different delay 
orders. 

The use of different delay orders also results in different limits of BER per- 
formance. To determine the optimum delay order, a computationally simple 
method to  estimate the BER of the Bayesian equaliser is presented in Sec. 3.2. 

3 Probability of mis-classification 
This section presents the analysis of probability of mis-classification of the 
Bayesian equaliser. 
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Figure 1: (a) Input and desired channel states for channel H ( x ) ,  
(b) Bayesian decision boundaries for channel H ( z ) .  

3.1 

We define Z+ c Rm to be the region of r (k)  classified as +1 and 2- c R” 
to be the region classified as -1. The probability of making a wrong decision 
P, is 

Evaluating the probability of error 

where frjcz(r) is the probability density function (pdf) of the noisy received 
vector r conditioned on the received channel state being C I ,  

f q c l  (r) = (27i-u,2)-”2exp(-IIr ~ cr11~/(2ae2)) ( 7 )  

Because the symbol constellation is symmetric, equation (6) can be reduced 
t, o 

3.2 Estimating the probability of error 
The evaluation of BER using Eq. 8 involves evaluating m-dimensional integ- 
rals over the error region 2-. As a closed-form solution for the expression 
does not exist,, one must resort to numerical methods. This option however 
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is un-attractive for large m. As our requirement to find BER performance 
is only one of comparing relative performance for equalisers using different 
delay orders, a simple approximation may be used to estimate the BER. The 
probability of mis-classifications, P,, can be expressed as 

where P,(c;) is the probability of mis-classification conditioned on the noise- 
free channel state being ci.  It can be shown that in the case when SNR -+ 00, 

P,(ci) can be reduced to the minimum distance bound [SI, i.e., 

where lcil is the absolute minimum Euclidean distance of ct to the decision 
boundary. 

Although Eq. 10 is only valid for very high SNR, it can be applied with 
Eq. 9 to evaluate a rough estimate of the BER performance. Our simula- 
tion results however indicate that the proposed estimator gives good BER 
estiniates even for low SNRs. 

3.3 BER estimate : Some simulation results 
Simulations were conducted to compare the BER results obtained using Eqs. 9 
and 10 with those obtained by the Monte Carlo (MC) siimulations. The fol- 
lowing channels which have the same magnitude but different phase response 
were used, 

H l ( z )  = 0.8745 + 0.43722-I - 0 . 2 0 9 8 ~ - ~  (11) 
H2(2) = 0.2620 - 0.66472-1 - 0 . 2 6 2 3 ~ ~ ’  (12) 

For the experiment, the equaliser’s feedforward order was chosen to be 4 with 
the transmit symbol alphabet {kl}. Fig 2 compares t4he BER estimates of 
Eqs. 9 and 10 with those of MC simulations for the two cliannels using differ- 
ent delay orders. The results show that the proposed BIER estimate is very 
accurate. To illustrate the strong dependence of the equaliser’s performance 
with respect to the delay order, we plot the performance of the equaliser using 
the delay parameter as the horizontal axis in Fig 3.  

4 Selecting subset RBF model 
The implementation of the full RBF solution requires the use of all N ,  channel 
states. In some cases, equivalent Bayesian solution may be realised by using 
a subset of the full model. For example, the decision boundaries of delay 
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Figure 2: Estimated and MC simulations of BER vs SNR for Hl(z) (Fig a) 
and H 2 ( z )  (Fig b). - 

order 1 and 2 (Fig 1b) can be realised by a RBF model with centres ci from 
( C 3 ,  C4, C 5 ,  %} (Fig. 4a,b). 

In many cases, we have observed that it is possible to  find small sub- 
set RBF model to approximate the full model’s solution when the decision 
boundary is linearly separable. The task is however much more difficult when 
the decision boundary is nonlinearly separable. 

This section examines subset model selection algorithms to reduce im- 
plementation complexity of the RBF equaliser. The objective is to find a 
smaller-sized, in terms of number of centres, RBF model to  realise or to ap- 
proximate the same Bayesian solution as the full model. To understand how 
centres affect boundary, we analyse the effects of centre positions on decision 
boundary when ce 4 0. Defining the points on the boundary as ro, i.e. 
(rolf(r0) = 0}, Eq. 5 becomes 

p ; ( 2 x ~ 3 - ~ ”  exp(-//ro - ~+11~/2e:) = 
C , € C i + ’  

p j ( 2 ~ ~ , 2 ) - ~ / ’  exp(-llro - ~~711~/2e:) (13) 
c,EC:-) 

When ce -+ 0,  the sum on the 1.h.s. of Eq. 13 becomes dominated by the 
closest centres to ro, i.e. 

This is because the contribution of centres ck 6 Ut converges much more 
quickly to  zero when ue 4 0 than centres belonging to  U + .  Similarly, the sum 
on the r.h.s of Eq. 13 becomes dominated by the closest centres, U-. This 
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Figure 3: Estimated and MC simulations BER vs delay order for SNR 12dB, 
14dB and 16dB for Hl(z) (Fig a) and H 2 ( z )  (Fig b). 

implies that the asymptotic decision boundaries are hyper-planes between 
pairs of U+,  U -  and that the set of all U+,  U -  defines the asymptotic decision 
boundaries. The following algorithm may be employed to find the set of all 
U + ,  U - .  

Algorithm 1 : Finding U + ,  U -  

Algorithm 1 was tested to  find subset models from the full RBF model 
(Sec. 2.1) used on channel H ( z )  = 0.5 + l.Oz-'. As expected, when delay 
order 0 was used, all the centres, {cl,.  . . , ca) were picked to form the subset 
model (Fig. l b ) .  For the case of using delay order 1 ,  the selected subset 
model consisted of centres {cs, cq, c5, c6} These results can be easily verified 
by visual inspection of the boundary formation as illustrated in Figs. 4a and 
lb .  

Although algorithm 1 works, the selection process is not optimum in the 
sense that redundant centres may be included to form the subset model. To 
illustrate, consider the selected subset model when delay order 2 was used. 
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Figure 4: Realisation of decision boundary using subset RBF model. 
Decision boundary for (Fig a) delay d = 1, (Fig b) delay d = 2. 

By visual inspection of Figs. 4b and l b ,  it is clear that the subset model 
with centres { c y ,  c4, c5, C S }  is sufficient to  realise the Bayesian boundary. Al- 
gorithm l ,  however, picked all the centres to form the subset model. The 
reason for including centres { c I , c ~ }  and ( ~ 7 . ~ 8 )  is that these two pairs of 
centres satisfy Eq. 15 in algorithm 1 and thus also define the asymptotic de- 
cision boundary. They are however unnecessary because the decision bound- 
ary formed using centres {cg, cq} and { c ~ ,  cg} are the same. 

To minimise the inclusion of redundant centres, an additional condition 
is introduced in Eq. 15 to  verify if the new centres under consideration affect 
decision boundary. If the decision boundary changes with the inclusion of 
the new centres, they will be accepted, otherwise ignored. By adding this 
condition, some redundant centres will not be included in the selected subset 
model. The  algorithm for the improved version is as follows: 

Algorithm 2 : Finding U t ,  U- 

C 3 - G  = c,  + (T) 
c, = minCkEC+{llro - ck/I} and 

e, - U+,  c j  i U- 
f s  = RBF model formed using Us, U- as centres 
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4.1 Subset model selection : some simulation results 

Simulations were conducted to select subset models from the full model used 
on channels Hl(z) and H 2 ( z ) .  The feed forward order used was m = 4, 
resulting in a full model with N ,  = 2m+na-1 = 64 centres. Using SNR 
condition at 16dB, simulations were conducted to evaluate the performance 
of the subset RBF, full RBF and the linear Wiener equalisers for the two 
channels. The results are tabulated in Table la and l b ;  The first column of 
each table indicates the delay order parameter, the second column shows the 
size of the subset model used while the third, fourth and fifth columns list the 
BER performance of the respective equalisers and the last column indicates 
if the decision boundary is linearly or not-linearly separable. 

Our results indicate that the full RBF models' BER performance, for cases 
when the decision boundary is linearly separable, are normally better than 
those when the decision boundary is not linearly separable. This is not sur- 
prising since decision boundaries which are not linearly separable teiid to be 
much more complicated and have more centres with different decision outputs 
near to  each other. It was also observed that smaller-sized RBF subset mod- 
els can be found for the case when the boundary is linearly separable, and 
their performance not significantly poorer than the full model's performance. 
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Table b : Channel H2(z) 

Table 1: Comparing the performance of the full-size (64 centres) RBF equal- 
iser, subset RBF equaliser and the Wiener equaliser for Channel 
H l ( z )  (Table l a )  and Channel H 2 ( z )  (Table Ib) at SNR=lBdb. 
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5 Conclusions 
This paper discusses the implementation of the RBF equaliser to realise the 
Bayesian solution. In particular, the effects of the delay order parameter on 
decision boundaries and BER performance is highlighted. We have showed 
that the attainable BER performance depends strongly on the delay order 
parameter and can be significantly different for various values of the delay 
order. To determine the optimum operating delay order parameter, a simple 
BER estimator for the RBF equaliser is proposed. 

solution is also discussed. To reduce some of the implementation complexity, 
we have introduced an algorithm to select subset model from the full RBF 
implementation. Our results indicate that that good subset models with no 
significant degradation in BER performance may be found. 

The implementation complexity of the RBF equaliser to realise the Bayesian 
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