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Abstract. The radial basis function (RBF) network has become a popular choice of neural network
to be used for nonlinear time series prediction [1-3]. Although the results have been encouraging
for modelling time invariant nonlinear systems, it is difficult to achieve the same level of success for
tracking nonstationary signals [4]. In this article, we present a method of modifying the classical

RBF networks, which improves the predictive accuracy for nonlinear and nonstationary data.

1 Introduction

Although the RBF network has achieved considerable
success in the application to stationary nonlinear time
series prediction, it 1s unable to achieve the same level
of success for tracking nonstationary series. This is be-
cause the RBF network, like many other neural network
models, does not characterise temporal variability well.
Since real-world signals are often not only nonlinear but
also nonstationary, it is desired to develop predictors
which can handle signals that exhibit both such char-
acteristics.

To improve the predictive performance for non-
stationary data, we propose a gradient RBF (GRBF)
network which i1s a modification of the classical RBF
network. In the classical RBF network, the centers of
the hidden nodes can be interpreted as prototype vec-
tors which are used to sense the presence of the input
pattern. That is, if a center matches the network input
vector, the corresponding hidden node will fire strongly.
While in the GRBF network, a hidden node’s function
is to sense the presence of a prototype vector’s gradient.
This significantly improves the predictive capability of
the network in the situation where nonstationarity of
the signal is due to the variations of mean and trend.

In using this GRBF network, we are exploiting the
idea that, by performing a suitable difference operation
on a nonstationary signal, the resulting signal becomes
stationary. This idea is used in the auto-regressive in-
tegrated moving average (ARIMA) model [5] for linear

prediction of nonstationary signals. By incorporating a
similar mechanism into the RBF network, we can cre-
ate a network model that is capable of dealing with
nonlinear and nonstationary signals.

2 The Gradient Radial
Function Network

Basis

The GRBF network, like the RBF network, is a single-
hidden-layer feedforward neural network [3]. Tt consists
of a input layer with M input elements, a hidden layer
with K hidden nodes and, in this study, an output layer
with 1 node. There are however two main differences
between the RBF network and the GRBF case.

Firstly, the input vector to the RBF network contains
past samples of the time series {y; } while the input vec-
tor to the GRBF network is generated by differencing
the raw data {y;}. The order of differencing determ-
ines the order of the GRBF network. For example, if
the input vector to the RBF network at time ¢ is given
by

Xi = [Yio1,Yizz, o Yimm]” (1)
, then the input vector of the 1st-order GRBF network
at time ¢ 1s
X;» = X; —X;-1

= [yi—l —Yi-2, 5 Yi-M — yi—M—l]T (2)

The elements of x} show the rate of change in the time-
series trajectory for the past M samples.



Secondly, the function of the hidden node for the
GRBF network is different from that of the RBF net-
work. Figure 1 depicts the structure of the lst-order
GRBF network. Although the Gaussian function still
serves as the nonlinear function which compares the
similarity of the input vector to the hidden node’s cen-
ter, the response of the Gaussian function is now mul-
tiplied by an additional term (y;—1 + &). The response
of the j-th hidden node of a lst-order GRBF network
to the input vector x} is therefore given by

¢ = exp(—allxi — ¢jll) x (yi-1 +6;) (3)
where c} is the M-dimensional center vector of the j-
th hidden node, o is a width parameter, and ¢; is a
constant value associated with the center.

The term (y;—1 + ¢;) can be interpreted as a local
single-step prediction of y; by the j-th hidden node.
From (3), if the input vector is similar to the j-th center,
the value of the Gaussian function will be close to 1.0
and the predictor (y;—1 + 6;) becomes fully active. As
in the case of the RBF network, the output layer is a
linear combiner with weights h;, 1 < j < K. Similar to
the selection of RBF centers, c} and 6;,1 < j < K, can
be selected during training from the training data set
{x}}&_,, where N is the number of training data. For
each training input vector x}, define dy = yr — yr—1.
If xj, is chosen as the j-th center ¢}, the values of ¢; is
set to di. This ensures that the j-th hidden node is a
perfect predictor of yy.

The rationale behind the GRBF model become ob-
vious when the network performs predictive operation.
Each hidden node compares the network input vector

x; with its center ¢;. The Gaussian response of each

/
hidden node indicat]es the degree of matching between
x; and ¢;. The hidden nodes thus sense the gradient
of the time series rather than the series itself as in the
case of the RBF model. The term (y;_1 +6;) also has a
clear geometric meaning; if the j-th center c} matches
the gradient x; of the series, (y;_1 + ;) is likely to be
a very good prediction of y;. Although the complex-
ity of a GRBF hidden node is greater than that of a
RBF hidden node, the GRBF has better generalisation
property, particularly in predicting nonstationary time
series. This often results in a smaller GRBF network.
Therefore, the overall complexity of the GRBF network
may not necessarily be greater than that of the RBF
network in practical applications.

3 Simulation Results

We present some simulation results of time series pre-
diction using the RBF and GRBF predictors. Initial

full models were created by using all the available data
in the training set as RBF and/or GRBF centers. Some
linear terms were also included into the full models.
Subset models were then selected from these large full
models using the OLS [2] scheme, and used to evaluate
single-step and multi-step prediction performance.

3.1 Results for Stationary Series

The Mackey-Glass (figure 2) chaotic time-series was
used to evaluate model predictive performance. Data
samples of point 100-600 were used as the training set
and samples 601 to 1100 were used as the validation
set. The values of M was chosen to be 6, and the width
of Gaussian function was set to o = 1.0. The following
types of models were used:

i)  L-model - The linear model of order 50.

ii) LO-model - A combination of the linear model and
the classical RBF model.

iii) LO1-model - A combination of the linear model,
the classical RBF and 1lst-order GRBF models.

The results of single-step performance for the predict-
ors in training phase are shown in figure 3, where the
vertical axis indicates the normalised mean square error
(NMSE) in dB. As expected, as the size of each selected
subset model increases, the accuracy of the model con-
tinued to improve. However, the rate of improvement
was not the same for each model. The predictors with
GRBF expansion, i.e. LO1-model, achieved better er-
ror reduction with a smaller model size. This GRBF
subset model also performed better on the validation
set compared with the linear and classical RBF mod-
els, as can be seen in figure 4.

3.2 Results for Nonstationary Series

To examine how the predictors behave for nonstation-
ary series, we used a modified Mackey-Glass time-series
(figure 5). This new series was formed by adding sinus-
oid with amplitude 0.3 and a period of 3000 samples to
the Mackey-Glass time series used in the previous ex-
ample. As the training data were formed from samples
100 to 600 and the validation data consisted of samples
from 601-1100, the predictors were trained without be-
ing exposed to the change in the level and trend of the
test data. The results for the single-step prediction in
the validation phase (figure 6) suggest that the GRBF
network can perform better than the classical RBF net-
work in a nonstationary environment.



4 Conclusions

We have presented a GRBF network for nonlinear and
nonstationary time series prediction. The hidden layer
of this GRBF network is designed to respond to the
gradient of time-series rather than the trajectory it-
self. This can usually improve predictive accuracy, par-
ticularly for homogeneous nonstationary time series as
are demonstrated in the simulation results. Although
the discussion was based on time series prediction, this
GRBF network can be applied to other signal pro-
cessing applications.
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Figure 1: Topology of 1st-order GRBF network
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Figure 2: Mackey-Glass time series
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Figure 3: Performance of predictors in training phase for
Mackey-Glass series
a) Linear model, b) Linear & RBF model, ¢) Lin-
ear, RBF & 1st order GRBF model
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Figure 4: Performance of predictors in testing phase for
Mackey-Glass series
a) Linear model, b) Linear & RBF model, ¢) Lin-
ear, RBF & 1st order GRBF model
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Figure 5: Modified Mackey-Glass time series
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Figure 6: Performance of predictors in testing phase for

modified Mackey-Glass series
a) Linear model, b) Linear & RBF model,
c) Linear, RBF & 1st order GRBF model.



