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Abstract� The radial basis function �RBF� network has become a popular choice of neural network
to be used for nonlinear time series prediction ���	
� Although the results have been encouraging
for modelling time invariant nonlinear systems� it is di�cult to achieve the same level of success for
tracking nonstationary signals �

� In this article� we present a method of modifying the classical
RBF networks� which improves the predictive accuracy for nonlinear and nonstationary data�

� Introduction

Although the RBF network has achieved considerable

success in the application to stationary nonlinear time

series prediction� it is unable to achieve the same level

of success for tracking nonstationary series� This is be�

cause the RBF network� like many other neural network

models� does not characterise temporal variability well�

Since real�world signals are often not only nonlinear but

also nonstationary� it is desired to develop predictors

which can handle signals that exhibit both such char�

acteristics�

To improve the predictive performance for non�

stationary data� we propose a gradient RBF �GRBF�

network which is a modi�cation of the classical RBF

network� In the classical RBF network� the centers of

the hidden nodes can be interpreted as prototype vec�

tors which are used to sense the presence of the input

pattern� That is� if a center matches the network input

vector� the corresponding hidden node will �re strongly�

While in the GRBF network� a hidden node�s function

is to sense the presence of a prototype vector�s gradient�

This signi�cantly improves the predictive capability of

the network in the situation where nonstationarity of

the signal is due to the variations of mean and trend�

In using this GRBF network� we are exploiting the

idea that� by performing a suitable di	erence operation

on a nonstationary signal� the resulting signal becomes

stationary� This idea is used in the auto�regressive in�

tegrated moving average �ARIMA� model 
�� for linear

prediction of nonstationary signals� By incorporating a

similar mechanism into the RBF network� we can cre�

ate a network model that is capable of dealing with

nonlinear and nonstationary signals�

� The Gradient Radial Basis

Function Network

The GRBF network� like the RBF network� is a single�

hidden�layer feedforward neural network 

�� It consists

of a input layer with M input elements� a hidden layer

withK hidden nodes and� in this study� an output layer

with � node� There are however two main di	erences

between the RBF network and the GRBF case�

Firstly� the input vector to the RBF network contains

past samples of the time series fyig while the input vec�

tor to the GRBF network is generated by di	erencing

the raw data fyig� The order of di	erencing determ�

ines the order of the GRBF network� For example� if

the input vector to the RBF network at time i is given

by

xi � 
yi��� yi��� � � � � yi�M �T ���

� then the input vector of the �st�order GRBF network

at time i is

x
�

i � xi � xi��

� 
yi�� � yi��� � � � � yi�M � yi�M���
T ���

The elements of x�i show the rate of change in the time�

series trajectory for the past M samples�

�



Secondly� the function of the hidden node for the

GRBF network is di	erent from that of the RBF net�

work� Figure � depicts the structure of the �st�order

GRBF network� Although the Gaussian function still

serves as the nonlinear function which compares the

similarity of the input vector to the hidden node�s cen�

ter� the response of the Gaussian function is now mul�

tiplied by an additional term �yi�� � ��� The response

of the j�th hidden node of a �st�order GRBF network

to the input vector x�i is therefore given by

��ij � exp���kx�i � c
�

jk�� �yi�� � �j� �
�

where c�j is the M �dimensional center vector of the j�

th hidden node� � is a width parameter� and �j is a

constant value associated with the center�

The term �yi�� � �j� can be interpreted as a local

single�step prediction of yi by the j�th hidden node�

From �
�� if the input vector is similar to the j�th center�

the value of the Gaussian function will be close to ���

and the predictor �yi�� � �j� becomes fully active� As

in the case of the RBF network� the output layer is a

linear combiner with weights hj� � � j � K� Similar to

the selection of RBF centers� c�j and �j � � � j � K� can

be selected during training from the training data set

fx�kg
N
k��� where N is the number of training data� For

each training input vector x�k� de�ne dk � yk � yk���

If x�k is chosen as the j�th center c�j � the values of �j is

set to dk� This ensures that the j�th hidden node is a

perfect predictor of yk�

The rationale behind the GRBF model become ob�

vious when the network performs predictive operation�

Each hidden node compares the network input vector

x
�

i with its center c�j � The Gaussian response of each

hidden node indicates the degree of matching between

x
�

i and c
�

j� The hidden nodes thus sense the gradient

of the time series rather than the series itself as in the

case of the RBF model� The term �yi����j� also has a

clear geometric meaning� if the j�th center c�j matches

the gradient x�i of the series� �yi�� � �j� is likely to be

a very good prediction of yi� Although the complex�

ity of a GRBF hidden node is greater than that of a

RBF hidden node� the GRBF has better generalisation

property� particularly in predicting nonstationary time

series� This often results in a smaller GRBF network�

Therefore� the overall complexity of the GRBF network

may not necessarily be greater than that of the RBF

network in practical applications�

� Simulation Results

We present some simulation results of time series pre�

diction using the RBF and GRBF predictors� Initial

full models were created by using all the available data

in the training set as RBF and�or GRBF centers� Some

linear terms were also included into the full models�

Subset models were then selected from these large full

models using the OLS 
�� scheme� and used to evaluate

single�step and multi�step prediction performance�

��� Results for Stationary Series

The Mackey�Glass ��gure �� chaotic time�series was

used to evaluate model predictive performance� Data

samples of point ������� were used as the training set

and samples ��� to ���� were used as the validation

set� The values ofM was chosen to be �� and the width

of Gaussian function was set to � � ���� The following

types of models were used�

i� L�model � The linear model of order ���

ii� L��model � A combination of the linear model and

the classical RBF model�

iii� L���model � A combination of the linear model�

the classical RBF and �st�order GRBF models�

The results of single�step performance for the predict�

ors in training phase are shown in �gure 
� where the

vertical axis indicates the normalised mean square error

�NMSE� in dB� As expected� as the size of each selected

subset model increases� the accuracy of the model con�

tinued to improve� However� the rate of improvement

was not the same for each model� The predictors with

GRBF expansion� i�e� L���model� achieved better er�

ror reduction with a smaller model size� This GRBF

subset model also performed better on the validation

set compared with the linear and classical RBF mod�

els� as can be seen in �gure ��

��� Results for Nonstationary Series

To examine how the predictors behave for nonstation�

ary series� we used a modi�ed Mackey�Glass time�series

��gure ��� This new series was formed by adding sinus�

oid with amplitude ��
 and a period of 
��� samples to

the Mackey�Glass time series used in the previous ex�

ample� As the training data were formed from samples

��� to ��� and the validation data consisted of samples

from ��������� the predictors were trained without be�

ing exposed to the change in the level and trend of the

test data� The results for the single�step prediction in

the validation phase ��gure �� suggest that the GRBF

network can perform better than the classical RBF net�

work in a nonstationary environment�



� Conclusions

We have presented a GRBF network for nonlinear and

nonstationary time series prediction� The hidden layer

of this GRBF network is designed to respond to the

gradient of time�series rather than the trajectory it�

self� This can usually improve predictive accuracy� par�

ticularly for homogeneous nonstationary time series as

are demonstrated in the simulation results� Although

the discussion was based on time series prediction� this

GRBF network can be applied to other signal pro�

cessing applications�
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Figure �� Topology of �st�order GRBF network
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Figure 
� Performance of predictors in training phase for

Mackey�Glass series

a� Linear model� b� Linear � RBF model� c� Lin�

ear� RBF � �st order GRBF model
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Figure �� Performance of predictors in testing phase for

Mackey�Glass series

a� Linear model� b� Linear � RBF model� c� Lin�

ear� RBF � �st order GRBF model
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Figure �� Modi�ed Mackey�Glass time series
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Figure �� Performance of predictors in testing phase for

modi�ed Mackey�Glass series

a� Linear model� b� Linear � RBF model�

c� Linear� RBF � �st order GRBF model�


