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ABSTRACT
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Doctor of Philosophy

CHANGES IN SHELF WATERS DUE TO AIR-SEA FLUXES AND THEIR INFLUENCE
ON THE ARCTIC OCEAN CIRCULATION AS SIMULATED

IN THE OCCAM GLOBAL OCEAN MODEL
by Richard Chaim Levine

In this study we look at the ocean circulation of the Arctic Ocean in the high-resolution
OCCAM global ocean model. The Arctic Ocean consists of deep basins surrounded by a
large area of continental shelves, where cooling and ice formation play an important role in
dense water formation. In the model these dense waters are transported by a circumpolar
boundary current into the deep convection sites of the North Atlantic Ocean. The boundary
current is thought to be a continuous feature in the real ocean, however the driving force is
still unknown. We provide evidence that buoyancy fluxes that occur due to air-sea exchanges
on the continental shelves are an important driving force for the boundary current in the
model.

The formation area of the circumpolar boundary current is found in the Barents Sea,
where there is a high pressure area associated with cooling of inflowing Atlantic Water (AW).
The modified water, Barents Sea Water (BSW), is then able to pass through the Arctic Front
as it sinks into the Arctic Basin via the St Anna Trough in a boundary current. The high
density signal of these waters can be seen all around the continental slope of the Arctic Ocean
as a continuous pressure gradient. The boundary pressure gradient continues into the North
Atlantic, where a low pressure region is found off Cape Hatteras.

A time-dependent variant of an accurate particle tracking technique has been applied
to calculate pathways of the dense waters using stored velocity fields of the OCCAM model.
This technique has been extended with a representation of random motions due to diffusive
effects. An expression for the random motions is derived using the theory of Brownian motion,
and is chosen to match the Laplacian eddy viscosity terms in the momentum equations of
the OCCAM model. The trajectories of the dense waters on the Barents Sea shelf follow the
boundary current, and are guided around the slope by topographical contours. However the
pathways are severely affected by large-scale wind-driven features as the Trans-Arctic drift
and the Beaufort Gyre, which carry water masses out of the boundary current or trap them
in the Canadian Basin. It is found that it takes approximately 30 years for the bulk of BSW
to reach the North Atlantic, although the major signals complete the Arctic circumference
within 10 years. The transport of the BSW through the Arctic into the North Atlantic can
be accurately described by a 1D advection-diffusion model with a ”diffusion” coefficient of
1.3 · 109cm2/s and an ”advection” coefficient of 2.9cm/s. This confirms that the diffusion of
particles is caused by basin-scale features rather than meso-scale eddies. More dense water
is formed on the Chukchi Sea shelf, which originates from the Bering Strait Outflow. There
are signs that these dense waters provide forcing for eddies seen off North Alaska.

A new theory is presented for calculating the Available Potential Energy (APE) on the
continental shelves for driving local currents in the Arctic Ocean, using the mean offshore
density structure as a reference state. The air-sea fluxes in the Barents Sea are found to
create a large amount of APE on the shelves, which is lost as the dense waters sink into the
Arctic Basin. Although it is found the inflowing AW already has a large amount of APE
which cannot fully be converted due to the Arctic Front in Fram Strait, therefore it appears
the cooling in the Barents Sea is crucial to the forcing of the boundary current. This cooling
in the prescribed model air-sea fluxes is likely to be caused by enormous heat losses to the
atmosphere in large ice-free regions, which are created by the inflow of warm AW.
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Chapter 1

Introduction

The Arctic Ocean circulation plays an important role in global climate and must be

understood in order to understand global climate change. There are only sparse observations

of the Arctic Ocean and therefore many processes are not understood. The Arctic Ocean

consists of deep basins surrounded by a large area of continental shelves, which are important

areas for dense water formation. Dense water is formed on the shelves due to cooling and

ice formation, which leads to brine being rejected into the water column underneath. These

processes are thought to be crucial in maintaining the current structure of the Arctic Ocean.

Permanent ice cover is currently made possible by a sharp halocline which underlies a

shallow mixed layer. The dense waters are thought to help maintain the halocline, and

provide waters for the intermediate and deep layers of the Arctic Ocean interior (Aagaard

et al 1981). These waters also supply a large part of the overflows into the North Atlantic

(Anderson et al 1999) and it has been suggested by Mauritzen (1996a,b) that these waters

are dense enough to supply the deep equatorward return flow of the thermohaline circulation.

The dense waters are transported from the Arctic into the North Atlantic in a circumpolar

16
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boundary current, which is thought to be a continuous feature around the continental slope

(Aagaard 1989). The boundary current could be an important flow feature for global climate.

It provides waters that precondition the deep convection sites in the Nordic Seas, and it acts

as a heat pump for Europe by drawing warm Atlantic Water northwards to high latitudes.

The boundary current has been observed at various locations along topography, and varies

from a surface current on the Eurasian side of the Arctic, to a subsurface current further

eastwards. Historically it has been thought that the boundary current starts as Atlantic

Water (AW) enters the Arctic Ocean through Fram Strait. However recently it has been

shown that another branch of AW that flows through Barents Sea and enters the Arctic

Ocean further along the slope could be more important (Rudels et al 1994, Schauer et al

1997). It is still unknown how the boundary current is forced (Aagaard and Carmack 1994,

Woodgate et al 2001), although Holloway (1987) has suggested a form of eddy-topography

interaction, the Neptune effect, which produces along shore currents due to meso-scale eddies

at the shelf break. The Neptune effect can only occur in ocean models if they resolve meso-

scale eddies, or if a specific parameterization is used. Such model experiments have been

performed by Nazarenko et al (1998) and Zhang and Zhang (2001), which have shown that

the Neptune effect helps the cyclonic boundary circulation. Although it is found that the

dense water formation on the Barents Sea shelf is also important. This will be discussed

further in chapter 2.

Another meso-scale feature that affects water transport in the Arctic is the presence of

small energetic eddies, which have been observed mostly in the Canadian Basin. These eddies

are thought to last for several years, and to be formed near the slope of the basin (D’Asaro

1988), possibly by thermohaline forcing.

We aim to evaluate the effects of buoyancy forcing of the circumpolar boundary current
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and the meso-scale eddies due to air-sea fluxes on the continental shelves. We do this by

looking at a recent run of the high-resolution, 1/8◦× 1/8◦ in the horizontal, OCCAM (Ocean

Circulation and Climate Advanced Modelling) global ocean model (Aksenov and Coward

2001). This is the first such model to produce a seemingly continuous circumpolar boundary

current around the continental slope, as very high-resolution is needed to resolve the Rossby

radius of 5 − 10km in the Arctic Ocean. This version of the model does not include a

parameterization for the Neptune effect.

Recently it has been found that the Arctic Ocean is subject to substantial inter-annual

variability due to the Arctic Oscillation (Proshutinsky and Johnson 1997), which affects the

structure of the wind-driven Beaufort Gyre and the position of the Trans-Arctic drift. It

has been shown in model studies by Maslowski et al (2000) that this variability affects the

distance with which Atlantic Water (AW) is able to flow into the Arctic. As the simulation

of the OCCAM model was only run for two years it will show no evidence of this variability.

Nevertheless it provides a good hypothesis of the circulation, which we can use to identify

mechanisms of the Arctic Ocean circulation. Specifically here we look at the role played by

dense water formation, due to air-sea fluxes, in driving energetic circulation features.

In order to investigate the effects of air-sea fluxes on shelf waters we first look at the

pressure fields around the boundary in the OCCAM model simulation for evidence of intrusion

of high density water along the continental slope. We then continue to look at pathways and

time-scales of the dense shelf waters through the Arctic Ocean by applying a time-dependent

variant, which includes diffusive effects, of an existing particle tracking technique to stored

velocity fields of the OCCAM model. Finally we calculate the amount of Available Potential

Energy (APE) on the continental shelves for driving local currents with a new definition,

using a reference state in the Arctic Ocean interior. This allows us to estimate the gain in
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APE due to the air-sea fluxes prescribed in the model.



Chapter 2

Arctic Ocean circulation and

climate

2.1 Introduction

Currently there is a large interest in research of global climate change. The Arctic Ocean

plays an important role in the global climate system, and needs to be understood in order for

reliable predictions of rapid climate change.

The Arctic Ocean is thought to have two main effects on global climate through the

surface heat balance and the thermohaline circulation (Aagaard and Carmack, 1994). The

thermohaline circulation, or global conveyor belt, transports heat polewards in the surface

layers of the North Atlantic which warms northern Europe. The deep southwards return flow

of cold water is driven by deep convection in the Nordic and Labrador seas (Marshall and

Schott, 1999). The waters in this region are conditioned by the outflow of water from the

Arctic Ocean which exits through Fram Strait into the North Atlantic Ocean.

20
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Figure 2.1: The Arctic Ocean Basins, Shelf Seas, Ridges, and topography with contours at

250,500,1000,2000,3000,4000 metres. Ridges are marked as A: Nansen-Gakkel Ridge, B:

Lomonosov Ridge. C: Mendeleyev Ridge. D: Alpha Ridge. E: Chukchi Plateau.
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The Arctic Ocean consists of a number of deep basins separated by ridges, and surrounded

by a large area of continental shelves (see figure 2.1). The Nansen and Fram Basins, separated

by the Nansen-Gakkel ridge, are sometimes referred to as the Eurasian Basin. The Fram and

Makarov Basins are separated by the Lomonosov ridge, and the Makarov and Canada Basins

are separated by the Mendeleyev and Alpha ridges.

The current understanding of the Arctic Ocean circulation has been derived from a sparse

number of hydrographic measurements and ice motion observations. The main circulation

features are described in Aagaard’s (1989) synthesis, and consist of a large-scale boundary

current, a wind-driven gyre in the Canadian Basin, and a strong eddy field on the western

side of the Canadian Basin. These are all important energetic features of the otherwise weak

flow field in the Arctic Ocean interior.

The most energetic flow feature is thought to be a continuous boundary current along the

entire continental slope of the Arctic Ocean (Aagaard and Carmack 1994, Rudels et al 1994,

1999, 2000). It is directly important for European climate by drawing warm Atlantic Water

northwards. The current is thought to transport Atlantic Water all around the Arctic Ocean

before returning to the North Atlantic, mainly through Fram Strait. Mauritzen (1996a,b) has

proposed that here it forms most of the dense overflow water over the Denmark Strait, together

with AW that recirculates within Fram Strait. Therefore it is important to understand the

water mass transformations that occur in the boundary current.

The most likely areas for water mass transformations of AW are on the continental shelves,

which comprise a large area of the Arctic Ocean. This is likely to occur both through AW

crossing the Barents Sea shelf before entering the Arctic deep basins (Loeng et al 1993,

Rudels et al 1994), and through dense plumes sinking from the shelves into the boundary

current (Schauer et al 1997). Anderson et al (1999) have estimated that 1/3 of the deep
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and intermediate waters flowing into the North Atlantic over the Greenland-Iceland-Scotland

ridge originates on the Arctic continental shelves.

The continental shelves provide most of the ventilation for the Arctic Ocean, as the ocean

interior is almost permanently covered in ice, although significant heat loss and freshwater

fluxes are also possible in the central Arctic. There even small parts of open (or thinly covered)

ocean can cause dense water formation (Aagaard and Carmack 1989). The permanent ice

cover is due to the current thermohaline structure of the Arctic water column. There is a

shallow mixed layer that consists of relatively cold and fresh water, with a strong halocline

lying underneath at approximately 50-200m. This halocline insulates the warm Atlantic layer

underneath at approximately 200-900m (Coachman and Aagaard 1974). The halocline also

ensures that the surface water can be cooled to freezing point without the water column

becoming unstable, enabling permanent ice cover in the Arctic.

The halocline is thought to be maintained by dense water flowing off the continental

shelves. Traditionally (eg. Aagaard et al 1981) it is thought that dense (cold and salty) water

is formed on the shelves due to ice formation, which is then advected into the deep basins.

This water is then thought to mix in between a cold, fresh mixed surface layer (originating

from river water inflow and the Pacific Water inflow) and the salty Atlantic layer, creating a

cold halocline layer. Recently Rudels et al (1996) have proposed another mechanism, whereby

dense (cold and fresh) water from the shelves is advected into the deep basins, that have a

relatively deep winter mixed layer (cold and salty). Then subsequent convection within the

mixed layer is proposed to lead to the formation of a cold halocline. Although the halocline

has been thought to be a permanent feature, recently Steele and Boyd (1998) have shown

that the halocline in the Eurasian Basin has retreated during the 1990s from the Amundsen

Basin back into the Makarov Basin, possibly due to a change in atmospheric forcing.
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If the halocline were to disappear there would be stronger atmospheric cooling necessary

to maintain the permanent ice cover, and it would then be likely that the ice melt in summer

would increase leading to an increase in freshwater export into the North Atlantic. It has

been proposed that this could severely reduce the depth of the convection in the Nordic Seas

(Aagaard and Carmack 1989). In that case even severe cooling would not create water dense

enough to sink through the halocline as the density at cold temperatures is mainly controlled

by salinity. Mauritzen (1996a,b) however has proposed that Arctic intermediate and deep

waters are already dense enough to provide water for the deep return flow.

In the following sections we look at the most important aspects for this study: the inflows

and outflows, the processes on the shelves creating dense water, and the flow features in the

Arctic Ocean interior.

2.2 Interocean exchange

The Arctic Ocean exchanges waters with the Atlantic and the Pacific Oceans, as well as

receiving a large input of freshwater from the Siberian and Canadian rivers.

The Atlantic Ocean provides relatively warm and salty water to the Arctic Ocean. The

exchanges between the Atlantic and Arctic Oceans are thought to be driven by a combination

of wind and thermohaline forcing (Proshutinsky and Johnson 1997). The Atlantic Water

moves northwards across the eastern part of the Greenland-Scotland ridge into the Norwegian

Sea in the North Atlantic Current (NAC), the extension of the Gulf Stream. As it flows

northwards it is cooled and freshened due to net precipitation and cooling in the Nordic Seas.

Along the coast of Norway the Norwegian Coastal Current (NCC) flows between the coast

and the NAC, transporting relatively cold and fresh water northwards. The cold and fresh
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signal originates from the Baltic Sea, and is enhanced by mixing with waters from the fjords

and rivers along the Norwegian coast. The AW continues northwards in the NAC and NCC,

after which it is split into two separate pathways supplying the Arctic Ocean with relatively

dense water.

One pathway continues along the continental slope towards Fram Strait in the West Spits-

bergen Current. Another pathway flows eastwards into the Barents Sea (Rudels et al 1994,

Schauer et al 1997). The Fram Strait is 500km wide and has a sill depth of 2500m. It is much

wider than the Rossby radius in the Arctic Ocean (5-10km), and can therefore contain a com-

plicated flow structure. Several branches of the Fram Strait pathway are deflected westwards

before, and in, Fram Strait, and recirculate via the East Greenland Current (Manley 1995).

Only a small part of the AW on this pathway makes it into the Arctic Ocean, and has been

observed flowing eastwards along the continental slope (Schauer et al 1997). The transport

through the approximately 500 km wide Fram Strait is difficult to estimate, because of the

complicated flow field within the strait. Estimates for the transport vary widely. Model

results indicate a transport between 3 and 11.2 Sv (Aksenov and Coward, 2001), although

observations have shown that only approximately 1 Sv. ultimately enters the Arctic Ocean

(Aagaard and Carmack 1989, Manley 1995).

The second pathway flows into Barents Sea through the Bear Island Channel, and via the

Norwegian Coastal Current. The water is severely cooled and freshened in the Barents Sea

before it reaches the Arctic Ocean, which is thought to occur through the St Anna Trough.

The estimated volume flux into the Arctic Ocean via this pathway is 1-3 Sv. (Loeng et al

1993, Ingvaldsen et al 2004). The two pathways meet at the St Anna Trough, where the

first pathway makes a small loop into the trough (Schauer et al 2002). They then continue

to flow eastward along the continental slope of the Arctic Ocean, where their influence can
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be seen as far as the Canadian Basin (McLaughlin et al 1996, Woodgate et al 2001). It

has been proposed by Rudels et al (1994) and Quadfasel et al (1993) that a branch of pure

AW flows back towards Fram Strait in the Nansen Basin along the Nansen-Gakkel ridge, in

order to explain the spread of heat in the interior. Swift et al (1997) however propose that

the heating is caused by lateral spreading of heat from the boundary current, enhanced by

double-diffusive mixing. Also Schauer et al (2002) found little evidence for such a return flow

in observations.

The Pacific Ocean provides relatively fresh and cold water for the Arctic Ocean through the

approximately 50 metre deep Bering Strait. This inflow is relatively well measured (Coachman

and Aagaard 1988, Roach et al 1995), and is thought to be forced by a sea slope difference

between either ends of the Bering Strait (Weingartner et al 1997, Proshutinsky and Johnson

1997), and could also play a significant role in forcing the Trans-Arctic drift. A slope in

sea surface height (η) between the light water on the Pacific Ocean side (η high) and the

relatively heavy water on the Arctic Ocean side ((η low) is also seen in the OCCAM global

ocean model (D.J. Webb, personal communication). The mean transport through the Bering

Strait has been measured to be around 1 Sv (Roach et al 1995), with a strong seasonal signal

with maximum transport in July and minimum transport in March. Half of the freshwater

content of the Canada Basin halocline is thought to be provided by this water mass (Aagaard

and Carmack 1989), which is therefore a significant contributor to the freshwater budget of

the Arctic Ocean.

The Bering Strait Outflow (BSO) is usually divided into two water masses (Steele et al

2004). The relatively fresher and warmer water mass is Alaskan Coastal Water (ACW), and

flows through the eastern part of the Bering Strait. It contains a significant amount of river

runoff from the Yukon river. The Yukon river flows into the Bering Sea from Alaska on the
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Pacific Ocean side of the Bering Strait. The ACW enters the Arctic Ocean through Barrow

Canyon on the Alaskan coast, and is thought to continue eastwards along the continental

slope. As it continues in a boundary current some part of the ACW spins off into eddies

(D’Asaro 1988b). Its properties have been observed on the slope north of Ellesmere Island

(Newton and Sotirin 1997). Jones et al (1998) propose that this water mass makes up all of

the outflow through the shallow straits of the Canadian Archipelago, although the outflow

through Nares Strait (the passage between Greenland and Ellesmere Island) is also thought

to contain water of Atlantic origin (Jones et al 2003).

The second water mass is saltier and colder, and is referred to as Bering Sea Water. This

water mass is formed by mixing of water on the Bering Sea shelf with water in the Gulf of

Andyr, which is on the Russian coast on the Pacific side of the Bering Strait. Steele et al

(2004) distinguish between summer and winter variations of this water mass. The warmer

summer Bering Sea Water flows through Herald and Hannah Canyons to enter the halocline of

the Arctic Ocean. This water mass is found mostly in the Trans-Arctic drift and the northern

part of the Beaufort Gyre. Jones et al (1998) propose that this branch flows westwards into

the East-Siberian Sea. There is a strong front found at the Mendeleyev ridge as the Pacific

Water meets Atlantic Water, and both water masses are thought to flow along the ridge

towards Fram Strait.

It has been suggested by Martin and Drucker (1997) that topography plays an important

role in steering the outflow from the Bering Strait. The outflow passes two shoals in the

Chukchi Sea, where the mean sea floor is approximately at 50m depth. The Herald Shoal is

20 to 30m above the sea floor, and the Hannah Shoal is 10 to 20m above the sea floor. They

show that during ice melt in summer ice remains mostly over the two shoals. They attribute

this to the formation of Taylor columns over the shoals, which traps cold water and ice above
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them.

In winter the water masses on the Chukchi shelf become denser as the winds open large

polynyas in the Chukchi Sea (Weingartner et al 1997). This water mass is found broadly

distributed in the Canada Basin, underlying the ACW and summer Bering Sea Water (Steele

et al 2004). The division of the pathways of the two water masses entering through Bering

Strait is thought to be dependent on the Arctic Oscillation index, which will be discussed

further on.

Another source providing freshwater into the Arctic is the river runoff from Siberian and

Canadian rivers. The Ob and Yenisey rivers flow out into the Kara Sea, the Lena river flows

into the Laptev Sea, and the MacKenzie river flows into the Beaufort Sea. These rivers

produce an inflow of freshwater of the order of 0.1 Sv (Aagaard and Carmack 1989). There

is also a smaller freshwater flux due to the net effect of precipitation over evaporation in the

Arctic.

The only outflow of water from the Arctic Ocean is into the North Atlantic Ocean. In the

Canadian Basin there is a small outflow of water through the shallow (75m) Canadian straits

into the Labrador Sea, which is of the order of 1.4 Sv (Melling 1998). The largest outflow

is through Fram Strait, where the East Greenland Current carries water southward into the

Nordic Seas. This current transports Arctic deep and intermediate waters, that consist of

cooled and freshened AW, as well as part of the recirculating water from the West Spitsbergen

Current. It is thought to supply a large part of the Denmark Strait overflow (Mauritzen

1996a,b). Measurements of the transport in the East Greenland Current vary between 3-

11Sv, however the net transport through Fram Strait is thought to be approximately 1-3Sv

southwards into the North Atlantic (Aksenov and Coward 2001). Most of the water then

continues via the Denmark Strait overflow, with a smaller part of dense water flowing via the
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Faroe Bank Channel (Saunders 2001).

2.3 Arctic Shelf Seas

The Arctic shelves form a large area of the Arctic Ocean that is important for ventilating

the ocean interior, and maintaining the halocline necessary for permanent ice cover. Dense

water is formed on the continental shelves via a combination of cooling and ice formation.

Ice formation leads to brine being rejected into the water column underneath creating dense

bottom waters on the shelves. These dense waters then flow off the shelves, mixing with

shallow and intermediate depth waters. The formation of dense waters on the shelves is one

process that helps to maintain the halocline (Aagaard et al 2001). Another process is the

cooling of the constant inflows into the Arctic Ocean. A significant amount of dense water

contributing to the halocline is thought to be formed like this in the Barents Sea and Fram

Strait (Steele et al 1995).

The most important shelf sea in the Arctic Ocean is the Barents Sea (Schauer et al 2002).

It is the deepest (± 200m) of all Arctic shelf seas, and directly receives salty AW. The Barents

Sea also receives little river input compared to other shelves. The most important dense water

formed in the Barents Sea is due to the transformation of the through flow of AW. The AW is

transformed into a cooler and fresher water mass, Barents Sea Water (BSW), by a combination

of cooling, freezing and mixing with fresh surface water and dense bottom water (Middtun

1985). Recently Aagaard and Woodgate (2001) have proposed a feedback mechanism whereby

the transformation of AW in the Barents Sea, which then helps to maintain the halocline, is

caused by melting of ice exported from the Arctic Ocean. The BSW continues into the St

Anna Trough, where it meets the Fram Strait pathway of AW that makes a short loop into
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the trough (Schauer et al 2002).

The properties of the two pathways are now quite distinct. As the AW enters the Arctic

Ocean through Fram Strait its high temperature leads to melting of the sea ice above, which

causes a large heat loss to the atmosphere (Rudels et al 1999). Then the melt water mixes

with the upper part of AW, creating a fresh surface layer. As the AW flows further eastwards

this layer, together with the ice cover, provides insulation for the warm AW underneath.

Therefore the AW mainly retains its original properties, although it is slightly cooled (Swift

et al 1997), and is quite different from the colder and fresher branch of BSW. There are also

dense plumes seen to sink down the slope from the northern Barents Sea joining the current

of AW (Schauer et al 1997).

As the BSW enters the Arctic Ocean it is confined to the slope by rotation (Schauer et al

1997). The denser part slides down the slope to depths up to 1000m, while the fresher part

is confined to the upper part of the slope (Rudels et al 1999). The Fram Strait pathway of

AW is deflected from the slope by the intrusion of BSW. Then the two branches flow side by

side eastwards in the boundary current, where mixing between the two branches reduces the

differences. Further along the slope approaching the Lomonosov ridge the warm signal of the

AW has disappeared, for which there are two scenarios: either the warmest water of the AW

water mass recirculates within the Nansen Basin (Rudels et al 1994, Quadfasel et al 1993),

or the two water masses have been cooled by lateral mixing (Swift et al 1997, Schauer et al

2002).

After the BSW has joined, north of the Kara Sea, the water column is found to be less

stratified at the slope than in the interior of the basin. Schauer et al (1997) explain this by

the fact that the large volume flux of the BSW can only be accommodated by a downward

displacement of the lower isopycnals on the slope. As the upper part of the boundary current



CHAPTER 2. ARCTIC OCEAN CIRCULATION AND CLIMATE 31

is denser than interior water at the same depth, the deeper part is less dense than water at

the same depth in the interior ocean. Therefore the velocity in the current must decrease

with depth, and the flow direction of the deeper part of the current is determined by the

variations in sea surface slope between the continental slope and the ocean interior. These

variations can be caused by extra river discharge or atmospheric forcing.

As well as the constant input of BSW isolated dense plumes sinking off the shelves are

also thought to contribute to Arctic intermediate and deep waters (Aagaard et al 1985).

However there are only a few direct observations of such plumes, mostly at the Spitsbergen

coast (Quadfasel et al 1988, Schauer et al 1995), where warm and saline plumes are found

to sink down the slope. Modelling work has shown the possible importance of such plumes

(Jungclaus et al 1995, Backhaus et al 1997, Anderson et al 1999). Also the existence of sinking

plumes has also been derived from observations of water properties in the deep Arctic Basins

(Aagaard et al 1985, Rudels et al 1994, Jones et al 1995). Schauer et al (1997) propose that

there are shelf water intrusions at the northern Barents Sea slope, adding relatively fresh

water to intermediate depths of the Nansen Basin. Also they found saltier outflows at the

slope of the Kara Sea. They found that only the Barents and Kara Seas contribute to the

ventilation of the Nansen Basin, while the Laptev Sea does not produce dense enough waters.

The formation of dense waters on the shelves through brine-rejection during ice formation

is enhanced due to the formation of coastal polynyas. These are openings in ice cover near

topographical obstacles forced by winds and tides, and allow dense water formation through

intense cooling and ice formation. They have been shown to produce a significant amount of

water for the halocline and deep waters on the Siberian and Chukchi shelves (Cavalieri and

Martin 1994). Cavalieri and Martin (1994) estimate that 0.7-1.2 Sv of dense water is created

on all Arctic shelves in polynyas, most of which enters the halocline. However they conclude
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that more is needed from other processes, such as general freezing and storms, for the 1-1.5

Sv necessary to maintain the halocline.

The process of the plume formation is described extensively by Backhaus et al (1997). In

summer the shelves are covered by a cold and fresh surface layer (caused by river runoff or

summer ice melt), overlying a halocline. Regular production of dense water on the shelves

can only start in late winter when the water column has been sufficiently homogenised by

cooling and brine rejection, which typically takes several months (Harms 1997). This is

similar to the production of dense waters in polynyas. In that case the exposure of the

surface causes severe heat loss, which together with brine-rejection from newly forming ice

will homogenise the water column. The polynyas usually have a horizontal size of a few

kilometres, similar to the internal Rossby radius. Eventually the polynya will be covered by

sea ice, and the water column will re-stratify due to gravity and rotation. This leads to either

the formation of a bottom plume or an eddy. In the case of a bottom plume it will move

slowly towards the continental slope. There it sinks down to stable depth, while possibly

entraining ambient waters. It ends up as an eastward flowing bottom plume that is almost

in geostrophic equilibrium (Jungclaus et al 1995).

2.4 Interior circulation

Here we describe the circulation features in the Arctic Ocean interior, which have mainly

been derived from observations of water mass properties. A summary of the circulation is

seen in figure 2.2, which is based upon Aagaard’s synthesis (1989) and more recent ideas of

the boundary currents (Rudels et al 1999). It features the inflow pathways of Atlantic and

Pacific Water, a strong boundary current of AW and BSW around the continental shelves and
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the Lomonosov ridge, the anti-cyclonic wind-driven Beaufort Gyre in the Canadian Basin,

the Trans-Arctic drift, and a strong eddy field in the western part of the Canadian Basin.

Figure 2.2: Arctic Ocean circulation summary.

2.4.1 Circumpolar boundary current

Strong eastward flowing boundary currents have been seen flowing along various sections

of Eurasian and Canadian continental slopes, and are thought to be a continuous feature

providing large-scale advection within the Arctic Ocean (Aagaard 1989, Rudels et al 1999,

Woodgate et al 2001). The ocean interior only has a weak flow field, especially the Eurasian

Basin, and the boundary current is therefore an important energetic flow feature. The cyclonic

boundary current starts off as a surface current with two separate branches of AW flowing into
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the Arctic Ocean via Fram Strait and the Barents Sea. It is then split into separate streams,

whereby one stream flows northwards along the Lomonosov ridge towards Fram Strait, the

other stream continues eastwards into the Canadian Basin. More observations of an eastward

flowing boundary current have been made in the Beaufort and Lincoln Seas (Aagaard 1984,

Newton and Sotirin 1997).

The mechanism driving the boundary current is still unknown. Suggestions include a

form of eddy-topography interaction (also known as the Neptune effect), which drives cyclonic

currents over topographical lows and would lead to cyclonic circulation along the continental

slope (Holloway 1987). Another suggestion is a form of thermohaline mechanism involving

dense waters (Rudels et al 1994), whereby a buoyancy-driven current is formed due to dense

shelf waters falling down the continental slope (Shapiro et al 2003). Woodgate et al (2001)

found no evidence that the boundary currents are wind-driven, due to the lack of response of

the currents to local wind forcing, however Nost and Isachsen (2003) find a good representation

of cyclonic bottom currents in a simplified model. They conclude that their wind-forced

model is dominated by topographic steering, and produces boundary currents due to the flow

following f/H contours (approximate conservation of potential vorticity).

In ocean models the Neptune effect can only occur if they resolve meso-scale eddies, or

they parameterize the effect. Nazarenko et al (1998) include such a parameterization of the

Neptune effect and conclude that it may help the cyclonic circulation at intermediate levels

around the Arctic Ocean to some degree. Specifically the parameterization helps the inflow

of Atlantic Water into the Arctic Ocean, producing an in- and outflow through Fram Strait

of 6 Sv with the Neptune parameterization, compared to 1 Sv without the parameteriza-

tion. However in a similar model Zhang and Zhang (2001) identify both the Neptune effect

and dense water formation on the shelf in the Barents Sea as important driving forces, and
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emphasize that they work in completely different ways. They find that the cold and dense

Barents Sea shelf waters help to maintain the interior ocean stratification and to produce the

correct cyclonic circulation, whereas the Neptune effect enhances the inflow of the warm AW

through Fram Strait and produces an unrealistically high temperature of the Atlantic layer

of the Arctic Ocean.

The locations of important measurements of the boundary current are shown in figure 2.3.

The measurements from 1995-1996 by Woodgate et al (2001) provide the following properties

of the boundary current in the Eurasian Basin. The results are from three mooring stations

located on the slope near the junction of the Lomonosov Ridge with the Eurasian continent.

Although eddies are found to affect the flow, the dominant flow is a cyclonic current along

topography. The mean flow of the boundary current is found to be approximately 5 cm/s at

100 metre depth, and 1 cm/s at 1100 metres. Maximum currents of almost 40cm/s at the

surface and 20 cm/s at 1100m are found. The transport of the boundary current was found

to be 5 ± 1 Sv.

Further along the slope in the Lincoln Sea (north of Greenland) a cyclonic undercurrent

has been observed by Newton and Sotirin (1997). Their observations show a boundary un-

dercurrent, extending from about 30-600 metres depth, over the continental slope between

the shelf break and the base of the slope. The width of the current is 50 km, and strengths

were observed in the core of about 5-6 cm/s. The undercurrent was observed in each spring

from 1989-1994, with the same water properties, characteristic of the Canadian Basin waters.

The authors argue that their findings confirm the presence of a continuous boundary current

system along the continental slope north of Alaska and Canada, as their observations match

an undercurrent found in the Beaufort Sea (north of Alaska). They refer to measurements

by Aagaard (1984), who finds a cyclonic undercurrent that is opposed to the anti-cyclonic
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surface current. These measurements show a flow that is directed along topography with a

mean velocity of 10cm/s, and a width of 60-70km ranging from 40m to the bottom.

Figure 2.3: Locations of various measurements of Arctic boundary current. A,B: Schauer et

al (1997). C,D,E: Woodgate et al (2001). F: Aagaard (1984). G: Newton and Sotirin (1997)

2.4.2 Wind-driven circulation

The surface circulation in the Arctic Ocean has been observed from various drifting ice

stations and ships. Historically the circulation has been thought to be mostly anti-cyclonic,

with the centre of an anti-cyclonic gyre (the Beaufort Gyre) in the Canadian Basin (Coachman

and Aagaard 1974). Another feature is the Trans-Arctic drift which flows from the Laptev

Sea across the Arctic towards Fram Strait. It is difficult to separate the roles of thermohaline
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and wind-driven circulation in the Arctic Ocean circulation, and it is currently thought that

both driving forces are important (Proshutinsky and Johnson 1997).

Recently it has been found that the wind-driven circulation is subject to significant vari-

ability. The Arctic Oscillation (AO) consists of fluctuations in air mass between mid- and

high-latitudes on the Northern Hemisphere. The AO index is highly correlated with the North

Atlantic Oscillation (NAO) index, and the NAO is sometimes considered to be a regional rep-

resentative of the AO (Delworth and Dixon 2000). During a positive AO index there is a

weak Arctic high pressure corresponding to a cyclonic wind-driven ice drift circulation in the

Eurasian Basin. During a negative AO index there is a strong Arctic high pressure correspond-

ing to an anti-cyclonic wind-driven ice drift circulation in the Eurasian Basin (Proshutinsky

and Johnson 1997, Kwok 2000). During a positive AO the size of the anti-cyclonic Beaufort

Gyre is reduced, and the Trans-Arctic drift is slowed and shifted towards the Canadian Basin.

Proshutinsky and Johnson (1997) use a 2D coupled sea-ice model to present evidence of

the two regimes. They show the presence of a cyclonic and an anti-cyclonic regime, which

alternate at periods of 5-7 years. This suggests a negative AO index with an increased

Beaufort Gyre during 1984-1988, and a positive AO index with a decreased Beaufort Gyre

during 1989-1993. During a negative AO index it is found that more ice is exported into the

North Atlantic from the Eurasian boundaries, where the ice is thinner than in the Canadian

Basin, leading to a decrease in freshwater export. It is emphasized that more observations

are needed to validate these theories, as most of the historical observations were conducted

during a regime of negative AO index.

Steele et al (2004) have performed analysis of the AO index and conclude that 1979-1987

are years of a negative index, while 1988-1994 are years of a strong positive AO index. The

following years 1995-2001 have a weakly positive index. They also find that the separation of
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the waters in the Bering Strait Outflow is more extreme in years of a positive AO, and during

a negative AO index the wind-driven Beaufort Gyre is enlarged and plays an important role

in trapping the transport of water masses through the Canadian Basin.

Maslowski et al (2000) have shown that the reach of AW in the Arctic is dependent on

the atmospheric variability. They have compared trajectories of passive tracers in a regional

high-resolution coupled ice-ocean model to assess the changes due to atmospheric variability.

They calculated ’online’ trajectories of both Atlantic Water and Pacific Water comparing

constant annual atmospheric forcing for 1979 to annually varying forcing fields for 1979-1993

in their model integration. They find that in the constant forcing case there is an enlarged

Beaufort Gyre, and the AW tracer flows mainly along the Eurasian side of the Lomonosov

Ridge towards Fram Strait. However in the variable forcing case there is a reduced size

Beaufort Gyre in the early 1990’s, and the AW tracer crosses the Lomonosov Ridge and then

flows towards Fram Strait along the Canadian side of the Lomonosov Ridge, and along the

Mendeleyev Ridge.

2.4.3 Meso-scale eddies

Subsurface eddies are a major feature in the Canadian Basin of the Arctic Ocean. Also

recently some have been observed in the Eurasian Basin (Woodgate et al 2001). The eddies

are mostly anti-cyclonic, and have homogeneous temperature and salinity properties that

differ from the surrounding waters.

Results from observations in 1972 by Newton et al (1974) using drifting ice camps in

the Canadian Basin confirm the presence of small anti-cyclonic horizontal eddies within the

pycnocline. The radius of these eddies was calculated to be of the order of 15 kilometres.

The eddies appeared within the pycnocline at depths of 50-300 metres. The maximum speed
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observed was of the order of 35 cm/s.

Other observations by Manley and Hunkins (1985) suggested that eddies could fill a quar-

ter of the Canadian Basin surface area, and produce ±30% of the kinetic energy found within

the upper 200 metres of the Beaufort Sea. D’Asaro (1988a) showed that the eddies must

originate on the Chukchi Shelf due to the water properties of the eddies. As water flows off

the shelf through the Barrow Canyon into the Arctic Ocean it is suggested that instability

forms eddies (D’Asaro 1988b).

Another formation mechanism for shallow eddies has been modelled by Chapman (1999),

who showed that cold core eddies in the mixed layer and upper pycnocline are created via

instabilities of the front between the dense waters formed in a wind-forced coastal polynya and

the surrounding shelf waters. Woodgate et al (2001) suggested that larger eddies, extending

over 1000m in depth, observed near the Lomonosov ridge in the Eurasian Basin are created

by instabilities in the front between the AW and BSW branches.



Chapter 3

OCCAM global ocean model

3.1 Introduction

In this study we use results for the Arctic Ocean circulation from the OCCAM model

(Webb et al 1998). The OCCAM model (from the Ocean Circulation and Climate Advanced

Modelling Project) is a high-resolution fully global ocean model, based on the Bryan-Semtner-

Cox primitive equations for the ocean, with an explicit free surface. There are two main

problems for global models accurately simulating the Arctic Ocean circulation. Due to the

small Rossby radius (5− 10km) in the Arctic Ocean models must have a very high resolution

in order to resolve the meso-scale circulation features. Another problem is the convergence

of the meridians at the poles.

The OCCAM model simulation used in this study is described by Aksenov and Coward

(2001). The model has a horizontal resolution of 1/8◦×1/8◦ , and uses two spherical (Arakawa

B) grids to cover the full globe. The first grid is a standard latitude-longitude grid covering

the Southern Atlantic, Pacific and Indian Oceans. The second grid is rotated with its North

Pole on the geographical equator, and covers the North Atlantic and Arctic Oceans. The

40



CHAPTER 3. OCCAM GLOBAL OCEAN MODEL 41

two grids are coupled along the Atlantic equator and at Bering Strait. At Bering Strait the

Pacific and Arctic Oceans are connected by a channel model, which balances the pressure

difference between either side of the strait by bottom friction in a channel of uniform width

(60km), length (20km), and depth (20m). In this study only data from the second grid is used.

The horizontal resolution in the Arctic Ocean on this grid is approximately 14km × 14km,

which is fine enough to start resolving meso-scale features. The model uses depth coordinates

in the vertical and has 36 levels, varying in thickness from 20m at the surface to 250m at

a depth of 5500m. The model topography is derived from the 1/12◦ DBDB5 dataset (US

Naval Oceanographic Office 1983). Using this topography the most important straits within

the Canadian Archipelago are resolved, the Nares Strait (between Greenland and Ellesmere

Island) and Lancaster Sound (eastern part of Barrow Strait). The layout of the model covering

the Arctic Ocean, with overlying geographical latitude-longitude contours, is shown in figure

3.1. As the traditional latitude-longitude grid is little distorted the horizontal model grid

boxes over the Arctic are almost all the same size.

The model is forced by a monthly ECMWF climatological surface stress. A set of 12 mean

monthly wind stresses was calculated from data for the period 1986-1988 (Barnier et al 1995).

This set is applied repeatedly for each year of the simulation. According to Proshutinsky and

Johnson (1997) this is a period of negative AO index, creating an enlarged Beaufort Gyre.

However there are doubts about this as Steele et al (2004) have marked this as a transition

period into a strong positive AO phase. The model has no explicit treatment of sea ice, river

runoff or surface fluxes of heat and freshwater. Instead the model salinity and temperature

values are relaxed at the surface to the Levitus 94 climatology (Levitus and Boyer 1994,

Levitus et al 1994). The salinity difference at the surface is used to derive a freshwater flux,

which affects the free surface height, so the total amount of salt is conserved.
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Figure 3.1: OCCAM model over Arctic Ocean with model depth contours at 245, 508, 989,

1931, 3101, 4100 metres, and overlying geographical latitude and longitude contours.

The initial state of the model is derived from a 8 year simulation of a similar coarser

1/4◦ × 1/4◦ resolution model. The coarser model is relaxed to Levitus 82 (Levitus 1982),

and subsequently to Levitus 94 at the surface. The 1/8◦ × 1/8◦ model is then integrated for

a period of 2 years from year 8. The model will not reach an equilibrium state within the

integration period. However diagnostics such as the global mean kinetic energy, temperature

and salinity changes suggest that the circulation patterns are generally established during a

six month adjustment phase. This is followed by a slow drift towards an equilibrium state.
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In this study we made use of both the 10-day instantaneous datasets and an annual mean

dataset, both from the second year of the model simulation.

The Levitus climatology from which the air-sea fluxes are derived for this study has

been compiled using the available observations of ocean properties. The resulting continuous

temperature and salinity fields over the ocean may however be inaccurate as large parts of the

Arctic Ocean have only been sparsely measured. Therefore the effects of important processes

for our hypothesis, most importantly ice formation, may be missing in the data. It would

be preferable to couple the ocean model to an explicit ice model in order to better represent

the air-sea fluxes due to ice formation, especially in the sparsely observed regions. However

at the time of this study the progress in OCCAM model development had not yet reached

the stage to allow coupling to an ice model, which is a consequence of running such a high

resolution model.

3.2 Model equations

The equations solved by the models are the primitive equations, which can be found in

many textbooks (eg. James 1994). These consist of the horizontal momentum equations

∂u
∂t

+ (u · ∇)u + w
∂u
∂z

+ f × u = − 

ρ
∇p + Du + Fu, (3.1)

the advection-diffusion equations for heat and salt

∂S

∂t
+ (u · ∇)S + w

∂S

∂z
= DS + FS, (3.2)

∂T

∂t
+ (u · ∇)T + w

∂T

∂z
= DT + FT, (3.3)

and the pressure equation, continuity equation, and equation of state

ρg = −∂p

∂z
, (3.4)
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∇ · u +
∂w

∂z
= 0, (3.5)

ρ = ρ(T, S, p). (3.6)

In the momentum equations u = (u, v) is the horizontal velocity vector, ∇ is the horizontal

gradient operator, w is the vertical velocity, the Coriolis parameter is f (= 2Ωsinφ, where Ω

is angular rotation speed of the earth and φ is latitude), ρ0 is a reference density, p is pressure,

Du represents diffusion of horizontal momentum, and Fu represents the wind-stress forcing.

In the advection-diffusion equations S is salinity, T is potential temperature, DS and DT

represent diffusion of salt and temperature, and FS and FT represent the surface forcing of

salinity and temperature. In the final three equations ρ is density and g is the gravitation.

The equations (3.1), (3.2) and (3.3) are solved for the prognostic variables u, T , S. Then the

variables p and w are calculated from equations (3.4) and (3.5) respectively. The density ρ is

calculated from equation (3.6) using a 3rd order polynomial fit to the equation of state.

The model uses Laplacian diffusion to represent horizontal and vertical mixing of momen-

tum

Du = AH∇u + AZ
∂u
∂z

, (3.7)

where AH(= 2 · 106cm2/s) and AZ(= 1cm2/s) are the horizontal and vertical eddy viscosity

coefficients. Horizontal mixing of tracers is also represented by Laplacian terms. Vertical

mixing of tracers is represented by Pakanowski and Philander (1981) mixing, although at high

latitudes the effect of this mixing scheme is to revert to a Laplacian term with a constant

vertical diffusion coefficient (due to relatively small velocities). Therefore we have

DS = KH∇S + KZ
∂S

∂z
, DT = KH∇T + KZ

∂T

∂z
, (3.8)

where KH(= 1 ·106cm2/s) and KZ(= 0.5cm2/s) are the horizontal and vertical eddy diffusion

coefficients.
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3.3 Air-sea fluxes

In this section we look at the prescribed air-sea fluxes in the model. Figure 3.2 shows the

annual mean heat flux and precipitation-evaporation (P-E) fields derived from the surface

forcing fields. The heat flux is dominated by a heat loss to the atmosphere by warm water in

the Barents Sea and around Spitsbergen, which is probably due to inflow of warm AW into

the area which creates large ice free areas. The maximum heat loss is 70W/m2 in the Barents

Sea. If a water column over the maximum depth of the Barents Sea (∆z = 200m) were to

experience this heat flux ∆Q = −70W/m2, and the heat was spread evenly over the column,

then the temperature change throughout the column would be

∆T = ∆t
∆Q

cvρ0∆z
, (3.9)

where cv ≈ 4200J/(kg◦C) is the specific heat of seawater. Estimating ρ0 = 1000 kg/m3 this

would lead to a change of approximately −2.6◦C per year of the full 200m water column.

This is a very strong cooling of AW, which flows in at a typical temperature of 6◦C.
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A

B

Figure 3.2: Annual mean surface fluxes. (A) Heat flux out of ocean in W/m2, (B)

Precipitation-Evaporation in cm/year.
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This negative heat loss signal seems to continue along the continental slope with an ap-

proximate value of 20W/m2 all the way into the Canadian Basin. Another region where

the ocean surface is significantly cooled is on the Chukchi shelf. This shelf is known to be

mostly ice free in summer which would promote a strong cooling of the inflowing Pacific Water

(Martin and Drucker 1994).

The annual mean P-E field is dominated by net precipitation on the Siberian and Canadian

shelves, and smaller areas of net evaporation. The net precipitation in the model is primarily

due to the freshwater flux from the large Siberian and Canadian rivers. The net ’evaporation’

in the model corresponds to areas of regular ice production. These areas are relatively small

in the annual mean (P-E) field, however seasonal ice production leads to larger areas of net

evaporation on the Siberian and Canadian shelves in early winter.

In the Barents Sea there is a net precipitation. If an unstratified water column in the

Barents Sea with salinity S0, temperature T0 and depth ∆z = 200m were to experience a net

freshwater flux of ∆PE = 200cm/year, we can estimate the associated salinity change.

The mass per unit surface area of the freshwater added to the column in a time period ∆t

would be ∆PEρ(T0, 0)∆t . Then the new mass per unit surface area of the water column is

ρ(T0, S0)∆z+∆PEρ(T0, 0)∆t. If the original amount of salt in the water column is distributed

over the new mass per unit surface then the new salinity is given by

S =
S0ρ(T0, S0)∆z

ρ(T0, S0)∆z + ∆PEρ0∆t
. (3.10)

Estimating ρ(T0, S0) = 1000 kg/m3 and ρ(T0, 0) = 1000 kg/m3 the salinity change for each

year is then −1%. For S0 = 35PSU this gives a freshening of 0.35 PSU per year of the entire

water column. The freshening is therefore less effective in than the cooling in the Barents Sea

for changing water mass properties. However freshening can still play an important role, as
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density is much more dependent of salinity at low temperatures. This is illustrated in figure

3.3, where a Temperature-Salinity plot is shown with potential density contours (referenced

to the surface). In the plot a water parcel is shown with a temperature of 3◦C and a salinity

of 34PSU , whereby a temperature change of −2.5◦C and a salinity change of +0.2PSU both

give the same density increase.

Figure 3.3: Temperature-Salinity plot with potential density contours (referenced to the sur-

face), showing water parcel for which temperature change of −2.5◦C and salinity change of

+0.2PSU give same density increase.
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The air-sea fluxes over the Arctic are derived from surface relaxation to the Levitus 94

climatology, which might produce unrealistic fluxes in some areas due to the sparseness of

the data. The mean effect of the air-sea fluxes in the Barents Sea is to provide cooling and

freshening, while this area is known to be an area of regular ice formation (eg. Middtun

1985). Ice formation acts to increase salinity of the water column through brine rejection,

which increases salinity. As salinity is more important for density than temperature, this

would provide a more effective way of creating dense water. However, there is little sign

of these effects in the air-sea fluxes used in the OCCAM model, even in winter. Although

the net freshening and cooling is consistent with the idea that the inflow of warm AW melts

the ice above, which might be imported into the area from the Arctic Ocean (Aagaard and

Woodgate, 2001).

A very prominent feature in the freshwater flux field is the large amount of freshwater

that eminates from the Russian coast, and reaches far into the Arctic Ocean interior. This is

how the river runoff from the large Siberian rivers is represented in the model, which has no

explicit river inflows. The effects of ice formation near coastal areas in Greenland, Spitzbergen

and on the Russian shelves can be seen through the net evaporation that is prescribed in those

regions.

Investigating air-sea fluxes derived from a climatology may not provide the most accurate

results, as is possibly seen in the Barents Sea, although it seems that the main effects such

as ice formation and river runoff in other areas are present.

3.4 Ocean circulation

In this section we look at results from the simulation of the Arctic Ocean circulation.
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A detailed comparison of transports in the model with observations has been presented by

Aksenov and Coward (2001). In general the annual mean, and variability of the transports

in the model are found to be in good agreement with the available observations described in

chapter 2. The ocean circulation at a depth of 30m is shown in figure 3.4. This shows the

boundary current on the Eurasian side of the Arctic, and the Beaufort Gyre, which is confined

to a small part of the Canada Basin. This indicates a relatively positive index of the AO.

The Trans-Arctic drift can be seen as a meandering feature flowing across the Arctic from the

Beaufort Sea towards Greenland. It is found that the drift consists of several inter-connected

jets, similar to those found in other high resolution models (eg. Zhang et al 1999).

Figure 3.4: Annual mean velocity vectors at a depth of 30m

The annual mean inflow of Atlantic Water through the Barents Sea in the model is 2.4
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Sv, which continues into the Arctic Ocean via the St Anna Trough. Another pathway flows

through the eastern part of the Fram Strait as part of the West Spitsbergen Current. This

current has an annual mean transport of 5.1 Sv. A branch of AW is then found to continue

as a meandering eastward current about 100 km offshore from the shelf slope. The transport

of Pacific Water through the Bering Strait has an annual mean of 0.74 Sv.

There is a strong southward East Greenland Current flowing through the western part of

Fram Strait in the model, and the net outflow through Fram Strait has an annual mean of

2.7 Sv. The outflow through the Canadian straits has an annual mean of 0.82 Sv.

In figures 3.5A,B the mean annual sea surface salinity and temperature of the model

simulation are shown. The Arctic Ocean interior is covered by a cold and relatively fresh

surface mixed layer, which is approximately 50m deep in the model. There are especially

fresh waters in the Beaufort Gyre region. The warm and saline AW can be seen entering the

Arctic Ocean via Fram Strait and the Barents Sea.
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A

B

Figure 3.5: Annual mean surface properties (A) Salinity (PSU) (B) Temperature (◦ C).
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The Laptev and East Siberian shelf seas are covered by a layer of cold and fresh river

water, which is prescribed through the surface heat and freshwater fluxes. The Chukchi Sea

is dominated by the inflow of Pacific Water.

In the model the warm and saline water of the AW inflow is found to gradually descend

in the basin interior. These waters are then cooled and freshened as they flow towards the

Canadian Basin, where they are found at depths of 200-800m.

Figures 3.6A,B show two velocity sections crossing the central Arctic Ocean along con-

stant model longitude and latitude. In the first figure positive/negative values represent

eastward/westward (out of/into figure) flows in model coordinates. In the second figure

positive/negative values represent northward/southward (into/out of figure) flows in model

coordinates. There are eastward flowing boundary currents along large parts of the continen-

tal slope, and can be traced back to the Barents Sea. The longitude section in figure 3.6A

shows the current on the northern edge of the Kara Sea which reaches from the surface down

to approximately 900m, with maximum velocities of up to 20cm/s reaching 100km offshore.

On the other side of the basin on the southern part of the Canadian Basin slope there is only

a weak subsurface current with velocities of the order of 6 cm/s at depths of 400-1100m. The

latitude section in figure 3.6B shows the southwards flowing boundary current on the slope

North of Greenland. Here the boundary current is stronger, and reaches from the surface to

1500m with velocities of up to 20 cm/s. The eastward flowing current on the Siberian slope

has a similar structure, reaching from the surface to 900m.

There is evidence that the boundary current is stronger when flowing south-eastwards,

which occurs on parts of the Kara Sea slope, East Siberian Sea slope, and around the coast of

Greenland. This is probably due to westward intensification as the flow changes from being

an eastern boundary current into a western boundary current.
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Other important circulation features that can be seen in figures 3.6A,B are the Beaufort

Gyre, the Trans-Arctic drift, and the flows along the various ridges. The Beaufort Gyre in the

model consists of several anti-cyclonic meso-scale vortices which produce a net anti-cyclonic

circulation. The maximum velocities in the Gyre reach up to 30cm/s. The Trans-Arctic drift

can be seen flowing at depths of 0-500m towards Greenland above the Mendeleyev Ridge with

velocities up to 12 cm/s. There is also a strong northwards flow along the western part of the

Lomonosov ridge, which is accompanied by a southwards flow along the eastern part of the

Lomonosov ridge. Both flows reach approximately from the surface to 1000m. In the ocean

interior weak currents (±1cm/s) are produced forming complete gyres following topography.

There are also small eddies found in the pycnocline of the Canadian Basin.

In order to visualize the extent of the boundary current we look at stream functions of

the flow.
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B

Figure 3.6: Velocity sections in cm/s (A) Constant model longitude section at i=330 (B)

Constant model latitude section at j=250.
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The annual mean circulation is seen in figure 3.7, which shows contours of the depth-

integrated stream functions. The depth-integrated stream function Ψ in m3/s is defined

by

∂Ψ
∂x

=
∫ 0

h
vdz, (3.11)

∂Ψ
∂y

= −
∫ 0

h
udz. (3.12)

The contours of this function, streamlines, are then parallel to the flow, giving anti-cyclonic

flow around regions with high values of Ψ and cyclonic flow around regions with low values

of Ψ. In order for the stream function to exist the depth-integrated transport must be non-

divergent

∂U

∂x
+

∂V

∂y
= 0, U =

∫ 0

h
udz, V =

∫ 0

h
vdz.

This condition is nearly true for the free-surface model formulation of OCCAM as the surface

w is very small (order 10−8m/s). Therefore we can calculate an approximate stream function

by

Ψ(x, y) = −
∫ y

y0

U(x, y′)dy′ +
∫ x

x0

V (x′, y0)dx′, (3.13)

using any starting point (x0, y0).

Figure 3.7A shows the stream function integrated from the surface down to 989m (ap-

proximating non-divergent flow). This stream function shows a strong gradient indicating

cyclonic flow around the continental slope of the Eurasian Basin. This signal originates in

the Barents Sea, where AW flows in from the Norwegian Sea flowing through the Barents

Sea. When the signal reaches the Canadian Basin it crosses the Arctic, where the pathway of

the signal seems to coincide partly with topography contours. However this figure indicates
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that the boundary current transport is mostly affected by the Trans-Arctic drift. Also the

anti-cyclonic vortices of the Beaufort Gyre can be seen.

Figure 3.7B shows the stream function integrated up to the full depth of the ocean. This

figure shows very similar features, indicating weak flow beneath 989m. One interesting feature

which has not been described in observations is the anti-cyclonic flow in the western Eurasian

Basin. There is also a strong cyclonic feature between the two main vortices of the Beaufort

Gyre. As this is present in the annual mean field it suggests it is a stationary meso-scale

feature associated with the wind-driven field.
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B

Figure 3.7: Annual mean contours of depth-integrated streamfunctions (black) in m3/s (A)

Integrated to 989m (B) Integrated to full depth, with topography surfaces (m).



Chapter 4

Boundary pressure

4.1 Introduction

In this chapter we look further at the characteristics of the circumpolar boundary current

in the OCCAM model. Although the model shows a boundary current at various locations on

the continental slope, it is still unclear if it is continuous. Here we would like to find the exact

formation regions of the current. There are various hypotheses on the driving mechanism on

the boundary current, which have been discussed in chapter 2. Here we look at the hypothesis

that the current is driven by buoyancy fluxes on the shelf, which cause shelf waters to sink

down the continental slope. Therefore we look at the pressure field along fixed depths on the

continental slope. If the hypothesis is correct we would expect areas of high pressure on parts

of the slope where dense shelf waters enter the basin. We then aim to look at the processes

causing the high pressure regions on the slope.

Dense water is formed on the Arctic shelves by processes of cooling, evaporation and ice

formation. A buoyancy-driven current is set up if these waters are made denser than water in

the ocean interior, and manage to sink down the shelf (Shapiro et al 2003). As dense waters
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flow off the shelf they will mix with ambient waters and eventually sink to a stable level. The

dynamics of the flow is then determined by rotation, friction and entrainment. When the

dense water enters the basin it is affected by the Coriolis force and will be bound to the slope

by rotation, as was observed with dense plumes on the Barents Sea slope by Schauer et al

(1997).

It has been shown in various studies of numerical models that buoyancy fluxes lead to

the set-up of a coastal current, via the propagation of Kelvin waves (Fennel and Mutzke

2000, Ikeda 1984). Kelvin waves travel along fixed boundaries and are dependent on rotation.

In the northern hemisphere Kelvin waves travel with the boundary on the right facing the

direction of wave propagation. The momentum balances for a Kelvin wave along the coast in

the y−direction for a constant-density ocean are

fv = g
∂η

∂x
,

∂v

∂t
= −g

∂η

∂y
,

where η is the sea surface height (Gill 1982). The x−direction is in geostrophic balance, while

the alongshore velocity is accelerated in the direction of the alongshore pressure gradient.

The solution of the wave equation is then given by

η = η0 cos(κy − ωt) exp(−fx/
√

gh),

where L =
√

gh/f is the Rossby radius. The wave amplitude falls off exponentially from

the boundary in the offshore direction with a decay scale of the Rossby radius. The wave

speed is equal to the shallow water surface gravity wave speed C =
√

gh, which in the case

of L = 10km and f = 10−4/s is C = 1m/s. Internal Kelvin waves are similar and travel at

the internal gravity wave speed. The presence of Kelvin waves in General Circulation Models

(GCMs) such as OCCAM using an Arakawa B grid has been confirmed in various studies,

although Marotzke and Klinger (2000) argue that they travel much slower in the model than
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in reality. Johnson and Marshall (2002) attribute this to models with horizontal resolutions

that are too coarse to resolve the dimensions of the Kelvin wave.

In the next section we look at the likelihood of buoyancy fluxes around the continental

slope driving the boundary current by looking at the pressure gradients along the boundary

at fixed depths.

4.2 Pressure gradients

Here we look at dynamic height (pressure) fields along the boundaries of the Arctic Basin.

Dynamic height in m is defined by

D(x, y, z) = η(x, y) +
1
ρ0

∫ 0

z
ρ(T (z′), S(z′), z′)dz′, (4.1)

where η(x, y) is the free surface height, and ρ0 is a reference density. Therefore dynamic

height represents the height that an unstratified water column of density ρ0 would have if it

were filled with the weight of the water column above each point. The relationship to pressure

is given by

p(x, y, z) = gρ0D(x, y, z), (4.2)

where g is gravitational acceleration.

We have calculated the annual mean dynamic height along fixed depth contours in the

model topography on the continental slope, at depths typical for the boundary current. Con-

tours of model depth at 201m, 355m and 605m are shown in figure 4.1. They all start in

the North Atlantic, and continue northwards along the continental slope along the coast of

Norway. The contour at 201m enters the Arctic Basin through the St Anna Trough via the

Barents Sea. The deeper contours first flow around Spitsbergen and continue eastwards. The

355m contour makes a complete loop around the St Anna Trough.
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Figure 4.1: Depth contours on extended grid at 201m,355m,605m with stars every 5000 km

along boundary.
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All contours then make a loop around the outer edges of the Arctic before returning to the

North Atlantic along the eastern Greenland coast. The contour at 201m makes a large loop

through the Canadian Archipelago before reaching the Greenland slope. The contours remain

reasonably close and are unaffected by the Lomonosov and Mendeleyev ridges, although they

separate at the St Anna Trough, Chukchi plateau, and the Canadian Archipelago.

The dynamic height fields following these contours are shown in figures 4.2A,B,C. The

first dynamic height field, at 201m, shows the highest pressure occurs in the southern Barents

Sea. And there is then a large drop in pressure all the way up to the slope of the Chukchi

Sea. This is the part of the slope in which the model has a boundary current at the slope

which reaches to the surface. The surface signal of the boundary current is lost on the eastern

Chukchi slope. This is due to a strong westward surface current as part of the Beaufort Gyre,

which coincides with the reversal of the pressure gradient seen in figure 4.2A. Further along

the contour there is a pressure rise in the direction of the East Greenland Current. This is

due to the fact that the East Greenland Current is not above the slope at a depth of 201m,

but forms a surface current further offshore. The lowest pressure is found further along the

slope in the region of Cape Hatteras, after which there is an enormous pressure rise up to the

Florida coast associated with the Gulf Stream.
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B

C

Figure 4.2: Annual mean boundary dynamic height (A) 201m (B) 355m (C) 605m.
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Figure 4.3: Annual mean dynamic height at 201m.

The dynamic height field at 355m shows the highest pressure occurs in the southern edge

of the St Anna Trough. There is patchy pressure signal along the northern Barents Sea slope,

where part of the AW makes it past the front north of Fram Strait (see figure 3.5) and flows

eastwards along the boundary. The large pressure drop only starts from within St Anna

Trough and is almost continuous until the low pressure found at Cape Hatteras. There are

some large pressure variations in the region of the East Greenland Current, which could be

due to the instabilities found on the interface of the East Greenland Current and the West

Spitsbergen Current (Aksenov and Coward 2001).

The dynamic height field at 605m shows a large rise in pressure along the first part of

the Eurasian slopes. This is associated with a reasonably weak undercurrent, which occurs
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at some places on the slope and extends over depths of 600-3000m flowing westwards and is

shown in figure 4.4. This could be due to the fact that the wedge of AW and BSW entering

the deep basin depresses the isopycnals at the slope, which has been observed by Schauer et

al (1997) on the Kara Sea slope. This could lead to a reversal of the deep current due to

sea surface height changes related to the surface forcing. However in the model the negative

pressure gradient starts west of Greenland, where the continuation of the Gulf Stream reaches

the eastern boundary of the North Atlantic. This figure also shows the intrusion of AW on

the Fram Strait pathway flowing eastwards along the slope. The highest pressure is found

past the Chukchi slope. There is then a general pressure drop towards Fram Strait, which

coincides with the weak eastwards undercurrent. There is a huge pressure drop in the region

of the East Greenland Current, as the core of this current is on the boundary at 605m.

Figure 4.4: Annual mean velocity (cm/s) on model longitude section (i=280).

The high pressure signal occurring in/near the Barents Sea along the two shallower con-

tours indicates the presence of relatively dense waters on the shelf. The continuous pressure
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gradient all the way into the North Atlantic is then a sign that these waters are involved

in forming the boundary current. The downstream pressure gradient along the circumpolar

boundary current is similar to the one found along the Gulf Stream. There potential energy

is created in the centre of the basin by Ekman convergence and warming and is converted to

kinetic energy as it is accelerated by the downstream pressure gradient (Bray and Fofonoff

1981).

The low pressure region coincides with the location where the Deep Western Boundary

Current crosses under the Gulf Stream at Cape Hatteras, where low pressure could be caused

by entrainment of DWBC water into the Gulf Stream or instabilities in the Gulf Stream.

Figure 4.3 shows the horizontal dynamic height field at 201m. The highest pressures occur

in the coastal regions of the Barents Sea where a lot of bottom water is formed (Middtun 1985).

There are also high pressure regions in the Beaufort Gyre due to Ekman convergence, which

causes anti-cyclonic flow. The continuous offshore pressure gradient indicates geostrophic flow

all around the slope up to the Canadian Basin. In the next section we look further at the

water fluxes causing the high pressure region in the Barents Sea.

4.3 Barents Sea shelf waters

Here we look at what water mass causes the high pressure on the boundary in the St

Anna Trough, and how it flows into the Arctic Ocean interior. Atlantic Water flows into the

St Anna Trough from the Barents Sea as seen in the surface properties in figure 3.5 and in

the stream function figure 3.7A. This is one of the two branches of AW entering the Arctic.

However the boundary pressure increase at 355m in the St Anna Trough indicates the BSW

water mass flowing through the St Anna Trough into the Arctic Ocean has undergone severe
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changes relative to the AW flowing through Fram Strait.

Figure 4.5A shows the St Anna Trough area on the model grid, which is subdivided into

16 boxes. Water flows into the trough from the Barents Sea through boxes 1, 2 and 5, and

there is also a smaller inflow from the Kara Sea through boxes 2, 3, 4, 8, and 12. The annual

mean of the net inflow of water into the southern boxes of the trough is 1.7 Sv, leaving 0.7

Sv of the original AW on the Barents Sea branch to flow into the Kara Sea. The AW on

the Fram Strait pathway flows past the northern side of the trough in boxes 9,10, and 13.

The outflow of both water masses is eastwards through box 15. Figure 4.5B shows potential

temperature-salinity plots of the water in box 2 (where the largest inflow of BSW occurs)

and box 15. The cores of AW and BSW in the model have very similar temperature and

salinity properties, the BSW is colder and slightly fresher than AW. However density at low

temperatures is mainly determined by salinity, therefore it is difficult to distinguish AW and

BSW by density properties. To be able to separate AW and BSW by a single property we

look at spiciness of which contours are also drawn in figure 4.5B.

Spiciness (τ) is an oceanographic variable introduced by Jackett and McDougall (1985).

The variation of spiciness along isopycnals is defined to be proportional to
∫
ρ βdS, where β

is the saline contraction coefficient. Therefore along isopycnals

∫
ρ
dτ =

∫
ρ
2βdS. (4.3)

This variable is a well-defined, single-valued function of potential temperature (θ) and salinity

and is independent of the scale of the θ − S-diagram. τ is a conservative property as θ and

S are both conserved under adiabatic change. The spiciness is calculated using a polynomial

expression with coefficients aij following Jackett and McDougall (1985)

τ =
5∑

i=1

5∑
j=1

aijθ
i−1Sj−1, (4.4)
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which gives an accurate estimation. A relatively high value of spiciness indicates a warm and

salty water mass, whereas a relatively low value of spiciness indicates a cold and fresh water

mass.

The core of the BSW has the potential temperature and salinity properties 1.8 − 3.2◦C

and 34.4 − 34.8 PSU. The T-S plot of box 15 also includes BSW and very cold and fresh

Polar Surface Water. The core of the AW has the properties 2.5−4.0◦C and 34.2−35.0 PSU.

The cores of both AW and BSW have potential densities (referenced to 425m) very close to

1029.6kg/m3, but the spiciness of both water masses is different. BSW has a typical spiciness

of 23.6, while AW has a typical spiciness of 23.9. The BSW is therefore typically colder and

fresher than AW, which is what we expect with the annual mean air-sea fluxes shown in figure

3.2.

The largest air-sea fluxes occur in the central Barents Sea, which is where we expect

BSW to be formed. A model longitude section of the potential density anomaly through

the central Barents Sea is shown in figure 4.6A. This shows the relatively unstratified BSW,

compared to AW over a similar depth, on the shelf in the Barents Sea. The model shows

AW on the continental slope covered by an insulating light surface layer. A typical column

of BSW in the central Barents Sea has potential density anomalies (σ425m) ranging from 29.6

to 29.7 between the surface and 201m (with potential temperature ranging from 2.7 to 2.4◦C

and salinity ranging from 34.6 to 34.7 PSU). The AW on the continental slope only reaches

similar potential density anomalies below 600m. The water column on the slope has potential

density anomalies ranging from 29.2 to 29.6 between the surface and 605m (with potential

temperature ranging from 0.5 to 4.4◦C, and salinity ranging from 33.9 to 34.9 PSU). This

indicates that BSW has the possibility to spread over a large range of depths on the slope as

it reaches the Nansen Basin.
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B

Figure 4.5: (A) St Anna Trough box division with depth contours at 201m (blue),355m

(green),605m (red). (B) Potential temperature-Salinity diagrams for boxes 2 and 15
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The potential density anomaly section also shows the isopycnals rising at the surface

towards the slope, and declining at the bottom towards the slope. Schauer et al (1997) only

observe this at offshore sections further east on the Kara Sea slope, which they attribute to

the large intrusion of relatively unstratified BSW on the slope. This suggests the core of the

AW in the model is also relatively unstratified compared to the ocean interior, and the flux

of AW is large enough to displace the isopycnals at the slope.

To look at the flows and interaction of AW and BSW within the St Anna Trough figure

4.7 shows volume fluxes of spiciness classes through each box. BSW with a typical spiciness

of 23.6 enters the St Anna Trough through boxes 1 and 2 at depths between 76-201m. The

BSW then continues northwards along the eastern part of the trough (as described by Rudels

et al (1999)) into box 6 via boxes 2-3-7 and reaches box 10 at depths between 102-508m. The

net fluxes along the way indicate shelf waters mixing with each other. The AW with a typical

spiciness of 23.9 can be seen flowing into the trough via boxes 9 and 10. There are large net

spiciness fluxes in box 10 indicating mixing between AW,BSW and ambient waters, which

evens out the spiciness distribution before flowing out through boxes 13 and 14. Further

eastwards along the slope the large area under the curve of the outward flux in box 15 shows

the increase in the boundary current strength compared to boxes 9 and 13. The intrusion of

AW into the trough can be seen in figure 4.6B, where a large swirl of warm water enters at

245m from the North.
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B

Figure 4.6: (A) Depth-model latitude (i=250) section of potential density anomaly (kg/m3)

referenced to 425m. (B) Potential temperature (◦C) at 245m. In top corner position of section

A is shown.
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Figure 4.7: Spiciness fluxes (106m3) through St Anna Trough boxes.
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4.4 Small-scale pressure variations

The boundary pressures in figures 4.2A, B, C show continuous small-scale variations in

pressure. Partly these variations are due to convolutions in the boundary pathway, however

the variations also occur on straight coastlines. The variations could be due to numerical noise

associated with time-dependence, however they occur in the annual mean dynamic height in

which we expect such noise to be relatively small. The annual mean datasets are calculated

from a set of 36 10-daily instantaneous datasets, and therefore the noise should be reduced

by a factor of order
√

36 = 6. Also similar variations occur in the instantaneous datasets,

therefore we look at other possibilities causing the pressure variations.

Figure 4.8A shows a short piece of straight coastline at level 355m, together with the

boundary pathway at 508m, and the dynamic height on the boundary at 355m. The dynamic

height variations along this coastline are of the order of several cm’s, which is similar to the

small-scale structure seen in figures 4.2A, B, C. Figure 4.8A shows some evidence of higher

pressure in the presence of a deeper topographical feature (where the boundary at 508m

extends offshore). Figure 4.8B shows horizontal contours of dynamic height at 355m in the

same area. This suggests geostrophic flow around the deeper topographical features, which

is also indicated by f/H contours given in figure 4.9B.

In order to understand the dynamics we can look at the balance of the terms in the

alongshore direction of the momentum equation in the OCCAM model (3.1). The first term

in (3.1) should be small in the annual mean and is ignored. The second, third, fourth,

fifth and sixth terms are the horizontal advection, vertical advection, Coriolis force, pressure

gradient, and diffusion. The diffusion is further divided by (3.7), where the first and second

terms are the horizontal and vertical diffusion. The vertical advection and vertical diffusion
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terms are several orders smaller than the others and are also ignored here. The remaining four

terms along the boundary at 355m are shown in figure 4.9A. In order to properly balance these

terms on the Arakawa B grid we have to take the pressure as the mean of the first two offshore

pressure grid points. The momentum balance is almost in completely geostrophic, whereby

the pressure gradient balances the Coriolis force, and doesn’t provide much information on the

dynamics causing the pressure variations. However there is evidence that the a-geostrophic

terms become larger (not shown) near the topographical feature acting to slow down the

alongshore flow. Also the OCCAM model has a bottom friction force working to decelerate

the alongshore flow on the bottom level of the water column, which only acts on the coastline

at three points (i=348,349,354). So there is some evidence that there is blocking at the coast

due to topographical features causing off/on-shore flow, and creating pressure variations on

the coast.

A B

Figure 4.8: (A) Boundary pathways at 355m (thick blue line) and 508m (thin black line)

corresponding to axis on left, and dynamic height (cm) along boundary at 355m (in red)

corresponding to axis on right (B) Horizontal dynamic height contours at 355m.
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Such blocking has been found in experimental and theoretical studies by Griffiths and

Linden (1983), who have performed experiments with homogeneous fluids flowing over slowly

varying 3D obstacles in the presence of a wall on the right-hand side of the alongshore flow.

They find a large blocked region above the topographical obstacle which is what they expect

from theoretical analysis, and coincides with the formation of a Taylor column. They find

that the blocking only occurs for small Rossby numbers Ro = V/fl, which represents the

importance of rotation in the flow. In the Arctic the Coriolis parameter is relatively large

so we have a small Rossby number. Therefore this could be an explanation for the effect

of topographical features on the alongshore flow we see, especially as the Arctic Ocean is

relatively unstratified so Taylor columns can form over the full depth of the water column,

although the OCCAM model has steps in topography rather than continuously varying to-

pography. In this case the analytical solutions of Griffiths and Linden (1983) break down,

although topographical blocking is known to occur in OCCAM.

A B

Figure 4.9: (A) Momentum budget (terms multiplied by boundary step (dx) in m2/s2) along

small section of 355m boundary (B) f/H contours and boundary at 355m (thick blue line).



Chapter 5

Particle tracking - theory

5.1 Introduction

Here we introduce a method for tracing water masses that we use to determine properties

of the flows in the Arctic Ocean. The main objectives are to define the pathways and time-

scales for Atlantic and Pacific Water to flow through the Arctic and reach the North Atlantic.

The pathways of AW will allow us to determine the origin of the density flux in the Barents

Sea, and look at the interaction of the two pathways of AW at the St Anna Trough. The

pathways of PW will allow us to determine whether the Bering Strait outflow is linked to the

strong eddy-field in the Canadian Basin.

Döös (1995) and Blanke and Raynaud (1997) first introduced a fast and accurate method

for calculating 3D time-independent trajectories of water particles. The method uses the

time-averaged output of velocity from an ocean model to calculate particle trajectories off-

line. This provides a much more fast and efficient method than calculating time-dependent

trajectories online (ex. Maslowski et al 2000), which requires a huge amount of computer

time. Therefore this method is very useful for calculating long trajectories of a large number

77
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of particles. The method is flux-conserving, making it possible to calculate volume transports

of each trajectory. Other advantages of this method are the ability to follow the changes

in the water mass properties along the trajectories, and the ability to calculate trajectories

backwards in time.

However for studying the influence of shelf waters in the Arctic Ocean we require time-

dependent trajectories to include the seasonal variations, and to reproduce meso-scale activity.

Time-dependence also has the advantage of preventing particles getting stuck in stationary

eddies. Blanke et al (1999) include time-dependence by using a series of monthly velocity

fields. They use the original time-independent method, while keeping the velocity constant

over the sample time. Here we use a more accurate method by adapting the time-independent

method to use interpolation in time between two sequential velocity field samples. We also

include a representation of the random diffusive effects experienced by water particles in the

real ocean.

The analytical solutions for time-dependent trajectories may be derived in the same way

as for time-independent trajectories, as published previously by Döös and de Vries (2001).

These authors verified the accuracy of the method by calculating trajectories in an idealized

2D gyre. For the present study we have adapted the original time-independent code in order

to calculate time-dependent particle trajectories which include diffusive effects.

We first describe the time-independent method introduced by Döös (1995) and Blanke

and Raynaud (1997). In the following section we discuss the alterations of the method, and

derive the solutions for time-dependent trajectories. Then we discuss the representation of

the random diffusive effects, and the implementation of these in the new method.
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5.2 Time-independent method

In the time-independent approach a 3D trajectory is calculated within a model grid-box

by considering each of the three spatial directions individually. In each direction a particle can

exit through two faces of the grid-box. The crossing time needed for a particle to exit through

each face is calculated by interpolating the transports through each face. The minimum

crossing time of all 6 faces of the grid-box then gives the face through which the particle will

exit. Its position in the other two dimensions is calculated to give the exact 3D position of the

particle. The trajectory is then formed by following the particle jumping through grid-boxes.

As the velocity field is non-divergent this leads to a flux-conserving trajectory.

We will consider the crossing times in the x-direction for a particle in a grid-box with

dimensions (∆x,∆y, ∆z). The local transports through the two faces in the x-direction of

the grid-box are given by Ui−1 = ∆y∆zui−1 and Ui = ∆y∆zui. We use the transformed

coordinate for position (in non-dimensional units) and time (in units of s/m3)

ri =
xi

∆x
and s =

t

∆x∆y∆z
. (5.1)

The transport inside the grid-box is then estimated using linear interpolation in space

U(r, s) = (1− [r − ri−1])Ui−1 + [r − ri−1]Ui. (5.2)

This can be rewritten in the following form

U(r, s) = −βr − δ, β = (Ui−1 − Ui), δ = −Ui−1 + ri−1(Ui − Ui−1). (5.3)

Now an equation for particle motion within the grid-box is formed by setting the local trans-

port U(r, s) equal to the time derivative of the position

dr

ds
+ β · r + δ = 0, r(s0) = r0. (5.4)
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Here s0 and r0 give the initial time and initial position of the particle in the grid-box.

The solution of equation (5.4) is given by

r(s) =
[
r0 +

δ

β

]
exp (−β(s− s0))−

δ

β
. (5.5)

The crossing times for the particle through the faces at ri−1 and ri are then calculated. The

crossing time through the ri−1 is calculated by solving

r(s) = ri−1. (5.6)

The solution can be calculated analytically, and is given by

s = s0 −
1
β

ln
[
ri−1 + δ/β

r0 + δ/β

]
. (5.7)

.

In the next section we extend this method for time-dependent trajectories by using bilinear

interpolation in space and time. The main difference is that the solutions for the crossing

times must be calculated numerically.

5.3 Time-dependent method

Here we present the derivation of the solutions for time-dependent trajectories, which

was performed independently from Döös and de Vries’ derivation (2001). This derivation

is presented in similar notation as introduced by Döös and de Vries (2001) for comparison

purposes. We describe the numerical implementation for use with time-sampled velocity fields

from the OCCAM global ocean model in Appendix A.

We consider the trajectory in the time interval [sn−1, sn]. Then the equivalent expression

to (5.2) for bilinearly interpolated transport inside a grid-box is

U(r, s) = (1− [r − ri−1])(1−
[

s− sn−1

sn − sn−1

]
)Ui−1,n−1 (5.8)
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+ [r − ri−1] · (1−
[

s− sn−1

sn − sn−1

]
)Ui,n−1 (5.9)

+
[

s− sn−1

sn − sn−1

]
· (1− [r − ri−1])Ui−1,n (5.10)

+ [r − ri−1] ·
[

s− sn−1

sn − sn−1

]
Ui,n. (5.11)

This can be rewritten in the following form

U(r, s) = −α · r · s− β · r − γ · s− δ, (5.12)

where the constants are given by

α = − 1
sn − sn−1

· (Ui−1,n−1 − Ui−1,n − Ui,n−1 + Ui,n), (5.13)

β = Ui−1,n−1 − Ui,n−1 − α · sn−1, (5.14)

γ = − 1
sn − sn−1

· (Ui−1,n − Ui−1,n−1)− α · ri−1, (5.15)

δ = −Ui−1,n−1 + ri−1 · (Ui,n−1 − Ui−1,n−1)− γ · sn−1. (5.16)

Now an equation for particle motion within the grid-box is formed by setting the local trans-

port U(r, s) equal to the time derivative of the position

dr

ds
+ α · r · s + β · r + γ · s + δ = 0, r(s0) = r0. (5.17)

Here s0 and r0 give the initial time and initial position of the particle in the grid-box.

Equation (5.17) can be solved using the Lagrange variation of constants method, by

rewriting it as

dr

ds
= A(s)r + B(s), (5.18)

where A(s) = −αs− β and B(s) = −γs− δ. The general solution of equation (5.18) is given

by

r(s) = r0 exp(
∫ s

s0

A(ρ)dρ) +
∫ s

s0

B(ρ) exp(
∫ s

ρ
A(η)dη)dρ. (5.19)
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For α = 0 this gives

r(s) = r0 exp (−β(s− s0)) +
1
β2

[γ + γsβ + δβ + [γ − γs0β − δβ]e−β(s−s0)]. (5.20)

For α 6= 0 the two exponential terms in (5.19) are

exp(
∫ s

s0

A(ρ)dρ) = exp(
∫ s

s0

(−αρ− β)dρ) = exp
(
−1

2
αs2 − βs +

1
2
αs2

0 + βs0

)
, (5.21)

exp(
∫ s

ρ
A(η)dη) = exp(

∫ s

ρ
(−αη − β)dη) = exp

(
−1

2
αs2 − βs +

1
2
αρ2 + βρ

)
. (5.22)

The second integral in (5.19) is then given by

∫
B(ρ) exp(

∫ s

ρ
A(η)dη)dρ =

∫
(−γρ− δ) exp

(
−1

2
αs2 − βs +

1
2
αρ2 + βρ

)
dρ (5.23)

= −
∫

γρ exp
(
−1

2
αs2 − βs +

1
2
αρ2 + βρ

)
dρ (5.24)

−
∫

δ exp
(
−1

2
αs2 − βs +

1
2
αρ2 + βρ

)
dρ.

This can be rewritten to get a simpler expression for the solution by introducing µ = αρ +

β
√

2α and ξ = αs + β
√

2α. Then integral (5.23) becomes

∫
B(ρ) exp(

∫ s

ρ
A(η)dη)dρ = −γ

α
exp

(
−ξ2 + µ2

)
− e−ξ2 βγ

√
2

α
√

α

∫ µ

0
exp(x2)dx (5.25)

− δ
√

2
√

α exp(−ξ2)
∫ µ

0
exp(x2)dx.

For α > 0 this gives the solution of (5.17)

r(s) = [r0 +
γ

α
] exp

(
−ξ2 + ξ2

0

)
(5.26)

− γ

α
+

(βγ − αδ)
α

√
2
α

[D(ξ)− exp
(
−ξ2 + ξ2

0

)
D(ξ0)],

where D(ξ) is Dawson’s integral

D(ξ) = exp(−ξ2)
∫ ξ

0
exp(x2)dx. (5.27)

For α < 0 parameter ξ is complex

ξ = αs + βi
√
−2α = −i(αs + β

√
−2α). (5.28)
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In this case the solution can be rewritten using

∫ ξ

0
exp(x2)dx = −i

∫ iξ

0
exp(−x2)dx = −i

√
π

2
erf(iξ), (5.29)

where erf(ξ) is the error function

erf(ξ) =
√
π

∫ ξ


exp(−x)dx. (5.30)

The solution for α < 0 of (5.17) is then

r(s) = [r0 +
γ

α
] exp

(
−ξ2 + ξ2

0

)
(5.31)

− γ

α
− (βγ − αδ)

α

√
π

−2α
exp(−ξ2)[erf(iξ)− erf(iξ0)].

The crossing time for the particle through the face at ri−1 is then calculated by solving

r(s) = ri−1. (5.32)

In this case the solution of (5.32) must be calculated numerically due to the integrals in the

function r(s). The equation is solved using the Newton-Raphson root-finding algorithm. A

description of the solution process is given in Appendix A. The accuracy of the code has

been verified using constant velocity fields (in which α = 0), and by comparing short-term

backward and forward trajectories.

5.4 Diffusive effects

Water particles in the real ocean are subject to turbulent stresses and collisions with

other particles. Therefore a particle’s displacement after a certain time-step t is partly de-

termined by random movements. Our trajectories only include the implicit diffusion due to

along-trajectory changes of temperature and salinity, and by the model’s parameterization of

turbulent mixing in the momentum equations. However fluid inside each parcel does not mix

with the ambient fluid, so the trajectory does not explicitly represent sub-grid scale diffusion.
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5.4.1 Brownian motion

The particles in our case are small water parcels, and we can describe the random move-

ments of the particle using the theory of Brownian motion, which can be found in many texts

(for example Csanady 1973). The equation usually used to describe the Brownian motions is

Langevin’s equation

du
dt

= A(t)− βu, (5.33)

where u is the particle velocity vector relative to the ambient fluid. The function A(t)

represents the random acceleration due to the unresolved eddies, which we want to choose to

match the Laplacian viscosity terms in the momentum equations.

The second term on the right hand side of equation (5.33) represents the viscous resistance

from the surrounding fluid experienced by the water particles, where β is a constant (in units

s−1). The constant β depends on the size and mass (m) of the water parcel, and on the

viscosity (η in m2/s) of the ambient fluid. In the case of a spherical water parcel this constant

is given by Stokes’ law

β =
6πaηρ

m
, (5.34)

where a and ρ are the radius and density of the water parcel. This can also be written in

terms of the volume V = (4/3)πa3 of the spherical particle

β =
6πaηρ

ρV
=

8η

a2
. (5.35)

As the water parcels are injected into the ocean they represent a small section of the transport.

Therefore their volumes are infinitesimally small (a 7→ 0), and β is infinitely large.

The solution of (5.33) is given by

u(t) = u0 exp(−βt) + exp(−βt)
∫ t


exp(βt′)A(t′)dt′, (5.36)
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where u0 = u() is the initial velocity of the water parcel (relative to the ambient fluid).

The first term on right-hand side of (5.36), representing the persistence of the initial velocity,

decays for t �β−1. The second term is the result of a large number of independent random

kicks.

5.4.2 Random walk model

Here we formulate the displacement probability function P (x, t) for each separate spatial

direction. The total displacement of the water parcel in a time t in the x-direction is given

by

x =
∫ t

0
u(t′)dt′. (5.37)

As the initial velocity decays for time-steps ∆t �β−1, the total displacement can be divided

into N(= t/∆t) (almost) independent steps. In each step the effect of the persistence of the

velocity from previous steps is negligible if ∆t is large enough. Each step is taken indepen-

dently, and at random, so the water parcel executes a random walk of N steps.

A simple random walk in one dimension consists of a number of steps of unit length, in

which the probability of moving forward or backward is 1
2 . It can be shown (see Csanady

1973) that for large N the probability that a water parcel (starting at the origin) reaches a

point m is given by the following discrete Gaussian distribution

P (m,N) =
√

2
πN

exp

(
−m2

2N

)
. (5.38)

Here m must be even/uneven if N is even/uneven. Let l be the step length and m = x/l,

where x is the displacement from the origin. Then the total probability of finding a particle

over a range ∆x is approximately P (m,N)∆x/(2l). This gives the probability of a particle
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reaching point x

P (x, t) =
1

2
√

πDt
exp

(
− x2

4Dt

)
, (5.39)

where t is the time needed to take N steps, and D = nl2/2. This is a Gaussian distribution

with the mean and the standard deviation given by

µ = 0, (5.40)

σ =
√

2Dt. (5.41)

Figure 5.1: Gaussian distribution P (x, t) for 1D particle displacements, where σ =
√

2Dt.

For this distribution 68%/95% of displacements are within range [−σ, σ] / [−2σ, 2σ].

The Gaussian distribution represents an instantaneous source at the origin, which has the

following limits

• for t > 0 fixed, x →∞ : P → 0,

• for x fixed, t →∞ : P → 0,

• for fixed x 6= 0, t ↓ 0 : P → 0,
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• for fixed x = 0, t ↓ 0 : P →∞

Also the distribution is normalized such that

∫ ∞

−∞
P (x, t)dx = 1. (5.42)

The source(5.39) is a special solution of the 1D diffusion equation

∂P

∂t
= D

∂2P

∂x2
, (5.43)

where D is the diffusion coefficient. This means that the random walk described is a diffusion

process, which matches the Laplacian viscosity terms in the momentum terms of the OCCAM

model. We therefore take D equal to the horizontal or vertical eddy viscosity, AH and AZ ,

so the random motions are on the scale of the model subgrid-scale turbulence.

5.4.3 Calculation of displacements

Here we describe the calculation of the displacements for each water parcel. The dis-

placements in each of the three spatial directions are distributed by the 1D Gaussian (5.39),

therefore each displacement is calculated separately. There are a large number of good algo-

rithms available (ex. Press et al 1992) for generating uniform random numbers on the interval

[0, 1]

y ∈ [R]10 . (5.44)

The uniform distribution defines the probability of generating a number between y and y+dy

by

P (y)dy = dy for y ∈ [, ] (5.45)

P (y)dy = 0 for y /∈ [, ] . (5.46)



CHAPTER 5. PARTICLE TRACKING - THEORY 88

Using a transformation of variables these uniform deviates can be used to generate random

numbers following other distributions. The multi-dimensional transformation law of proba-

bilities (eg. Feller 1950) is given by

P (x1, x2, . . . , xn)dx1 dx2 . . . dxn = P (y1, y2, . . . , yn)
∣∣∣∣ ∂(y1, y2, . . . , yn)
∂(x1, x2, . . . , xn)

∣∣∣∣ dx1 dx2 . . . dxn.

(5.47)

For the uniform distribution on the interval [0, 1] we have P (y) = 1, therefore in 1D we need

to find a function y(x) that satisfies the differential equation

∣∣∣∣dy

dx

∣∣∣∣ = P (x, t). (5.48)

For P (x, t) as in (5.39) the solution is given by

y(x) =
∫ x

−∞
P (x′, t)dx′ =

1
2
erf
(

x√
Dt

)
+




, (5.49)

where erf(x) is the error function as given in (5.30). This mapping is illustrated in figure 5.2.

The random deviates following distribution P (x, t) are given by the inverse of (5.49)

x(y) =
√

4Dt erf−1 (y − 


). (5.50)

This expression can be used to generate Gaussian deviates x from uniform deviates y, although

the inverse of the error function (erf−1) must be approximated numerically.

However in 2D a transformation has been introduced by Box and Muller (1958), which

gives an expression for two Gaussian deviates that can be calculated analytically. A 2D

Gaussian distribution for two independent deviates x1 and x2 distributed according to (5.39)

is given by

P (x1, x2, t) =
1√

4πDt
exp

[
−x2

1

4Dt

]
· 1√

4πDt
exp

[
−x2

2

4Dt

]
. (5.51)
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Figure 5.2: Mapping (5.49) for generating 1D Gaussian deviates x from uniform deviates y.

Given two uniform deviates y1, y2 ∈ [R]10 we can use the transformation law (5.47) to generate

two Gaussian deviates x1 and x2. In order for this we need transformations

y1 = f1(x1, x2), (5.52)

y2 = f2(x1, x2), (5.53)

such that

∣∣∣∣ ∂(y1, y2)
∂(x1, x2)

∣∣∣∣ = P (x1, x2, t). (5.54)

This condition is satisfied by the following transformations, which are similar to those intro-

duced by Box and Muller (1958)

f1(x1, x2) = 1− exp

[
−x2

1 + x2
2

4Dt

]
(5.55)

f2(x1, x2) =
1
2π

arctan
[
x1

x2

]
. (5.56)

These transformations are invertible and give the following expressions for x1 and x2

x1 = f−1
1 (y1, y2) =

√
4Dt log [1− y1] cos (2πy2) (5.57)

x2 = f−1
2 (y1, y2) =

√
4Dt log [1− y1] sin (2πy2). (5.58)
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Expressions (5.57) and (5.58) represent the x- and y-components of a point in the 2D plane

with a distance of
√

4Dt log [1− y1] from the origin, and an angle of 2πy2 with respect to the

x-axis.

We use the transformations (5.57) and (5.58) once for the two horizontal displacements

using two uniform deviates y1 and y2 and the horizontal eddy viscosity D = AH . Then we

repeat this process using two new uniform deviates y3 and y4 and the vertical eddy viscosity

D = AZ , and use only one of the resulting deviates. This leads to the following displacements

xd =
√

4AHt log [1− y1] cos (2πy2), (5.59)

yd =
√

4AHt log [1− y1] sin (2πy2), (5.60)

zd =
√

4AZt log [1− y3] cos (2πy4), (5.61)

which are added to to the position of the particle after each time-step of length t.

Previously a random walk model has been introduced in models for oil spill trajectories by

Al-Rabeh and Gunay (1992) and Evans and Noye (1995). In these models the two horizontal

dimensions are combined, and random jumps (xd, yd) are generated by choosing a point in the

2D plane. The distance from the starting point rd, and the angle θ are chosen as uniformly

distributed random numbers. The standard deviation of the horizontal displacement is chosen

to be equal to the standard deviation of a 2D random walk

σ2D =
√

σ2 + σ2 =
√

4Dt, (5.62)

where σ is the standard deviation found for the 1D random walk in (5.41).

For the vertical dimension Al-Rabeh and Gunay (1992) apply a 1D equivalent of this

process, which we can compare to our 1D displacements. A uniform deviate in the range
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[−1, 1] is obtained using the following transformation

z = 2y − 1, y ∈ [R]10 . (5.63)

The mean and standard deviation of z are given by

µ(z) = 2µ(y)− 1 = 2
∫ 1

0
yP (y)dy − 1 = 0, (5.64)

σ(z) = 2σ(y) = 2

√∫ 1

0
(y − µ(z))2P (y)dy =

1√
3
. (5.65)

The displacement zd is then chosen such that its standard deviation is equal to (5.41), as

found for the 1D random walk. This gives the displacement

zd =
√

3σz =
√

6Dt(2y − 1), y ∈ [R]10 , (5.66)

which is distributed uniformly within the range
[
−
√

3σ,
√

3σ
]
.

The difference between our 1D displacements (5.59)-(5.61) and Al-Rabeh and Gunay’s

(1992) 1D displacement (5.66) is illustrated in figure 5.3. The former is a Gaussian bell

curve which matches the Laplacian viscosity terms in the momentum equations, while the

latter is represented by a rectangle. While the Gaussian distribution has 68%/95% of the

displacements contained in the range [−σ, σ] / [−2σ, 2σ], the rectangle distribution has 100%

of the displacements contained in the range
[
−
√

3σ,
√

3σ
]
.

We can approximate the magnitude of the diffusive jumps using an estimate of the time-

step t needed to cross a grid-box. The dimension ∆x of a horizontal grid box is approximately

14km. A particle in a weak flow of 1cm/s will cross this grid box in approximately 106s.

Therefore the standard deviation of the horizontal jumps is given by

σ =
√

2AHt = 20km, (5.67)

where AH is equal to the horizontal eddy viscosity of 2 · 106cm2/s. Therefore in this case

68% of the jumps are within the range [−20km, 20km], which is of the same order as the
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Figure 5.3: Comparison of 1D probability distributions for particle displacements. Black:

Distribution (5.66) as used by Al Rabeh and Gunay (1992). Blue: Distribution (5.39) with

σ =
√

2Dt.

horizontal grid-box size and gives us an upper estimate for the size of the horizontal random

jumps.

The dimension ∆z of a vertical grid box in the upper ocean is approximately 100m. A

particle in a weak flow of 10−4cm/s will cross this grid box in approximately 108s. Therefore

the standard deviation of the vertical jumps is given by

σ =
√

2AZt ≈ 141m, (5.68)

where AZ is equal to the vertical eddy viscosity of 1 cm2/s. Therefore in this case 68% of the

jumps are within the range [−141m, 141m], which is of the same order as the vertical grid-box

size. This is a severe upper limit as the horizontal flow must be very weak for a particle to

remain in the horizontal grid-box for 108s. For a more realistic crossing time t of 106s the 68%



CHAPTER 5. PARTICLE TRACKING - THEORY 93

the range of vertical displacements is approximately [−14m, 14m], which is smaller than the

dimension of most vertical grid-boxes. Therefore any oscillations in the particle trajectories

that are larger than the size of a horizontal or vertical grid-box are not likely to be caused by

the random displacements.



Chapter 6

Particle tracking - application

6.1 Introduction

Here we apply the method described in the previous chapter to calculate pathways of shelf

waters through the Arctic Ocean and assess their influence on the circulation. We start by

comparing the time-independent, time-dependent, and diffusive time-dependent methods for

pathways of Barents Sea Water. We then calculate pathways for the other inflows of Atlantic

Water and Pacific Water. Also we assess time-scales for signals to propagate from the Barents

Sea and Chukchi Sea shelves. These are two of the most important shelf seas as they directly

receive and modify water from the Atlantic and Pacific Oceans.

Various observations on the Canadian side of the Lomonosov Ridge have shown the pres-

ence of AW and BSW (Schauer et al 1997, McLaughlin et al 2002). However the reach of the

water masses could depend significantly on the phase of the Arctic Oscillation, as shown by

Maslowski et al (2000). The OCCAM model simulation was forced by constant atmospheric

conditions from 1986-1988, therefore the particle trajectories are free from atmospheric vari-

ability. Nevertheless they will give an insight into what processes determine the circumpolar

94
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boundary current pathway.

Using the method we can follow changes in water properties along pathways of the bound-

ary current, and we also use the method to calculate backward trajectories using the inverse

velocity field to determine the origin of BSW that is involved in the high pressure region at

the St Anna Trough.

For each calculation we start particles flowing through a fixed vertical section. The sections

for the calculations in this chapter are shown in figure 6.1. The number of particles starting

from each grid-box on the section is based upon the strength of the transport such that

strong, important, flows have a larger number of particles than weak flows. The process of

selecting the particles is described in appendix A. Each particle is injected instantaneously,

and therefore initially represents an infinitesimally small part of the transport through the

starting section. As the flow is flux-conserving at each moment in time, and a current is

completely determined by the particles that compose it, the flux associated with each particle

(particle flux) is conserved during the integration.

Although all N particles approximately represent the same transport, there are small

differences in particle fluxes as described in appendix A. Therefore statistics based on the

number of particles are not accurate. In order to visualize the trajectories we use statistics

that are weighted by the particle fluxes. The statistic P (i, j) is defined as the percentage

of the initial flux (FT ) that has passed through the horizontal grid-box (i, j) throughout the

whole length of the integration, counting each particle only once for each grid-box

P (i, j) =

∑
p∈I

Fp

FT
· 100%, (6.1)

where p is an index for each particle, I represents the set of particles that have passed through

horizontal grid-box (i, j), and Fp represents the particle flux of particle p.
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We also visualize the mean depths and passing times of the particles for each horizontal

grid-box, which are weighted by the particle fluxes

D(i, j) =

∑
p∈I

FpDp(i, j)∑
p∈I

Fp

, (6.2)

T (i, j) =

∑
p∈I

FpTp(i, j)∑
p∈I

Fp

, (6.3)

where Dp(i, j) and Tp(i, j) represent the depth and time respectively at which particle p passes

through horizontal grid-box (i, j).

In the calculations we use one year’s worth of 10-daily instantaneous velocity and property

fields for the time-dependent trajectories. At the end of each year we loop back to the first set

of fields. We choose the starting day as the time of the maximum fluxes through the starting

section.

The instantaneous datasets may contain signs of inertial oscillations, for which averaging

is needed to reduce the net effect (Jayne and Tokmakian 1997). However we only have one

year of data, and to reduce the inertial oscillations by a significant amount would require

averaging over several datasets. This would lead to a severely reduced time resolution, and

we therefore choose not to correct for this effect in this study. We also want the effect of the

random motions associated with time-dependence in the trajectories, which would be severely

reduced by averaging over multiple time samples. Another feature that is not corrected for

is the jump from the last dataset to the first dataset at the end of each year. This can

potentially lead to an odd effect.
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6.2 Pathways of Atlantic Water

In the following sections we look at particle trajectories of AW and BSW in order to

determine pathways, depths, and time-scales of Atlantic Water through the Arctic Ocean.

Figure 6.1: Starting sections for trajectories of AW (A), BSW (B) and BSO (C). Depth

contours at 355m,2153m,2617m.

6.2.1 Method comparison

Here we start by comparing the time-independent, time-dependent and diffusive time-

dependent methods for trajectories of BSW. We have chosen a starting section for the particles
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in the Barents Sea, which reaches from the surface down to 200m depth and is shown in figure

6.1.

We only track particles that flow eastwards through the section. The time-independent

particles start with a transport of 2.4Sv. The particles for the time-dependent methods are

started at the time of the maximum eastward flux, which is day 680 (November 11) at which

time the eastwards flux is approximately 3.5 Sv. The trajectories are all integrated for 25

years, and the transport per particle is set to be approximately 200 m3/s.

Figure 6.2 shows flux and depth statistics of the time-independent trajectories. The

time-independent pathways give a clear indication of the pathway of BSW in the boundary

current, and show the boundary current is a continuous feature along the continental slope

in the OCCAM model. The BSW first sinks along the eastern edge of the St Anna Trough,

and then continues along the slopes of the Kara and Laptev Seas. There is a small branch of

deeper water that detaches shortly from the slope of the Laptev Sea at the Nansen-Gakkel

Ridge. However this branch does not form a return flow towards Fram Strait, but returns to

the slope of the Laptev Sea through a gap.

There is a major bifurcation further along the current at the Lomonosov Ridge. The

waters nearest the slope continue along the continental slope of the East Siberian Sea. The

offshore waters are guided along the Lomonosov Ridge, where eventually they are able to pass

through a gap and flow along the other side of the Ridge. After crossing the Lomonosov Ridge

another small branch is guided by the Mendeleyev Ridge and flows towards Fram Strait.
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A

B

Figure 6.2: Time-independent trajectory statistics from a 25 year integration starting from a

Barents Sea section (200m in depth). Total particle flux: 2.4 Sv.. (A) Percentage of total

particle flux passed through each grid-box during this period. (B) Mean depth (m) of particles

when in box.
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The main branch of water reaches the Makarov and Canadian Basins. There the waters

are steered by the complex topography of the Mendeleyev and Alpha ridges, and the Chukchi

plateau. Swift et al (1997) have proposed that this complex topography is responsible for

enhancing the double-diffusive mixing on the boundary and spreading the boundary current

properties into the Makarov Basin.

Only a small part of the water continues along the slopes of the Chukchi and Beaufort

Seas to make a complete loop around the Arctic. This part forms a small undercurrent as

seen in figure 4.4. The other water is guided around the Chukchi Plateau. There a large

number of particles get trapped in Beaufort Gyre, while flowing various loops around the

gyre they sink to depths of over 1000m. Therefore it seems the BSW could play an important

role in ventilating the Canadian Basin. The particles that do not get trapped flow towards

the Beaufort Sea slope, joining the other particles to form a strong boundary current.

From the Beaufort Sea slope the boundary current progresses along the slope towards Fram

Strait and into the North-Atlantic. There are no particles that flow through the Canadian

Archipelago. By the time the BSW has reached Fram Strait it has sunk to over 1000m

depth. Only approximately 35% of the particle flux reaches Fram Strait within the 25 year

integration time. The integration is too short to see a clear separation of the deep and

shallow waters flowing over the Greenland-Iceland-Scotland ridge, which are thought to follow

separate pathways.

Figure 6.3 shows flux and depth statistics of the time-dependent trajectories. The time-

dependent trajectories mainly follow the same main pathways as the time-independent tra-

jectories.
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Figure 6.3: Time-dependent trajectory statistics from a 25 year integration starting in a

Barents Sea section (200m in depth). Start day: 680 (November 11). Total particle flux: 3.5

Sv.. (A) Percentage of total particle flux passed through each grid-box during this period. (B)

Mean depth (m) of particles when in box.
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However there is more mixing of the water masses, and the particles now cover almost the

whole Arctic Ocean, except for the Laptev, East Siberian and Chukchi Seas. The signal of

the boundary current past the Lomonosov Ridge is now weaker, due to the larger spread of

BSW.

A large number of BSW particles still get trapped in the Beaufort Gyre, where they

sink to depths of over 1000m. There is now a small outflow of BSW through the Canadian

Archipelago. Approximately 47% of the particle flux reaches Fram Strait within the 25 year

integration time. The particles that reach Fram Strait are shallower compared to the time-

independent trajectories, sinking to an average depth of approximately 600m.

Figure 6.4 shows flux and depth statistics of the diffusive time-dependent trajectories. The

diffusive time-dependent pathways again follow similar pathways as the time-independent

pathways, with larger horizontal spread than the time-dependent trajectories. The spread

of the particles is enhanced as they are more affected by surface circulation features as the

Trans-Arctic drift. The boundary current signal is now almost removed, although there are

still particles completing the boundary current loop. The particles reach Fram Strait at mean

depths of only 600m, after which there is an area of large sinking past the Denmark Strait.

Approximately 54% of the particle flux reaches Fram Strait within the 25 year integration

time. Thus both time-dependence and diffusion reduce the residence time.

The particle trajectories calculated here reach far into the Canadian Basin, much further

than similar trajectories calculated in a coarse-resolution model by Maslowski et al (2000),

although these authors included the effect of annually varying wind-forcing over a 25 year

period, which may alter the trajectories due to the changing phase of the AO.
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Figure 6.4: Diffusive time-dependent trajectory statistics. 25 year integration starting from a

Barents Sea section (200m in depth). Start day: 680 (November 11). Total flux: 3.5 Sv.. (A)

Percentage of total particle flux passed through each grid-box during this period. (B) Mean

depth (m) when in box.
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Although the time-independent trajectories provide information on the continuation of

the boundary current, it is unlikely that the BSW water mass does not spread in the pres-

ence of all the meso-scale circulation features. The time-dependent trajectories show a much

more realistic picture, with the water masses spreading due to meso-scale features resolved

by the time-dependence and the grid-size of the model. However random motions will still be

missing due to unresolved turbulence. Here we have taken the diffusivity in the random dis-

placements equal to the eddy viscosity parameters in the OCCAM momentum equations, so

the jumps hopefully resemble the randomness created by the sub-grid scale turbulence. The

eddy viscosity is usually chosen as a typical length-scale of missing features (the grid-size)

multiplied by a typical velocity, and gives a single value that is used at every location in the

model. The distribution of tracers in the real ocean is likely to be affected by locally varying

diffusion. However the constant value used for the diffusion could be validated further using

observations of tracers in the real ocean, for example Argo floats or the Technetium released

from the Sellafield nuclear plant, in order to find a value that most realistically reproduces

trajectories in the real ocean. Later on we will see that adding our random displacements

provides us with a more realistic distribution of AW and BSW in the boundary current, there-

fore we expect the diffusive time-dependent trajectories to represent more realistic pathways

of BSW.

To identify the quickest pathways through the Arctic we have separated the particles that

have made it through Fram Strait within the 25 year integration period. These pathways are

shown for the time-dependent and diffusive time-dependent trajectories of BSW in figures

6.5A,B. There are two clear pathways in the time-dependent trajectories. The first is the

circumpolar boundary current pathway, which is diverted offshore for a short distance by the

Mendeleyev Ridge and Chukchi plateau. The second pathway is diverted along the Lomonosov
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Ridge, then crosses the ridge and continues towards Fram Strait along the Makarov Basin side

of the Lomonosov Ridge. It then follows the Trans-Arctic drift pathway towards Greenland.

This is also a pathway for the diffusive time-dependent trajectories. The diffusive trajectories

show only a very weak boundary current signal, however there are still particles that complete

the full loop around the continental slope.
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Figure 6.5: Percentage of total particle flux that have reached Fram Strait (A) time-dependent

(B) diffusive time-dependent.
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Similar diffusive time-dependent trajectories have been calculated for the inflow of AW

through Fram Strait. The eastwards flowing particles start from the Fram Strait section

shown in figure 6.1, and were integrated for 25 years starting at day 630 (September 22).

They represent a total flux of 9.8Sv. The flux statistic for these trajectories is shown in figure

6.6B. A large part of the AW recirculates in the West Spitsbergen Current, as discussed in

chapter 2, and the pathways through the Arctic are difficult to see. Approximately 30% of

the total particle flux makes it through Fram Strait and flows eastwards along the Barents

Sea slope. The trajectories are not clear and therefore we have also performed similar time-

independent calculation. The pathways of these trajectories provide an indication of the

pathways of the diffusive time-dependent trajectories. The flux statistic for these trajectories

is shown in figure 6.6A.

The time-independent trajectories show how AW enters the Arctic. There is a small in-

flow along the Barents Sea slope, which eventually joins up with BSW exiting through the

St Anna Trough. There is also a deep branch flowing further offshore which eventually recir-

culates towards Fram Strait as an undercurrent on the continental slope. This undercurrent

is associated with the anti-cyclonic feature in the streamfunction in figure 3.7. The branch

continuing along the boundary moves offshore at the Laptev Sea slope, and appears to reach

less far into the Canadian Basin than the time-independent BSW. By adding diffusion to the

BSW time-dependent pathways, as seen in figure 6.5B, the BSW seems to follow the AW

pathways by flowing across the Arctic before reaching the Beaufort Gyre.

Observations on the Canadian side of the Lomonosov Ridge have shown the signal of

warm water of Atlantic origin (Schauer et al 1997, McLaughlin et al 2002). Schauer et al

1997 have estimated that the water that is transported towards the Canadian Basin in the

boundary current above 600m consists of equal amounts of AW and BSW, and that the water
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deeper than 600m consists of 80% of BSW and 20% of AW. We have estimated the amount

of each water mass that crosses the Lomonosov Ridge in the boundary current by calculating

the amount of particle flux flowing through two vertical sections shown in figure 6.1. The

first section is a fixed model longitude section across the Lomonosov Ridge, and represents

the pathway that returns towards Fram Strait along the ridge. The second section is a

fixed model longitude section across the Beaufort Sea slope, and represents the circumpolar

boundary current pathway. A particle has passed the section if the line connecting successive

particle positions crosses the section. Although more than half of the particle flux of AW and

BSW still remain in the Arctic after 25 years we expect to get an indication of the distribution

of the water masses in the basins. In figures 6.7A,B the pathways, and the associated fluxes,

of the time-dependent and diffusive time-dependent AW and BSW particles are summarized.
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B

Figure 6.6: Percentage of total particle flux passed through each grid-box for 25 year inte-

grations starting in Fram Strait. (A) Time-independent trajectory statistics. flux: 7.2Sv.(B)

Diffusive time-dependent trajectory statistics. flux: 9.8Sv.
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Figure 6.7: Summary of time-dependent/diffusive time-dependent BSW (blue) and AW (red)

pathways and associated particle fluxes (in Sv) after 25 year integration. At the start 3.3/3.5

Sv of BSW and 3.8/3.0 Sv of AW makes it into Arctic Ocean.
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One immediate difference between the fluxes of the time-dependent and diffusive time-

dependent trajectories is the distribution of AW and BSW. It has generally been observed

that BSW is the dominant water mass in the boundary current (eg. Woodgate et al 2001).

Schauer et al (1997) even measured a distribution of 50% AW and 50% BSW in the upper

600m, and 20% AW and 80% BSW below 600m as the boundary current enters the Canadian

Basin. In the time-dependent trajectories there is a much larger component of AW in the

boundary current. The AW is located on the outer edge of the boundary current, after

being pushed offshore by the BSW, and it therefore tends to mix out of the current more

when diffusion is added. The branch of the boundary current returning towards Fram Strait

along the Lomonosov Ridge is thought to consist of a larger part of AW, which is seen more

obviously when diffusion is added. Therefore we conclude that the diffusion creates a more

realistic picture of how far the AW reaches into the Canadian Basin.

Here we discuss the diffusive time-dependent fluxes in more detail. A flux of approximately

1.2Sv of BSW crosses the section through the Lomonosov Ridge. The mean time for BSW

to reach this section is 8.6 years, and it crosses at a mean depth of 246m. These waters then

continue to exit the Arctic Ocean via Fram Strait in a mean time of 12 years at a mean depth

of 176m. The mean crossing time for the Lomonosov Ridge section and the exit time at Fram

Strait are relatively close as a large number of particles that have crossed the first section do

not reach Fram Strait within the 25 year integration. Approximately 2.3Sv of BSW crosses

the Lomonosov ridge and flows towards the Canadian Basin.

A flux of approximately 1.8Sv of AW crosses the section across the Lomonosov Ridge.

The mean time for AW to reach this section is 10.1 years, and it crosses at a mean depth of

578m. These waters then continue to exit the Arctic Ocean via Fram Strait in a mean time of

11.7 years at a mean depth of 296m. This leaves approximately 1.2Sv of AW of the original
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3.0Sv flowing into the Arctic along the Barents Sea slope, to cross the ridge and flow towards

the Canadian Basin. This means that in the OCCAM the amount of BSW is larger than the

amount of AW flowing across the Lomonosov Ridge.

The particles crossing the Beaufort Sea section towards the Canadian Archipelago are also

calculated to approximate the amount of each water mass that make the (almost) full loop

along the continental slope of the Arctic Ocean. Approximately 0.6Sv of BSW crosses this

section in a mean time of 13.3 years, and at a mean depth of 498m. Approximately 0.2Sv of

BSW is found to flow through the Canadian Archipelago into the North Atlantic. The other

waters continue to exit the Arctic Ocean via Fram Strait in a mean time of 18.3 years at a

mean depth of 350m.

Approximately 0.3Sv of AW crosses the section across the Beaufort Sea slope. The mean

time for AW to reach this section is 14.1 years, and it crosses at a mean depth of 500m.

Approximately 0.2Sv of AW flows through the Canadian Archipelago. The other waters then

continue to exit the Arctic Ocean via Fram Strait in a mean time of 18.1 years at a mean

depth of 582m.

This shows that BSW is the main water mass in the boundary current in the OCCAM

1/8◦ × 1/8◦ model, and that the Barents Sea has a far reaching influence. Also this shows

that a large part of both water masses crossing the Lomonosov Ridge do not continue in the

boundary current. They are captured by the Trans-Arctic drift and the Beaufort Gyre, and

are transported across the Arctic and through the Canadian Basin.

We also look at the depth distributions of both sets of particles in the Eurasian and

Canadian Basins. On the boundary current route the AW is generally deeper than the

BSW for the diffusive time-dependent trajectories, and provides the deepest outflows into

the North Atlantic. Table 6.1 shows the percentage of time that each water mass spends in
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depth intervals during the full 25 year integrations of the diffusive time-dependent trajectories.

This shows that the AW and BSW provide important contributions to the intermediate waters

(500 − 1500m) and deep waters (≥ 1500m) of the Arctic Basins, especially in the Canadian

Basin. The large amount of deep AW in the Eurasian is due to deep inflows through Fram

Strait which recirculate within the Eurasian Basin.

Eurasian Basin Canadian Basin

depth AW BSW AW BSW

0-500m 25 76 46 55

500-1000m 17 20 41 34

1000-1500m 4 3 9 9

≥ 1500m 54 1 4 2

Table 6.1: Percentage of AW and BSW particle flux in depth intervals during 25 year inte-

gration.

6.2.2 Interaction of AW and BSW

Here we look at the interaction of the diffusive time-dependent trajectories of AW and

BSW water masses along the continental slopes of the Arctic Ocean. The AW flows through

the Fram Strait and continues along the Barents Sea slope, where it eventually meets the

BSW which flows out through the St Anna Trough. A 3D visualization of these flows is

shown in figures 6.8A,B, which shows BSW and AW particle positions in the St Anna Trough

area. The first figure 6.8A shows the position of BSW particles during the 25 year integration,

where the BSW can be seen falling off the continental shelf and continuing as a boundary

current along the continental slope. Also a small number of particles are entrained into an
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undercurrent flowing towards Fram Strait. In the second figure (6.8B) the AW flowing along

the continental slope is added.

We also look at vertical sections at model longitude coordinates i = 290, 320, 350 to view

the through flow of particles at successive sections across the continental slope.The flux of

particles across each section is calculated by summing particles that have crossed the section

within the sample time (10 days). The depths, temperatures and salinity are then calculated

by linear interpolation between the two current time samples. For the calculation of mean

depths and times these interpolated values are weighted by the flux of the particles. The

mixture of BSW and AW at each grid-point (k, j) on the section is also weighted by flux and

defined by

M(k, j) =

A
∑
p∈I

Fp + B
∑
q∈J

Fq∑
p∈I

Fp +
∑
q∈J

Fq

, (6.4)

where A = 1 represents AW, B = −1 represents BSW, Fp and Fq represent the AW and BSW

particle fluxes, I and J represent the set of AW and BSW particles that have passed through

the vertical grid-box (k, j).

Particles of AW and BSW crossing the first section are shown in figure 6.9. Figure 6.9A

shows the total flux of AW and BSW crossing the section. The AW flows slowly along the

slope of the Barents Sea, while the BSW is in the Barents Sea flowing eastwards towards the

St Anna Trough. The total flux of AW contributing to the slow boundary current between

0-1500 metres is 3.0Sv, at a mean depth of 347m. This is slightly less than the 3.5Sv of

BSW on the shelf, which is at a mean depth of 120m. The mean time for AW to reach this

section is 3.9 years from the Fram Strait section. The distance from its starting section is

approximately 910 km, so its mean speed is less than 1 cm/s. The mean time for BSW to

reach this section is 0.5 years from the Barents Sea section. Figure 6.9B shows the mixture
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(M(k, j)) of the two water masses. It shows that the BSW and AW have not mixed, although

some BSW has joined the surface of the AW pathway.

Particles of AW and BSW crossing the second section are shown in figure 6.10. At this

point the BSW has entered the Arctic Basin via the St Anna Trough, and can be seen to sink

down the slope. Figure 6.10A shows the large amount of AW and BSW on the slope. The

total flux of water passing through this section are almost the same as in the previous section.

The flux of AW contributing to the boundary current between 0-1500 metres is 3.0Sv, at a

mean depth of 352m. The flux of BSW is 3.5Sv, which has sunk to a mean depth of 219m.

The mean time for AW to reach this section is 5.2 years, compared to 1.9 years for BSW which

has travelled over twice as far. Figure 6.10B shows BSW is confined to the slope, pushing

AW offshore with some mixing taking place.

Particles of AW and BSW crossing the third section are shown in figure 6.11. Figure

6.11A shows that the main part of the water is on the slope. Figure 6.11B shows this water

is a mixture of AW and BSW, where AW is the main component at the bottom, and BSW

is the main component at the top. The total flux of water passing through this section are

slightly less than the previous sections. The amount of AW contributing to the boundary

current between 0-1500 metres is 2.5Sv, at a mean depth of 353m. The amount of BSW is

3.3Sv, which has sunk to a mean depth of 235m. The mean time for AW to reach this section

from the previous section is 5.7 years, compared to 2.7 years for BSW.
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Figure 6.8: Particle positions of BSW (blue) and AW (red) during 25 year integration in St

Anna Trough area. Only positions where over 0.1 Sv flows past are shown.



CHAPTER 6. PARTICLE TRACKING - APPLICATION 117
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Figure 6.9: Diffusive time-dependent trajectories at i=290 on Eurasian slope. (A) flux (m3/s)

of BSW and AW particles passing section (B) Mixture of BSW (blue) and AW (red) particles.

A B

Figure 6.10: Diffusive time-dependent trajectories at i=320 on Eurasian slope. (A) Flux

(m3/s) of BSW and AW particles passing section (B) Mixture of BSW (blue) and AW (red)

particles.
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Figure 6.11: Diffusive time-dependent trajectories at i=350 on Eurasian slope. (A) Flux

(m3/s) of BSW and AW particles passing section (B) Mixture of BSW (blue) and AW (red)

particles.

The distance from the previous section is approximately 390 km, which means the mean

speed of both water masses has increased to approximately 2.5cm/s. These consecutive

sections show that AW is pushed offshore by BSW, which is the reason that further along the

slope the AW is more likely to get diverted by the Lomonosov and Mendeleyev Ridges.
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Figure 6.12: Temperature-Salinity properties of diffusive time-dependent BSW (blue) and AW

(red) particles with potential density (referenced to 425 m) and spiciness contours at (A)

i=290 (B) i=320 (C) i=350 on Eurasian slope.
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The mixing of both water masses can also be seen in the particle temperature and salinity

properties. Figure 6.12 shows potential temperature and salinity properties of the two water

masses on the three sections of the Eurasian Basin. The first section shows the distinguishing

properties of BSW and AW, where they are completely unmixed. The AW mostly is warmer,

and saltier than BSW.

Further along the slope where the pathways of AW and BSW join figure 6.12C shows that

the temperature maximum of AW has moved down from approximately 4.5◦C to 3.2◦C. The

property differences between BSW and AW are disappearing indicating mixing of the two

water masses. Also the surface waters of BSW have been freshened compared to the previous

section, indicating some mixing with surrounding Polar Surface Water.

A B

Figure 6.13: Time-independent trajectories at i=350 on Eurasian slope. (A) flux (m3/s) of

BSW and AW particles passing section (B) Mixture of BSW (blue) and AW (red) particles.

Figure 6.12C shows that AW and BSW are almost completely mixed further along the

slope at i=350 and can not be easily distinguished from temperature and salinity properties.
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In the time-independent trajectories there is no mixing at all of the two water masses.

Figure 6.13 shows the crossings of time-independent AW and BSW particles through the third

section at i=350. Figure 6.13A shows that the main part of the water is on the slope. In

this figure the BSW can be clearly seen to sink under the AW on the slope, and to push AW

offshore.

6.2.3 Water mass transformations

In this section we look at the temperature and salinity properties along the large-scale

AW and BSW particle trajectories. These two water masses can be roughly divided into

two groups following separate pathways. The first group of particles follows the boundary

current route all along the continental slope to the Canadian Basin, where some particles

are affected by the Chukchi plateau and the Beaufort Gyre. The second group of particles is

forced offshore by the Lomonosov Ridge, Mendeleyev Ridge, and the Trans-Arctic drift. We

have separated these groups based on particles that cross westwards through sections I and

II in figure 6.1.

The main properties of the particles are set by air-sea fluxes on the continental shelves,

however there are also significant air-sea fluxes in the ocean interior. Also particles can

change properties due to mixing with surrounding water, or through intrusions of dense

plumes. In the model these plumes are most likely to form on the East Siberian and Chukchi

Sea continental shelves, where there are large seasonal air-sea fluxes that correspond to ice

processes (ice formation and melting). Figure 6.14 shows the mean properties for the Eurasian

and Canadian Basin interiors. These are averages of all water columns that are deeper than

1500m. Here the Eurasian Basin includes the Nansen and Amundsen Basins, while the

Canadian Basin also includes the Makarov Basin. These properties show the strong halocline
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on both sides of the Lomonosov Ridge, which underlies a cold and fresh surface layer.

Figure 6.14: Mean potential temperature (◦C) and salinity (PSU) properties for Eurasian and

Canadian Basin interior.

The properties of the first group of particles as they cross westwards through section I

(seen in figure 6.1) on the Beaufort Sea slope are shown in figure 6.15A. AW particles are

shown in red, and BSW particles are shown in blue. It is mostly the deepest and densest

particles flowing close to the slope that make it into the boundary current route. On the

Kara Sea slope these waters have the properties of 34 < S < 35 and −0.5 < T < 3. The

core of the particles on the Beaufort Sea slope have the properties 33.5 < S < 35 and
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−0.5 < T < −0.2, which means the water particles have been significantly cooled and partly

freshened as they flow along the Siberian shelves. Mixing with the Eurasian and Canadian

deep waters could provide the cooling, however this water is deeper (≥ 1000m) than most

of the particles along the slope. The cooling and freshening can be explained by the air-sea

fluxes along the current. Figure 3.2 shows that there is a constant negative heat flux along

the boundary current pathway up to the Beaufort Sea slope. Estimating the heat flux out of

the ocean as ∆Q = 30W/m2, the depth (∆z) of the water column of AW and BSW along

the boundary as 500m, and the time (∆t) it takes to reach the Beaufort Sea slope as 5 years

gives an approximate temperature change of

∆T = ∆t
∆Q

cvρ0∆z
= −2.3◦C. (6.5)

Here the specific heat, cv, and reference density, ρ0, are approximated as 4200J/(kg◦C),

1000kg/m3. We have used a conservative estimate on the time ∆t, however the temperature

change of −2.3◦C over a full 500m water column is almost enough to provide the cooling seen

in the AW and BSW particles. The Arctic Ocean is covered by a halocline, which insulates

the water masses underneath from the surface cooling. However the boundary current along

the continental slope of the Eurasian Basin has been seen to reach right up to the surface.

The surface waters of the boundary current will be affected by the cooling, and this will be

able to mix down quickly due to the turbulence in the current. Therefore we think that

downward mixing along the continental slope of the changes induced by air-sea fluxes in the

surface layer cause the observed water mass transformations.

There is also a large positive freshwater flux over areas of the continental slope. A similar

estimate for the rate of change of salinity with P −E = 200cm/yr gives ∆S = 0.7PSU , which

explains the freshening. Figure 6.15B shows the properties of the same group of particles as
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they flow through Fram Strait into the North Atlantic. Although a large part of the particles

on the boundary current pathway still remain in the Arctic after 25 years, most of the particles

that have made it to Fram Strait can be seen unchanged (at 0.3◦C and 34.7PSU) compared

to figure 6.15A.

A B

Figure 6.15: Potential temperature (◦C) and salinity properties of AW (red) and BSW (blue)

particles on boundary current pathway. (A) Beaufort Sea slope (B) Fram Strait

An example of a BSW particle following the boundary current route is given in figure

6.16, which shows the particle trajectory, and depth, potential temperature and salinity as

a function of time. As the particle flows out of the St Anna Trough it becomes warmer

and saltier, probably due to mixing with the warmer branch of AW. From the Laptev Sea

slope onwards the particle is gradually cooled, and becomes saltier as it sinks to over 1000m

depth. It then gets trapped in the Beaufort Gyre, before flowing westwards in the boundary

undercurrent on the Beaufort Sea slope. There it is part of the densest waters in figure 6.15A.
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The initial cooling during the first 6 years is likely to be due to air-sea fluxes, however as

it sinks further in the Beaufort Gyre it mixes with the salty and cold deep waters of the

Canadian Basin.

The properties of the second group of particles as they cross westwards through section

II (seen in figure 6.1) along the Lomonosov Ridge are shown in figure 6.17A. It is mostly the

shallower particles that are steered by the Trans-Arctic drift, and the offshore particles that

are driven by the Lomonosov Ridge, that follow this route. The core of this group has been

significantly freshened and cooled compared to the water properties on the Kara Sea slope.
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Figure 6.16: BSW particle statistics. (A) Trajectory (B) Depth (m) (C) Salinity (PSU) (D)

Potential temperature (◦C).
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Figure 6.17: Potential temperature (◦C) and salinity properties of AW (red) and BSW (blue)

particles on Trans-Arctic pathway. (A) Lomonosov Ridge section (B) Fram Strait
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Apart from the surface layer, there is no water mass cold and fresh enough beneath the

halocline that would be able to provide the observed changes through mixing. However there

is a very large annual mean freshwater flux in the Eurasian Basin, which originates from the

mouth of a Siberian river, giving values of up to P − E = 600cm/yr.

A similar calculation as for the first group of particles gives an approximate salinity change

of ∆S = 2.0PSU , which is enough to transform the medium salinity waters of the AW and

BSW outflow. Figure 6.17B shows the properties of the same group of particles as they flow

through Fram Strait into the North Atlantic. The majority of these waters remain unchanged

from the section through the Lomonosov Ridge, although some mixes in with recirculating

AW from the West Spitsbergen Current.

6.3 Pathways of Pacific Water

In this section we look at particle trajectories of Pacific Water flowing into the Arctic

Ocean via Bering Strait. The particle trajectories were started at day 370 (January 11), and

were integrated for 20 years. After 20 years approximately 40% of the particles still remain

in the Arctic, mainly in the Beaufort Gyre. The particles have a total flux of 0.5 106m3/s.

The flux statistic of these particles is shown in figure 6.18A.

There are four branches of BSO off the shelf. The outflow is guided by the topography

on the Chukchi Sea shelf, which is shown in figure 6.18B. The BSO flows towards the deep

basin through the three canyons that separate the Hannah and Herald Shoals, and Wrangel

Island. There are also particles that make several loops (anti-cyclonic) around Herald Shoal,

which is where Martin and Drucker (1997) have shown the presence of a Taylor column in

observations. The strongest branch flows through Herald Canyon, and then continues towards
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Hannah Shoal where it flows off the shelf. Of the particles that flow off the shelf here there

are only a few that follow the boundary current. The majority flow off the shelf and continue

in the Beaufort Gyre, while some spin off in eddies as they meet the light (fresh) water in

the gyre. There is another branch of BSO that flows along the shelf into the East Siberian

Sea, where there is a front with the fresh Siberian shelf water. There the BSO is diverted off

the shelf, and is transported offshore by the Trans-Arctic drift. The BSO exits the Arctic in

almost equal quantities via the Canadian Archipelago and the Fram Strait.

During the time in the Arctic Ocean the BSO is significantly shallower than the water

of Atlantic origin. Table 6.2 shows the depth distribution of the BSO particles within the

Eurasian and Canadian Basins during the full 20 year integration. The water is almost entirely

contained in the upper 1000m, and does not contribute as significantly to the intermediate

and deep waters as the AW and BSW. However it is dense enough to sink into the halocline.

depth Eurasian Basin Canadian Basin

0-500m 87 92

500-1000m 12 7

1000-1500m 0.5 0.4

≥ 1500m 0 0.04

Table 6.2: Percentage of BSO particle flux in depth intervals during 20 year integration.

The BSO outflow is relatively fresh (S < 33.5PSU) compared to water of the same

density in the Canadian Basin, but is still relatively salty compared to the upper waters of

the Canadian Basin. There is significant dense water formation on the Chukchi Sea shelf

(Cavalieri and Martin 1994). This is also represented in the annual mean prescribed air-sea

fluxes in the OCCAM model, where negative heat and freshwater fluxes dominate the shelf
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(see figure 3.2). Therefore the BSO becomes even denser compared to the Canadian Basin

surface water. D’Asaro (1988b) has proposed that the front between these two water masses

can create baroclinic instabilities as the BSO flows off the shelf near Barrow Canyon. We

have found particle trajectories that support this proposal.

The trajectory of a typical particle flowing through Barrow Canyon is shown in figure

6.19, which also includes the particle depth, potential temperature, and salinity. The particle

trajectory shows significant depth variation, which is typical for all particles. We expect this

variation is due to the model velocity field, and not due to the random jumps produced by

the diffusive code, which are largely within 10m.

The particle starts flowing out onto the Chukchi Sea shelf, where it is warmed in summer.

In winter it is cooled and becomes saltier as it flows through Barrow Canyon. Before it leaves

the shelf the particle has a salinity of approximately S = 32PSU and potential temperature

T = −1. The particle is therefore significantly denser than the surface water in the Canadian

Basin, which has typical properties of S = 30.2 and T = −1.2, as temperature does not

affect density much at low temperatures. The particle flows off the shelf between the first

and second year, and continues towards the basin in an eddy while sinking to 200m. As the

particle reaches the central Canadian Basin it is transported in the Beaufort Gyre for several

loops before leaving the Arctic through Fram Strait.

These trajectories compare relatively well to Maslowski et al (2000)’s model trajectories.

For constant annual forcing they find that the BSO floods the Chukchi and East Siberian

shelves, and eventually crosses the Arctic in the Trans-Arctic drift. During varying atmo-

spheric forcing they find that there is also an outflow along the Alaskan coast. This pattern

is confirmed in observations by Steele et al (2004).
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B

Figure 6.18: (A) Percentage of total BSO particle flux passed through each grid-box for

20 year integration of diffusive time-dependent trajectories. Starting day: 370. Total flux

0.5 106 m3/s (B) Chukchi Sea bathymetry (m).
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D

Figure 6.19: BSO particle statistics. (A) Trajectory (B) Depth (m) (C) Salinity (PSU) (D)

Potential temperature (◦C).
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6.4 Signal propagation of shelf waters

Here we look at time-scales for AW and PW particles injected on the Barents and Chukchi

Seas to exit the Arctic Ocean. This is an indication of the time it takes for signals to propagate

from the important shelf seas into the North Atlantic Ocean. Particles exit the Arctic mainly

through Fram Strait in the East Greenland current, only a small number flow through the

Canadian Archipelago.

The flux of the particles that exit the Arctic have been calculated from an extended 75 year

integration of diffusive time-dependent trajectories. Figure 6.20A shows the BSW particle

flux that exit in yearly intervals. The graph has the shape of an asymmetric bell curve.

We expect the distribution of particles reaching the North Atlantic Ocean to resemble the

solution to a diffusion or advection-diffusion equation. I start by considering a time-dependent

1D diffusion equation, which describes the evolution of a cloud of diffusing particles P (t, x, D),

and which is given by

∂P

∂t
= D

∂2P

∂x2
, (6.6)

where D is the diffusion coefficient. The particles are injected instantaneously, therefore we

expect an initial condition

P (0, x,D) = δ, (6.7)

were δ is the Dirac delta distribution representing an instantaneous source at the origin. The

general solution to this problem is

P (t, x, D) =
1√

4πDt
exp

[
−x2

4Dt

]
, (6.8)

which is normalized such that ∫ ∞

−∞
P (t, x, D)dx = 1. (6.9)
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We want to find the distribution of particles from the initial cloud reaching point a fixed

point x = x0, which represents the distance of an Arctic circumference. Therefore we fit the

position x0 and the diffusion parameter D of function P (t, x0, D) to the data of the diffusive

time-dependent trajectories. For t 7→ ∞ function P (t, x0, D) 7→ 0, and for t 7→ 0 function

P (t, x0, D) 7→ 0, as D is finite. Therefore this function has the required asymptotic properties

to match the graph of the data.

We use the Levenberg-Marquardt method for the least squares minimization of nonlinear

functions(Press et al, 1989). This method uses an initial guess to minimize

χ2(~a) =
N∑

i=1

(yi − P (ti,~a))2, (6.10)

by varying the parameter vector ~a (which for the 1D diffusion equation is equal to [x0, D]) in

the nonlinear function P . In our case the data yi represents the percentage of the particle flux

that reaches the North Atlantic during year i. We repeat this method for a series of initial

guesses (~a0) which are incremented within a reasonable range to obtain a global minimum.

The best fit is obtained for the values given in table 6.3. The non-dimensional vari-

able t has been scaled as t/360days. The functions P (t, x0, D) and the cumulative function

∫ t
0 P (t′, x0, D)dt′ are given in figure 6.20.

Parameter Value Org. unit Value Conventional unit

x0 12.6858 c - -

D 9.4724 (c/x0)2/yr. 4.3 · 109 cm2/s

χ2 3.91 · 10−3 - - -

Table 6.3: Best fit values for fitting 1D diffusion equation to propagation of diffusive time-

dependent BSW particles into North Atlantic.
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A B

Figure 6.20: (A).Percentage of BSW particle flux that reaches North-Atlantic in data at yearly

intervals and diffusion solution (B). Cumulative percentage of BSW particle flux that reaches

the North-Atlantic and diffusion solution.

The position of x0 measures the distance of one circumference of the Arctic, therefore the

unit of D is (c/x0)2/360 days, where c represents one circumference of the Arctic. Estimating

c as the distance around the boundary at level 355m gives c = 1.5 · 109 cm. Then the

diffusion coefficient can be converted to conventional units, which gives the high value of

D = 4.3 · 109cm2/s. As this function does not describe the data very well I next take

advection into account.

The time-dependent one-dimensional advection-diffusion equation describes the evolution

of a cloud of diffusing particles which are transported at constant speed V , and is given by

∂P

∂t
+ V

∂P

∂x
= D

∂2P

∂x2
, (6.11)

where D is the diffusion coefficient, and V is the speed of the transport.
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The initial condition is the same as the previous model

P (0, x,D, V ) = δ, (6.12)

were δ is the Dirac delta distribution representing an instantaneous source at the origin. The

general solution to this problem is

P (t, x, D, V ) =
1√

4πDt
exp

[
−(x− V t)2

4Dt

]
, (6.13)

which is normalized as in (6.9). In this case we fit parameters D and V of this function to

the data of the diffusive time-dependent trajectories. The best fit is obtained for the values

given in table 6.4.

Parameter Value Org. unit Value Conventional unit

x0 18.4849 c - -

D 6.1104 (c/x0)2/yr. 1.3 · 109 cm2/s

V 1.1008 (c/x0)/yr. 2.9 cm/s

χ2 6.4962 · 10−4 - - -

Table 6.4: Best fit values for fitting 1D advection-diffusion equation to propagation of diffusive

time-dependent BSW particles into North Atlantic.

The functions P (t, x0, D, V ) and the cumulative function
∫ t
0 P (t′, x0, D, V )dt are given in

figure 6.21. This model is a significant improvement on the diffusion equation, reducing χ2

by a factor of more than 5 compared to the purely diffusive solution.

Converting the parameters into conventional units gives a diffusion coefficient of D =

1.3 ·109cm2/s and an advection of V = 2.9cm/s. The diffusion coefficient is much larger than

the horizontal eddy viscosity coefficient in the model of AH = 2 · 106cm2/s. Therefore the
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A B

Figure 6.21: (A).Percentage of BSW particle flux that reaches North-Atlantic in data at

yearly intervals and advection-diffusion solution (B). Cumulative percentage of BSW particle

flux that reaches the North-Atlantic and advection-diffusion solution.

resolved eddies and the large-scale circulation contribute significantly to the diffusion of the

particles. Taking V as the typical speed gives

D

V
≈ 4483km (6.14)

as the typical length-scale involved in diffusion. This is of the same order as the width of the

Arctic Ocean (approximately 2600 km). This suggests that the ’diffusion’ is primarily caused

by basin-scale features such as the Beaufort Gyre, and not by meso-scale eddy features. This

high value of diffusion is caused as water parcels that end up in the Beaufort Gyre tend to

complete several circuits of the basin before being able to escape into the Atlantic. This

agrees with views that the Beaufort Gyre is responsible for trapping water in the Canadian

Basin (example Steele et al 2004).

The advection speed of 2.9cm/s is similar to the propagation speed found by McLaughlin
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et al (2002) of a large dense outflow from the Barents Sea. They found that in 1989 an

atmospheric regime shift that increased cyclonic circulation in 1989 leading to a relatively

large outflow of dense water from the Barents Sea could be seen 6 years later in the Canadian

Basin. The signal was found approximately 5100km downstream at depths over 1000m, which

leads to a mean advection speed of 2.6cm/s.

The time that 68% of the particle flux (the bulk) has left is approximately 33 years,

which provides an estimate for the propagation time of signals from the Barents Sea into the

North Atlantic. Although the strongest signal, the time of the largest outflow, occurs after

approximately 10 years.

Also shown in all the cumulative distributions are the data for the 25 year integrations

of time-independent, and time-dependent trajectories. The diffusive time-dependent curve

shows a continuous function of particles exiting over time, while the time-independent curve

indicates an unrealistic scenario of separate groups of particles exiting at different times.

The values of the best fit for the advection-diffusion solution to the outflow of the diffusive

time-dependent BSO particles into the North Atlantic are given in table 6.5.

Parameter Value Org. unit Value Conventional unit

x0 12.9097 c - -

D 2.6861 (c/x0)2/yr. 5.2 · 108 cm2/s

V 1.0856 (c/x0)/yr. 2.7 cm/s

χ2 3.53 · 10−3 - - -

Table 6.5: Best fit values for fitting 1D advection-diffusion equation to propagation of diffusive

time-dependent BSO particles into North Atlantic.

The functions P (t, x0, D, V ) and the cumulative function
∫ t
0 P (t′, x0, D, V )dt are given in
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figure 6.22. Using c = 1.0 · 109 cm to convert the parameters into conventional units gives a

diffusion coefficient of D = 5.2 ·108cm2/s and an advection of V = 2.7cm/s. These values are

similar to the propagation of BSW, and therefore it seems the transport of the Bering Strait

outflow is driven by the same processes. We can estimate the time the bulk of the signal has

left the Arctic as approximately 20 years, while the largest outflow is after approximately 7

years.

A B

Figure 6.22: (A).Percentage of BSO particle flux that reaches North-Atlantic in data at yearly

intervals and advection-diffusion solution (B). Cumulative percentage of BSO particle flux that

reaches the North-Atlantic and advection-diffusion solution.



Chapter 7

Available Potential Energy - theory

7.1 Introduction

The purpose of this chapter is to look at the energetics to get a better feel for what physics

controls the flows in the Arctic Ocean. In stratified fluids it is often convenient to discuss

the energetics in terms of the available potential energy (APE). The APE of a water mass

is defined as the potential energy (PE) of the water mass relative to some background state

of the ocean. The standard definition of APE for the atmosphere was introduced by Lorenz

(1955). He chooses the background state to be that with the minimum potential energy (PE)

that can be reached by adiabatically resorting the mass of the atmosphere.

However here we are interested in values of APE in local areas of the Arctic Ocean. For

this we make a new definition to calculate the APE of separate water parcels relative to the

mean offshore density structure. It is this value that indicates the maximum energy that is

available to drive local currents, via conversion to kinetic energy (KE). We then continue to

look at the local generation of the APE due to the surface forcing. And also we look at the

amount of the calculated APE that converts into kinetic energy (KE).

140
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7.2 Previous definitions

In his definition for the atmosphere Lorenz takes the difference of total potential energy

of the mass of the atmosphere and the background state. The total potential energy is the

potential energy plus the internal energy. The contribution of potential energy to the APE of

the ocean, also referred to as gravitational APE, is easily defined. However the contribution

of the internal energy is more difficult.

The PE of a water mass in the ocean, referenced to the surface, is equal to gρz. This is

used in the classic definition of the gravitational APE, which is given by

APE =
∫ ∫

V1

∫
gρzdV1 −

∫ ∫
V2

∫
gρrzrdV2. (7.1)

Here (ρr, zr) is the reference state. Note that adiabatically resorting the water masses can

cause the free surface height to rise, which means the original state can have a different volume

than the reference state.

Internal energy is the microscopic energy on atomic and molecular scale associated with

the movement of molecules and atoms, and the molecular attractive forces. Changes in

internal energy of the ocean between two states occur due to compression or expansion of

water parcels. If salinity is assumed constant then a change of the internal energy (U) of a

water mass due to a reversible process is given by (Pippard 1966)

dU = Tds− PdV. (7.2)

Here V is volume, P is pressure, T is temperature, and s is entropy, which is a measure

of disorder in the system. The equation of state for seawater is nonlinear, which makes it

difficult to formulate the contribution of available internal energy for the ocean. Therefore in

most approximations of APE the internal energy is ignored, and only the gravitational part
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of the APE is considered.

Reid et al.(1981) take into account the effects of compression on the internal energy in

a series expansion of available total potential energy in terms of pressure, which implicitly

uses the adiabatically levelled reference state. They show that the gravitational APE is the

dominant term for the ocean, and find that internal energy contributes a maximum of 10−20%

to the total potential energy of the ocean. The contribution of internal energy is found to be

negative. This means that during a readjustment process only part of the gravitational APE

is converted to KE, the rest is converted to internal energy. We will see that internal energy

is not relevant in our definition for the APE of separate water parcels, so we only consider

gravitational terms.

For studies of limited regions (7.1) can be applied using approximations of the re-sorted

local area (Bray and Fofonoff 1981). There is also a commonly used approximation of (7.1)

that is derived (Bryan and Lewis 1979, Oort et al 1989) from a generalization of a formulation

by Lorenz (1955), which uses the mean height over a constant density surface as a reference

state

APE = −1
2
g

∫ ∫
V

∫
(z − zr)2

δρ̃

dz
dxdydz. (7.3)

This approximation shows the positive-definite character of APE. It is obtained via partial

integration of (7.1), and neglecting horizontal gradients in density. In this approximation

it is easy to calculate terms for generation and conversions of APE in a full energy balance

(Oort et al 1994). However Huang (1998) has shown this approximation produces large

errors compared to (7.1) when applied to basin-scale calculations, which he attributes to the

absence of mixing in the reference state. Definition (7.3) is equivalent to the leading term

in the expansion of total available potential energy found by Reid et al (1981). Although
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definitions (7.1) and (7.3) indicate regions of important contributions to the gravitational

APE, these contributions are not accurate approximations of the energy available for separate

water parcels to drive local currents.

A previous study of Arctic energetics has been performed by Uotila et al (2004) to cal-

culate the APE for various regional coupled ocean-ice models of the Arctic Ocean. They use

definition (7.3) with the mean Arctic properties as the reference state. Their main findings

are the high values of APE in the Beaufort Gyre, due to light (fresh) water in the surface

layers, and in the Barents Sea, due to the inflow of heavy (salty) Atlantic Water. The main

conversions of APE to KE occur in the same regions. The convergence of light water in the

Beaufort Gyre causes light water to rise, converting APE to KE. Inflowing AW through the

Barents Sea along the Siberian continental shelf edges causes conversion of KE to APE.

In the next sections we discuss a new approach for calculating the energy available for

local water parcels to sink into the offshore ocean basin.

7.3 Regional Available Potential Energy

Here we first discuss the mean offshore reference state and then derive a new definition to

calculate the maximum energy available on the continental shelves for driving local currents

in the Arctic Ocean.

7.3.1 Reference state

We divide the Arctic Ocean into two sets of basins, the Eurasian Basin and the Canadian

Basin. The Eurasian Basin consists of the Nansen and Amundsen Basin, and the Canadian

Basin also includes the Makarov Basin. For the mean offshore density we average over water
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columns deeper than 1500 metres over an area covering both the Eurasian and the Canadian

Basins. We expect this area to be relatively quiet, so that the isopycnals are relaxed to a

stable reference state. We start by comparing the mean offshore densities of the Eurasian

and Canadian Basins. In figure 7.1A the positions of the areas are shown. The corresponding

reference densities, and potential temperatures and salinities, are shown in figure 7.1B.

The reference densities only differ in the top 400 metres, where the Eurasian Basin is

denser than the Canadian Basin. This corresponds to the salinity differences. The Eurasian

Basin is saltier than the Canadian Basin due to the inflow of salty Atlantic Water (AW). The

large differences in temperature in the top 800 metres do not contribute much to density.

This is due to the thermal expansion coefficient, which is small at the low temperatures in

the Arctic.

As the salinity dominates density, the AW is already dense enough to sink into the Arctic

Ocean. Therefore it has the possibility to flood the Arctic Ocean if it makes it through Fram

Strait. However only a small part of the AW watermass makes it through Fram Strait into

the Arctic Ocean.

We have compared the density of inflowing AW along the continental slope with the mean

offshore densities on both sides of Fram Strait. This is shown in figure 7.2. Also shown is the

density for a water column in the Barents Sea on the other pathway of AW into the Arctic

Ocean. There is a large temperature and salinity front between water masses at the sides of

Fram Strait, which prevents the warm, salty AW from entering the cold, fresh Arctic due to

geostrophy. Although a flow dominated by botttom friction, which is more important than

the Coriolis force in shallow water, would be able to pass through the Arctic Front, however

most AW particles recirculate before Fram Strait back into the Atlantic (as seen in chapter

6). This is also seen in the AW particle trajectories in chapter 6, which mostly recirculate in
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Fram Strait back into the Atlantic. The AW also cannot sink down the slope before Fram

Strait. Although the AW in the upper 200 metres on the slope is dense enough to sink into

the Arctic Ocean, it is at a stable depth relative to the mean offshore state on the Atlantic

side of Fram Strait. The water column of BSW in the Barents Sea is significantly cooler and

fresher. This implies the cooling and freshening of AW on the Barents Sea pathway allows it

to pass through the Arctic front, and this pathway therefore acts as a short circuit for AW

to sink into the Arctic Ocean via a boundary current.
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A

B

Figure 7.1: (a) Arctic with contours at 355m and 1515m. AW columns marked by A and B.

(b) Reference properties for the Eurasian Basin, Canadian Basin and Arctic (total).
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Figure 7.2: Properties (AW) for Atlantic Water current on continental slope approaching

Fram Strait, mean properties of offshore water masses on both sides of Fram Strait, and

water in the Barents Sea (BW). Atlantic/Arctic side refers to box on Atlantic/Arctic side of

Fram Strait as shown in figure 7.1A.
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7.3.2 2D definition of APE

One possible approach is to compare the total PE of water columns on the shelf to the

total PE of the water in the reference column. Consider a water column on the continental

shelf of depth Hs with a density profile ρs(z). The energy of this column (in J/m2) is then

the PE of the shelf column minus the PE of the reference state

APE =
∫ 0

Hs

g · ρs · z · dz −
∫ 0

Ho

g · ρo · z · dz. (7.4)

However this depth-integrated field of APE per water column will give a distorted view due

to the differences in depths. Even a field of APE per water column per unit depth can distort

the view due to differences in the mean value of depth (z). In that case a water parcel with

a fixed amount of APE flowing horizontally to a deeper column would appear to lose APE,

as the height of the water column increases. Therefore the best way for showing up regions

of relative importance is to have a three-dimensional field of APE.

7.3.3 3D definition of APE: Equivalent to classical definition

Here we look at water parcels on the shelf and determine their stable depth in the reference

column. We then compare the PE of the water parcel at its original depth on the shelf to

the PE it would have if it was placed at the stable depth in the reference column. In this

(adiabatic) displacement we neglect all movements of other water parcels.

We consider a water parcel with a fixed volume of δV0 in the shelf column. The depth (z)

is taken positive everywhere. The PE (per unit volume) of this parcel is

PEs = g · ρs(z) · z · δV0. (7.5)

The stable depth of this water parcel in the reference column is zo(ρs(z)). The PE of the
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parcel at this depth in the reference column would be

PEo = g · ρs(z) · zo(ρs(z)) · δV0, (7.6)

assuming the volume of the water parcel stays constant. The APE of this water parcel (in

J/m3) is then

APE1 = g · ρs(z) · [zo(ρs(z))− z] · δV0. (7.7)

This definition is equal to the integrand in the global definition (7.1).

Figure 7.3a shows a horizontal map of annual averaged APE at 30 metres depth using this

definition. The main feature in this map is the large amount of energy available due to the

inflowing AW. The APE along the first part of the boundary current can be clearly traced to

the Barents Sea pathway. The APE of AW in the Fram Strait pathway does not make it as

far along the continental slope. Other features are the APE due to the Bering Strait outflow,

and there is a very small negative APE on the Siberian shelves due to the inflow of cold river

water. In this definition negative energy is possible for light water whose depth on the shelf is

larger than the reference depth. This represents energy that can be released if offshore water

floods the shelf, which would lead to rising of the shelf water mass. Apart from the negative

energies this definition shows the same features as those found by Uotila et al (2004).

This definition shows up areas of important contributions to APE, but neglects all inter-

actions with other water parcels. When a water parcel sinks down it requires other water

parcels to move up. This raises other water parcels above their stable depth and provides a

negative contribution to APE. This effect is considered in the next section.
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7.3.4 3D definition of APE: Including adjustment of reference state

Here we consider again a reversible adiabatic process whereby the water parcel is allowed

to sink to a stable depth in the reference column. This time we include the interactions with

the surrounding water in this process, but neglect the compression of the water parcel during

sinking. We then define the APE as the work done on the water parcel by the buoyancy force.

As the buoyancy force always works in the direction of the vertical displacement this leads to

a positive-definite definition of APE. This process is equivalent to subtracting from (7.7) the

gain in APE due to the opposite vertical displacements of the water parcels in the reference

column.

A water parcel will have a net buoyancy force (per unit volume) acting on it at each depth

z′ in the column of

FB =
[
ρs(z)− ρo(z′)

]
· g · δV0. (7.8)

The work made available by letting the water parcel sink gives the following definition of APE

(in J/m3)

APE2 =
∫ zo(ρs(z))

z
FB · dz′ =

∫ zo(ρs(z))

z

[
ρs(z)− ρo(z′)

]
· g · δV0 · dz′. (7.9)

Figure 7.3b shows a horizontal map of APE at 30 metres depth using this definition. This

map shows the same overall structure as the map of the previous definition, but now the

values are positive everywhere with reduced magnitude. This can be seen by the connection

of APE2 with APE1

APE2 = APE1 −
∫ zo(ρs(z))

z

[
ρo(z′)

]
· g · δV0 · dz′. (7.10)

The energy on the Siberian shelves is more obvious now due to large density difference of the

fresh river inflow with the offshore Arctic water. There is still energy from the Bering Strait
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outflow, but it is reduced in comparison to the highest APE in the Barents Sea.

This definition neglects the compressibility of the water parcel. As the water parcel sinks

its volume will be compressed, and it will become denser. This will cause the water parcel to

sink further in the reference column. This effect is considered in the next section.
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A

B

Figure 7.3: (A) Definition 1 and (B) definition 2 of APE (J/m3) at a depth of 30 metres.

(Note change in scales).
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7.3.5 3D definition of APE: Including compressibility effects

Here we add the effects of compressibility to definition (7.9) by considering a reversible

adiabatic compression process. The water parcel is allowed to sink to a stable depth in the

reference column, while being compressed. As the water parcel is compressed its density will

increase, its volume will decrease and its in-situ temperature will rise. The volume of the

water parcel is now not conserved, and its internal energy U changes.

The change of U in a reversible process is given by (7.2). As the water parcel sinks it

does not exchange heat with the surroundings so the change in heat dQ = Tdη = 0 . The

only change is therefore due to the change in volume of the ocean (PdV ) due to the net effect

of compression of the sinking water parcel, and expansion of the rising water parcels in the

reference column. As the water parcel sinks it is replaced at each depth by a water parcel

from the reference state. The compression is performed by the global pressure field, and the

energy comes from a slight fall in sea surface height. This does not change the APE of the

water parcel, but is important when considering the APE of the global ocean.

The density of the water parcel at each depth can be written as

ρc
s(z

′) = ρs(z) ·
[
1 + α(z′)

]
, (7.11)

where α(z) is the change in density due to adiabatic changes in temperature and changes

in pressure. As the water parcel is compressed its volume will decrease. The volume of the

water parcel at each depth can be written, using conservation of mass, as

δV (z′) =
[

1
1 + α(z′)

]
· δV0. (7.12)

The depth to which the water parcel will sink is zo(ρ̄s(z), where ρ̄s is the potential density of

the water parcel referenced to its stable depth in the reference column. Using these values in
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definition (7.9) gives

APE3 =
∫ zo(ρ̄s(z))

z

[
ρc

s(z
′)− ρo(z′)

]
· g ·

[
1

1 + α(z′)

]
· δV0 · dz′. (7.13)

This definition can be separated into contributions from the compressibility of the water

parcel, and a contribution from the density differences between the water parcel and the

reference column. The reference density can be written as

ρo(z′) = ρs(z) ·
[
1− β(z′)

]
, (7.14)

where β(z′) is the change in density due to the stratification of the reference column. The

integral in (7.13) can then be separated into 3 components

APE3 =
∫ zo(ρs(z))

z
ρs(z) ·

[
β(z′)

1 + α(z′)

]
· g · δV0 · dz′ (7.15)

+
∫ zo(ρs(z))

z
ρs(z) ·

[
α(z′)

1 + α(z′)

]
· g · δV0 · dz′

+
∫ zo(ρ̄s(z))

zo(ρs(z))
ρs(z) ·

[
α(z′) + β(z′)

1 + α(z′)

]
· g · δV0 · dz′.

The coefficients α(z) and β(z) are of the order of 10−3 or smaller. By approximating 1+α(z) ≈

1 in the denominator we can separate the APE into a contribution from incompressibility (first

term on right-hand side (RHS) of (7.15)) and contributions from compressibility (second and

third terms on RHS of (7.15)).

Figure 7.4 shows density profiles for a column in the Barents Sea, with three areas repre-

senting different contributions. In this diagram we can approximate

APE ≈ g · δV0 · [A + B + C] . (7.16)

Here area A represents the first term on the RHS of (7.15), area B represents the second term

on the RHS of (7.15), and area C represents the third term on the RHS of (7.15).
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This figure shows that typical density differences between waters in the Barents Sea and

water from the reference state are of the order of 2kg/m3. The vertical acceleration, or

reduced gravity, is then equal to

∂w

∂t
= g · ∆ρ

ρ
≈ 0.02m/s2. (7.17)

Assuming a typical boundary current speed is of the order of 0.1m/s, then the time needed

to gain this velocity from a stationary position is 5 seconds, which is equivalent to vertical

sinking of only 0.5m. Therefore a typical water parcel in the Barents Sea would only have

to sink 0.5m to reach the boundary current speed, in the absence of turbulence and mixing.

It should be noted that the density difference between the Barents Sea water mass and the

reference state will reduce during sinking, although this is insignificant in the initial 0.5m of

sinking.

Figure 7.5a shows a horizontal map of APE at 30 metres depth using this definition, and

figure 7.5b shows only the compressibility contribution (B+C). We can see that the compress-

ibility gives a significant contribution to the values of APE at the surface in the Barents Sea.

Compressibility of seawater is largest for cold and fresh water so this an important contribu-

tion for Arctic Ocean water. The coldest and freshest water is the river water on the Siberian

shelves, however compressibility has little effect on the APE of this water mass as it is very

close to its stable depth at the surface.
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Figure 7.4: Profiles of ρs(z′),ρc
s(z

′) for a column in the Barents Sea, and ρo(z′) for an averaged

area in the central Arctic Ocean. The APE of the water parcel at depth z is approximately

g · δV0 · [A + B + C]. Area A represents the contribution from incompressibility. Areas B +C

represent the contributions from compressibility.
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A

B

Figure 7.5: (A) Definition 3 and (B) compressibility contribution of APE (J/m3) at a depth

of 30 metres.
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7.4 Available Potential Energy balance

In this section we look at energy conservation laws, and formulate a balance by listing

conversion terms for losses and gains of APE.

7.4.1 Conservation laws

Water parcels in the ocean are subject to advection and diffusive mixing. Here we aim to

determine whether the APE is conserved under these processes.

The APE has been defined as the work done in letting a water parcel sink adiabatically

to its stable depth in the reference column. However a water parcel can take any number

of pathways from its original position on the continental shelf to the deep basin. In the

following consideration we determine whether the work done in letting the water parcel sink

is independent of its pathway through the ocean, whereby we assume there is no mixing that

affects the potential temperature and salinity of the water parcel.

We compare two pathways, which are shown in figure 7.6. The first is the original pathway

in our definition of APE, whereby the water parcel moves across to the reference column

(ρo(z)) at depth z and is allowed to sink to its stable depth zo(ρ̄). In the second pathway the

water parcel first sinks in the original column (ρs(z)) to depth zo(ρ̄), before moving across to

the reference column.

Up to now we have ignored the work done against the horizontal pressure gradient in

moving across from the original column to the reference column. Defining the pressure profiles

in the shelf and reference columns as Ps(z) and Po(z), the work (per unit volume) done in

moving a water parcel from the original column to the reference column at depth z is given
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Figure 7.6: Two pathways for water parcel to reach stable depth in reference column. The

first pathway (as used in APE definition) crosses to reference column first, and then sinks to

stable depth. The Second pathway sinks in shelf column first, and then crosses to reference

column.

by

WP = [Ps(z)− Po(z)] · δV0 ·
[

1
1 + α(z)

]
. (7.18)

The last factor on the right-hand side is negligible, as α(z) (defined in (7.11)) is of the order of

10−3, and is therefore ignored in the following analysis. The work done on the first pathway

is then equal to the sum of the APE of the water parcel and the work done against the

horizontal pressure gradient at depth z, which is given by

W1 = g

∫ zo(ρ̄)

z

[
ρc

s(z
′)− ρo(z′)

]
· δV0 · dz′ + [Ps(z)− Po(z)] · δV0. (7.19)
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The corresponding expression for the work done on the second pathway is given by

W2 = g

∫ zo(ρ̄)

z

[
ρc

s(z
′)− ρs(z′)

]
· δV0 · dz′ + [Ps(zo(ρ̄))− Po(zo(ρ̄))] · δV0 (7.20)

The last term on the right-hand side of (7.20) can be rewritten using the hydrostatic equation

for pressure as

[Ps(zo(ρ̄))− Po(zo(ρ̄))] · δV0 = [Ps(z)− Po(z)] · δV0 + g

∫ zo(ρ̄)

z

[
ρs(z′)− ρo(z′)

]
· δV0 · dz′.

Substituting this into equation (7.20) gives

W2 = g

∫ zo(ρ̄)

z

[
ρc

s(z
′)− ρo(z′)

]
· δV0 · dz′ + [Ps(z)− Po(z)] · δV0, (7.21)

which is equal to the work done on the first pathway. The second pathway has been chosen

arbitrarily, which implies the work done is independent of the pathway of the water parcel,

as long as we assume there is no mixing.

Therefore in this case APE is conserved under advection if we take into account the changes

of APE due to vertical motion, and any work done against horizontal pressure gradients. The

total work done in moving the water parcel is available for conversion to kinetic energy (KE)

as along any pathway dx

dKE

dx
= ρ · v · dv

dx
· δV0 (7.22)

= ρ · v · dv

dt

dt

dx
· δV0, (7.23)

which is equal to a force F = ρ ·dv/dt · δV0. Therefore any change in KE is equal to the total

work done

δKE =
∫

Fdx, (7.24)

where the KE here includes the large scale kinetic energy of the flow plus any losses to internal

energy of the fluid due to turbulence. This leads to the following conservation law for APE
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following a water parcel (ignoring work against viscosity)

δAPE + δKE + WP = 0, (7.25)

which is equivalent to Bernoulli’s law (eg. Gill 1982) as Po(z) is constant.

Next we look at conservation of APE under horizontal mixing, starting for a simple case

with a linear equation of state. We compare the APE of two adjacent water parcels, with

densities ρ1 and ρ2, that are both at depth z before and after they mix with each other,

assuming that there are no other exchanges occurring. The original amounts of APE are

given by (ignoring changes in volume)

APE1 = g

∫ zo(ρ1)

z

[
ρ1(z′)− ρo(z′)

]
· δV0 · dz′, (7.26)

APE2 = g

∫ zo(ρ2)

z

[
ρ2(z′)− ρo(z′)

]
· δV0 · dz′. (7.27)

Assuming ρ1 < ρ2 the densities at depth z of both water parcels after mixing using a linear

equation of state will be ρ1 − dρ and ρ2 + dρ. These changes will affect the stable depth of

the water parcels in the reference column and also the entire density profile from the original

depth to the stable depth. The new density profiles are given by ρ1(z) and ρ2(z), which leads

to the following amounts of APE after mixing

APE1 = g

∫ zo(ρ1+dρ)

z

[
ρ1(z′)− ρo(z′)

]
· δV0 · dz′, (7.28)

APE2 = g

∫ zo(ρ2−dρ)

z

[
ρ2(z′)− ρo(z′)

]
· δV0 · dz′. (7.29)

The changes in APE of both water parcels, APE1 − APE1 and APE2 − APE2, do not

necessarily compensate as zo is a nonlinear function of ρ. This can be seen in the (red)

reference density profile in figure 7.7. Also in the case of a nonlinear equation of state

the density profiles ρ(z) and ρ(z), representing the changes in density with depth due to

adiabatic changes in temperature and pressure, are very nonlinear. An example showing that
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the changes in the APE of two water parcels do not compensate during horizontal mixing is

given in figure 7.7. Here the changes in density of both water parcels dρ compensate, whereas

the gain in APE of water parcel 1 (area A) is not equal to the loss in APE of water parcel 2

(area B).

Figure 7.7: Density profiles of two mixing water parcels. Area A represents the APE gained

by water parcel 1 due to mixing, and area B represents the APE lost by water parcel 2 due to

mixing.

The density profiles of the water parcels in figure7.7 have been calculated using the fol-

lowing linear equation of state

ρ(z) = αT + βS + γz + δ, (7.30)

where α, β, γ, δ are constants. For the calculation of the reference density profile the temper-
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ature and salinity in this equation are replaced by T = To(z) and S = So(z), which are the

properties at each depth in the reference column. Using this equation the change in density

due to mixing of heat and salt is given by

dρ = αdT + βdS. (7.31)

The change in APE due to mixing for the first water parcel becomes

∆APE1 = g

∫ zo(ρ1)

z
dρ · δV0 · dz′ + g

∫ zo(ρ1+dρ)

zo(ρ1)

[
ρ1(z′) + dρ− ρo(z′)

]
· δV0 · dz′.

This can be rewritten using equation (7.30) as

∆APE1 = g

∫ zo(ρ1)

z
[αdS + βdT ] · δV0 · dz′ (7.32)

+ g
[
zo(ρ1 + dρ)− zo(ρ1)

]
(αT1 + βS1)δV0

− g

∫ zo(ρ1+dρ)

zo(ρ1)

[
αTo(z′) + βSo(z′)

]
· δV0 · dz′.

If dρ is an infinitesimally small change, and using the fact that zo(ρ) is a continuous function,

the third term on the right-hand side can be approximated by

g
[
zo(ρ1 + dρ)− zo(ρ1)

]
(αTo(zo(ρ1)) + βSo(zo(ρ1))) · δV0 · dz′ +O(dρ · dzo). (7.33)

This term then approximately cancels out the second term on the right-hand side of (7.32) as

αT1 + βS1 − αTo(zo(ρ1))− βSo(zo(ρ1)) = 0, (7.34)

which is equivalent to the requirement that the density of the water parcel and the reference

column are equal at the stable depth zo(ρ1). Considering only the first term on the right-hand

side of (7.32), the changes in APE of water parcels 1 and 2 will only cancel out if the stable

depths of the two water parcels are equal (zo(ρ1) 6= zo(ρ2)). Even when considering all three

terms in the right-hand side of (7.32) these changes do not necessarily compensate.
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Therefore even using a linear equation of state mixing can create or destroy APE, meaning

there is no conservation law possible. In the next section we look at the contribution of mixing

to APE in a fixed volume, which can become relatively large. This is due to the fact that it

is not only mixing on the boundaries that affects the total APE of the volume of water, but

also (especially) mixing within the volume that can create or destroy APE.

7.4.2 Conversion terms

Here we identify terms for losses and gains of APE. The APE of a fixed water parcel can

change due to air-sea fluxes, such as heating, cooling, precipitation, evaporation. The APE

can also be converted into kinetic energy (KE) during sinking, however not all APE is turned

into large scale ocean currents as some of the KE is quickly lost as turbulence due to bottom

friction. Another conversion term is the loss, or gain, of APE due to mixing with neighbouring

water masses. The APE of a fixed volume also changes due to advection. Therefore for a

volume V

∫ ∫
V

∫
∂APE

∂t
dV +

∫ ∫
V

∫ [
u

∂APE

∂x
+ v

∂APE

∂y
+ w

∂APE

∂z

]
dV (7.35)

= C(FF,APE) + C(HF, APE)− C(APE,KE)− C(APE,MX), (7.36)

where the terms C(FF,APE), C(HF, APE) are the conversion to APE from freshwater and

heat fluxes, and the terms C(APE,KE), C(APE,MX) are the conversion of APE to kinetic

energy and mixing. The advection terms can be written as fluxes through the boundaries b

using the divergence theorem and the continuity equation

∫ ∫
V

∫ [
u

∂APE

∂x
+ v

∂APE

∂y
+ w

∂APE

∂z

]
dV =

∫ ∫
b
APE u ndb = C(FL,APE), (7.37)

where n is the vector normal to the boundary, and C(FL,APE) is the conversion to APE

from fluxes through the boundaries. If we assume the ocean is in a steady state the conversion
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terms must balance

−C(FL,APE)+C(FF,APE)+C(HF, APE)−C(APE,KE)−C(APE,MX) = 0. (7.38)

In the next sections we derive expressions for the contributions from the air-sea fluxes and

kinetic energy to APE.

7.4.3 Surface forcing

Fluxes of heat and freshwater at the surface of the ocean cause changes in density, and

therefore APE, in the surface layer. The process in the case of a loss of APE is represented

in figure 7.8. This shows that any change in density (due to air-sea fluxes or mixing) affects

the entire density profile in the APE diagram. Let (P − E) be the rate of precipitation

minus evaporation per unit surface area in units of m/s. The original amount of salt in the

surface box (∆x,∆y, ∆z) is S0ρ(T0, S0)∆x∆y∆z, where T0, S0 are the surface temperature

and salinity. The mass of the freshwater added to the surface box in a time period ∆t is

(P − E)ρ(T0, 0)∆t∆x∆y. If the original amount of salt is distributed over the new mass of

the surface box ρ(T0, S0)∆z∆x∆y + (P − E)ρ(T0, 0)∆t∆x∆y, then the new salinity S1 is

S1 =
S0ρ(T0, S0)∆z

[ρ(T0, S0)∆z + (P − E)ρ(T0, 0)∆t]
. (7.39)

Let Q be the net heat flux into the ocean per unit surface area in units of W/m2. If the

energy from the heat flux is distributed over the depth of the surface box ∆z then the new

temperature is

T1 = T0 + ∆t
Q

cvρ(T0, S0)∆z
, (7.40)

where cv is the specific heat of seawater (≈ 4200J/(kg◦C)).

The rate of change of APE due to separate contributions from surface heat and freshwater
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fluxes in W/m3 are given by

C(HF, APE) =
g

∆t

[∫ z

zo(ρ(T1,S0))
(ρ(T1, S0)− ρo)δV0dz′ −

∫ z

zo(ρ0(z))
(ρ0 − ρo)δV0dz′

]
, (7.41)

C(FF,APE) =
g

∆t

[∫ z

zo(ρ(T0,S1))
(ρ(T0, S1)− ρo)δV0dz′ −

∫ z

zo(ρ0(z))
(ρ0 − ρo)δV0dz′

]
. (7.42)

Figure 7.9 shows the gain in APE due to separate contributions of annual average freshwater

and heat fluxes. There is a great deal of heat lost to the atmosphere as the inflowing AW

enters the Arctic in areas with no ice coverage. This creates a lot of APE in the Barents Sea.

Although the Barents Sea and the Kara Sea are areas with a large amount of ice formation the

net annual effect is a loss of APE, indicating that freshwater increase from ice melt dominates

over the brine rejection associated with ice formation.
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Figure 7.8: Loss of APE due to surface forcing represented by area B. Area C represents the

remaining APE.
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B

Figure 7.9: Annual average gain of APE (W/m3) from (a) Surface heat flux and (b) P-E.
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Although the effect of temperature on density is very small at low temperatures, this

increases with pressure (thermobaric effect). This is seen in figure 7.10 which shows contours

of isopycnals in a temperature-salinity diagram at two pressure levels, where the slope of

the isopycnals is larger at higher pressure. Therefore cooling at the surface can have a large

impact, as the effect on density increases as water parcels sink towards their stable depth.

Figure 7.10: T-S diagram with isopycnals at pressure 0db and 2000db.

7.4.4 Kinetic Energy

A water parcel converts APE to KE when it moves vertically towards its stable depth.

Vertical movement in the opposite direction converts KE to APE. An example of conversion
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of APE to KE is given in figure 7.11. As the water parcel sinks it can mix with other water

parcels which changes its density and the amount of remaining available energy.

The rate at which APE is converted to KE in W/m3 is given by

C(APE,KE) = g
∆z

∆t
(ρ− ρo)δV0 = gw(ρ− ρo)δV0, (7.43)

Therefore conversion of APE to KE takes place due to sinking of relatively heavy water and

rising of relatively light water.

7.4.5 Mixing

Water parcels in a volume can lose or gain APE due to diffusive mixing of tracers. The

amount of energy lost during conversion of APE to KE due to mixing with other water parcels

in an example of a sinking process is shown in 7.11. The rate at which this happens is given

by

C(APE, V MX) = w
∂APE

∂z
− C(APE,KE). (7.44)

The total mixing term is calculated as a residual by assuming a steady state.

C(APE,MX) = C(FL, APE) + C(FF,APE) + C(HF, APE) (7.45)

− C(APE,KE).
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Figure 7.11: Vertical movement of a water parcel leading to conversion of APE to KE (rep-

resented by area A) and a loss of APE to vertical mixing (represented by area B). Area C

represents the APE remaining after the vertical displacement.



Chapter 8

Available Potential Energy -

application

8.1 Introduction

In this chapter we apply the energetics theory from chapter 7 to calculate the energy

balances for the continental shelf regions of the Arctic. We focus on the amount of APE

gained on the shelves by the throughflow of Atlantic Water and Pacific Water due to air-

sea fluxes. We have already seen that the largest amount of APE on the shelves is in the

Barents, Laptev, East Siberian and Chukchi Seas. The areas that directly receive AW and

PW, the Barents and Chukchi Seas, are dominated by large negative surface heat fluxes due

to relatively ice free areas, which increase the APE of the inflowing water.

First we look at the energetics of the Barents Sea region in order to determine the source

of energy for the increase in PE later available for driving the boundary current. Then we

look at the similar problem in the Chukchi Sea area, in order to determine what energy is

172
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available for driving the meso-scale eddies seen offshore.

The conversion of APE to KE is a difficult term to calculate in ocean models. This term

is generally several orders smaller than other conversion terms, and has been shown to be

very sensitive to the balance of horizontal and vertical viscosity coefficients (Oort et al 1994).

Energy distributions, and conversions of APE to KE in regional models of the Arctic Ocean

have been calculated by Uotila et al (2004), who use the energy definition (7.3). Although

this is a different definition to our regional definition of APE (7.13), the conversion term

C(APE,KE) is the same, and is given by (7.43). The sign of this conversion term depends

on the reference state and on the vertical velocity field, which can be patchy in ocean models.

In most models Uotila et al (2004) surprisingly find conversion of KE to APE all along the

Eurasian Basin slope.

In the following sections we also look at fluxes of KE through the boundaries of shelf

areas. In a steady state the sum of these fluxes C(FL, KE) gives the total increase of KE

inside the area. KE is defined as

KE =
1
2
ρ0(u2 + v2 + w2), (8.1)

and the term C(FL, KE) is given by

C(FL,KE) =
∫ ∫

b
KE u ndb, (8.2)

where b is the boundary.

8.2 Barents Sea region

Here we look at the APE balance in the areas around the Barents Sea. These areas

(A,B,C,D) are shown in figure 8.1. Tables 8.2 and 8.3 show the fluxes of APE and KE through
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Figure 8.1: Areas (A,B,C,D) for APE balance in Barents Sea region. Points on Barents Sea

boundaries: I (ρncc),II ρnac ,III ρbar.

the boundaries of these areas. Generally the fluxes of KE are 2 or 3 orders of magnitude

smaller than fluxes of APE, and are relatively unimportant in a full energy balance.

The Barents Sea is represented by area A. A large amount of APE, due to the salty AW,

flows into this area from the west. As seen from table 8.2, the APE on the western boundary

already has a large amount of APE, compared to the net gain in the Barents Sea, relative to

the Arctic Ocean. This net gain is dominated by the heat flux contribution. In the Barents

Sea this water gains energy from the heat flux contribution, adding approximately 50% of

the original amount flowing in. The majority of this then flows out to the east into the St

Anna Trough (area C). There is a very small negative contribution from C(APE,KE) in
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Area A B C D

C(FL,APE) -1123 680 1102 1000

C(HF, APE) 3455 661 241 43

C(FF,APE) -2146 -1189 -594 -607

C(APE,KE) -7 -1 6 -1

C(APE, V MX) -524 152 370 -30

C(APE,MX) 717 1 373 467

Table 8.1: Conversion terms of APE (in 106 W) in Barents Sea areas.

Area APE KE

A West 2130 3.6

South 0 0

East -2683 -5.4

North -561 -0.9

Net Gain 1123 2.7

Area APE KE

B West 2600 5.9

South 561 0.9

East -611 -4.7

North -1870 -1.4

Net Gain -680 -0.7

Table 8.2: Fluxes of APE and KE (in 106 W) into Barents Sea areas A and B.
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this area, which is due to the uphill pathway towards the St Anna Trough. The fluxes of KE

show a significant increase in KE, which occurs due to the start of the boundary current in

the eastern part of the Barents Sea (see table 8.2).

The APE of water masses at 30m depth on the western boundary of the Barents Sea

are shown in figure 8.2, which also includes a water mass on the eastern boundary that has

been transformed in the Barents Sea. These water masses correspond to points I,II and III in

figure 8.1. The water that flows into the Barents Sea originates from the Norwegian Coastal

Current, and is indicated by ρncc. This water is lighter, and has less APE than the water

further offshore in the North Atlantic Current that continues towards Fram Strait. This water

mass is indicated by ρnac. At the other side of the Barents Sea the water from the NCC has

gained APE due to the strong cooling. The difference in APE of BSW and the AW flowing

towards Fram Strait is small. However the particle trajectories in chapter 6 demonstrate that

all the APE of the BSW will make it into the Arctic Ocean, whereas a large part of the energy

of the AW flowing towards Fram Strait will recirculate back into the North Atlantic as the

AW reaches the Arctic front.

The Area on the Barents Sea slope (area B of figure 8.1) receives the part of AW that has

made it through Fram Strait through the western boundary. The amount of APE associated

with this flow is still significant, of the same order as the Barents Sea inflow. Within area B

there is a large loss of APE due to the freshwater flux contribution, which loses almost 25%

of the original amount flowing in. The remaining energy mainly exits through the northern

boundary. This is due to a branch of AW that follows the deeper topography, flowing offshore

before joining the boundary current on the Kara Sea slope. Part of this water also recirculates

along the coast as seen in the anti-cyclonic flow feature in chapter 3.

In this box there is a negative contribution from C(APE,KE), which agrees with the
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Figure 8.2: Density profiles for water masses at 30m on the Barents Sea boundaries. Water

masses ρncc, ρnac, ρbar refer to points I, II, III in figure 8.1

results from Uotila et al (2004). The conversion of KE to APE is due to relatively light water

found at the bottom of the current. This water is below its stable depth and therefore can

release APE by rising. The APE on a section across the slope through area B is shown in

figure 8.3A. There is a layer of APE in the upper part of the current due to relatively heavy

AW, and a layer of APE in the lower part of the current due to the depressed isopycnals

seen in figure 4.6B. Figure 8.3B shows the C(APE,KE) term on the same section, which

indicates that the whole current is sinking on the slope. However the increase in APE due to

the sinking of the light water at the bottom dominates over the decrease in APE due to the

sinking of the heavy water at the top.
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A

B

Figure 8.3: Model longitude section (i = 250) (A) APE in J/m3.(B) C(APE,KE) in W/m3.
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The depression of the isopycnals towards the coast at the bottom of the current is an

adjustment that is necessary for the strength of the flow to decrease with depth, and is

probably set-up by transient features during the spin-up phase of the model. Figure 8.4

shows the dynamic height, D̄, referenced to the offshore Arctic reference state

D̄(x, y, z) = η(x, y) +
1
ρ0

∫ 0

z

[
ρ(T (z′), S(z′), z′)− ρo(z′)

]
dz′. (8.3)

The relatively high pressure region at the slope indicates a positive offshore pressure gradient,

and implies large alongshore geostrophic flow. The pressure on the slope slowly decreases with

depth, which implies the strength of the geostrophic flow decreases with depth.

Figure 8.4: Dynamic height D̄ referenced to mean offshore state along model longitude section

(i = 250).

The St Anna Trough (area C) receives a large amount of APE from the Barents Sea (see
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Area APE KE

C West 2229 5.1

South 214 0.3

East -101 0.4

North -1220 -9.4

Net Gain -1122 3.6

Area APE KE

D West 811 5

South 1225 9.4

East -1180 -41.0

North 161 0.3

Net Gain -1017 23.6

Table 8.3: Fluxes of APE and KE (in 106 W) into Barents Sea areas C and D.

table 8.3), and also some from the Kara Sea through the southern boundary. Approximately

half of the APE received from the Barents Sea is lost in this relatively small area. There is

a positive C(APE,KE) due to sinking of heavy water along the eastern part of the trough,

and a large loss to mixing. This mixing coincides with a large gain in KE, which is due to

the formation of the boundary current. There is also a loss of APE due to the contribution

from the freshwater flux. The remaining APE flows northwards with the boundary current

into area D.

The area on the Kara Sea slope (area D) receives APE from the St Anna Trough, from

the AW along the Barents Sea slope, and also from the offshore branch of AW which reaches

the slope. There is another large loss of APE here, which is partly due to the contributions

from the freshwater flux and mixing. This is also a region of large sinking of the BSW, and

there is a large increase of KE indicating that APE is being converted to KE. However the

C(APE,KE) term is negative overall, as is the case along the Barents Sea slope. Again this

is due to the whole of the current sinking on the slope, whereby the increase in APE due to

light water sinking at the bottom of the current dominates over the decrease in APE due to
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heavy water sinking at the top of the current.

The energetics in this region (A+B+C+D) of the Arctic are dominated by the inflowing

AW. This water already has a large amount of APE relative to the Arctic Ocean interior.

However only a small part of this water is able to pass through the Arctic front at Fram Strait

due to geostrophy. The water that does make it through Fram Strait loses a large amount

of APE on the Barents Sea slope as it sinks and is freshened by the surface freshwater flux,

which dominates over the cooling from the surface heat flux. The AW that flows through the

Barents Sea gains a large amount of APE as it is cooled by the loss of surface heat, which

dominates over the surface freshening. This gain in APE is then converted to KE as the

newly formed BSW sinks along the boundary of the St Anna Trough, forming the boundary

current. As all the water flowing through the Barents Sea makes it into the Arctic Ocean,

while a large part of AW flowing through Fram Strait recirculates, the Barents Sea pathway

acts as a short circuit for AW into the Arctic Ocean via a boundary current.

A time series of the gain in APE from the air-sea fluxes in the Barents Sea for the second

year of the OCCAM model simulation is shown in figure 8.5A. The maximum contributions of

C(FF,APE) and C(HF, APE) occur in winter, with a minimum loss from the freshwater flux

and a maximum gain from the heat flux. This indicates the effects of ice melt in the prescribed

air-sea fluxes. In the summer there is a net loss from the air-sea fluxes, which coincides with a

maximum loss from the freshwater flux. This indicates the effects of warming and precipitation

in the prescribed air-sea fluxes. The maxima in the gain in APE correspond to the time of

maximum AW transport into the Barents Sea. A time series of the net volume fluxes through

the western boundary of the Barents Sea is shown in figure 8.5B. Ingvaldsen et al (2004)

have shown from observations that this variability is driven by changes in wind stress, which

mostly cause an increase of transport in winter. These high transports then provide more



CHAPTER 8. AVAILABLE POTENTIAL ENERGY - APPLICATION 182

warm AW to melt ice in the Barents Sea, promoting heat loss to the atmosphere, which causes

the large APE increase. This cooling in the Barents Sea could be crucial for the formation of

the boundary current, by reducing the front between BSW and the Arctic Ocean interior.
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A

B

Figure 8.5: Time series of (A) Conversion terms C(FF,APE) and C(HF, APE) (B) Net

volume fluxes through western boundary of Barents Sea.
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8.3 Bering Strait region

Here we look at the APE balance in the areas around the Bering Strait. These areas

(E,F,G,H) are shown in figure 8.6. Table 8.4 shows the balance terms from chapter 7 in these

areas, and tables 8.5 and 8.6 show the fluxes of APE and KE through the boundaries of these

areas. In the energy balance for this region we have used the reference state of the Canadian

Basin, as this is the basin where the BSO water masses flow off the shelf. The Canadian Basin

reference state is lighter than the Eurasian Basin reference state, and therefore the BSO has

more energy relative to the Canadian Basin.

Figure 8.6: Areas (E,F,G,H) for APE balance in Bering Strait region. Points in Chukchi and

East Siberian Seas: IV,V.

Figure 8.7 shows the APE for a water parcel at 30m depth in the Chukchi Sea. This water
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Area E F G H

C(FL,APE) -243 127 236 209

C(HF, APE) 71 17 23 4

C(FF,APE) 81 -109 -65 -60

C(APE,KE) 1 1 0 0

C(APE, V MX) 65 -5 1 -14

C(APE,MX) -157 39 193 169

Table 8.4: Conversion terms of APE (in 106 W) in Bering Strait areas.

Area APE KE

E West -104 -0.1

South -365 -1.5

East 0 0

North 226 6.3

Net Gain 243 -4.7

Area APE KE

F West 7 6.5

South 16 -58.8

East 104 0.1

North 0 0

Net Gain -127 52.2

Table 8.5: Fluxes of APE and KE (in 106 W) into Bering Strait areas E and F.
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Area APE KE

G West -126 -1.0

South -3 0

East 0 0

North 365 1.5

Net Gain -236 -0.5

Area APE KE

H West -295 -16.2

South 126 12.9

East 394 1.0

North -16 58.8

Net Gain -209 -56.5

Table 8.6: Fluxes of APE and KE (in 106 W) into Bering Strait areas G and H.

parcel corresponds to point IV in figure 8.6. The APE of this water parcel relative to the full

Arctic reference state is represented by area A in figure 8.7, while the APE relative to the

Canadian Basin is represented by areas A+B in figure 8.7, which is over double the former

amount. Also shown is the APE for a water parcel (point V) in the East Siberian Sea, which

consists of very fresh and cold water. This water is below its stable depth in the reference

state and has the possibility to rise, its APE is represented by area C in figure 8.7.

The Chukchi Sea is represented by areas E and F. A large amount of APE, due to the

relatively salty PW, flows into area E from the model north, from the Bering Strait. This

water gains energy from the heat and freshwater flux contributions, adding approximately

67% of the original amount flowing in. This energy then flows out through the western and

southern boundaries. In the northern part of the Chukchi Sea (area F) there is a large loss

of APE, and a smaller gain of KE, which coincides with the region where the BSO flows off

the shelf. In chapter 6 we have seen particles here flowing offshore in eddies (see figure 6.19).
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Figure 8.7: Density profiles for water masses at 30m in the Chukchi Sea and East Siberian

Sea. ρo/ρcan are mean total Arctic/Canadian Basin densities, ρchuk, ρsib are densities of

water parcels on Chukchi/Siberian shelves. ρchuk, ρsib correspond to pionts IV and V in

figure 8.6. This figure shows it is important to take into consideration which ocean basin the

water parcel is likely to flow into. The energy of a Chukchi Sea water parcel, which is more

likely to flow into the Canadian Basin, has only little energy referenced to the entire Arctic

(area A), but significantly more energy referenced to only the Canadian Basin (areas A+B).
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However the amount of C(APE,KE) is only small, indicating the APE is lost to mixing

rather than sinking. A section of APE across the slope of the Chukchi Sea is shown in figure

8.8, which shows the APE is lost immediately as the BSO flows towards the slope.

Figure 8.8: APE (J/m3) along model latitude section on Chukchi Sea slope (j = 360)

The East Siberian Sea (area G) receives a large amount of APE through the northern

boundary. This is due to the relatively salty BSO water that has been made saltier and

colder in the Chukchi Sea. The East Siberian Sea is dominated by cold and fresh river water.

The large loss of APE to mixing indicates mixing between the BSO and the river water. The

BSO is above its stable depth, and the river water is below its stable depth, therefore mixing

destroys the energy of both water masses. The remaining energy, which has the properties

of the river water after mixing, flows through the western boundary off the shelf. There it

has the possibility to create instabilities, generating eddies, as it meets the relatively dense
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Figure 8.9: APE (J/m3) along model latitude section on East Siberian Sea slope (j = 280)

surface water of the boundary current. A section of APE across the slope of the East Siberian

Sea is shown in figure 8.9, which shows the APE flowing off the shelf near the surface. This

shallow energy is the major inflow to area H, which also has a large loss of energy, with the

remainder flowing out westwards in the Trans-Arctic drift.

A time series of the gain in APE from the air-sea fluxes in the eastern Chukchi Sea (area E)

for the second year of the OCCAM model simulation is shown in figure 8.10A. The freshwater

flux contribution dominates over the heat flux contribution, with large positive contributions

of C(FF,APE) in winter. This indicates the effect of ice formation in the prescribed model

air-sea fluxes. A time series of the net volume fluxes through the northern boundary of the

Chukchi Sea is shown in figure 8.10B. The maxima in the gain in APE correspond to the time

of minimum PW transport into the Chukchi Sea.
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A

B

Figure 8.10: Time series of (A) Conversion terms C(FF,APE) and C(HF, APE) (B) Net

volume fluxes through northern boundary of Chukchi Sea.



Chapter 9

Discussion and conclusions

In this thesis we have discussed the circumpolar boundary current in the Arctic Ocean,

as seen in the OCCAM global ocean model. In particular we have used the model results

to understand the dynamics of the boundary current through a study of sources and sinks

of energy, and have tried to evaluate the effects of buoyancy forcing due to air-sea fluxes on

the continental shelves. We were also able to calculate and visualize pathways of the main

water masses in the boundary current using particle tracking techniques, helping to find the

formation region and the downstream extent of the boundary current.

In reality, the boundary current has been observed at a number of sites along the Arctic

continental slopes (Newton and Sotirin 1997, Schauer et al 1997, Woodgate et al 2001).

Historically it was thought that the boundary current started as Atlantic Water entered the

Arctic Ocean through Fram Strait (Aagaard 1989), however recently it has been shown that

another source, that may be more important, is another branch of the AW inflow that flows

through the Barents Sea and enters the Arctic Ocean further along the continental slope

(Rudels et al 1994, Schauer et al 1997).

191
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Although there has been improvement in observational evidence of the boundary current

recently (eg. Woodgate et al 2001), the Arctic is still a sparsely observed region. Therefore it is

still unclear how the boundary current is forced. Up to now most studies (eg. Woodgate et al

2001, Nazarenko et al 1998, Uotila et al 2004) have mentioned the Neptune effect (Holloway

1987) as a potential driving force. This effect is based on theory of statistical mechanics,

whereby an along-shore current is generated along depth contours as off-shore meso-scale

eddies interact with the shelf break. The Neptune effect can only occur in ocean models if

the grid-box is smaller than the Rossby radius (5-10km for the Arctic), allowing the models

to resolve meso-scale eddies. However even most regional models of the Arctic have grid-

boxes that are several times the size of the Rossby radius, and therefore parameterizations

of the Neptune effect have been used (eg. Nazarenko et al 1998). In this paramaterization

the traditional eddy-diffusion, which damps the velocity out at the boundaries, is replaced

in order to generate along-shore flows at the shelf breaks. This leads to increased cyclonic

circulation in the Arctic along depth contours and helps force Atlantic Water into the Arctic

Ocean. However Zhang and Zhang (2001) find that although the parameterization improves

the strength of the boundary current, it causes incorrect stratification of the Arctic Ocean

due to increased heat transport into the Arctic Ocean associated with the enhanced inflow of

AW. They conclude that producing the correct stratification is very important in simulating

the correct cyclonic circulation, something which is aided by the inflow of dense water from

the Barents Sea.

Here we have used results from a recent two year run of the high-resolution (1/8◦× 1/8◦)

OCCAM global ocean model (Aksenov and Coward 2001). While Aksenov and Coward

(2001) have reported on the in- and out-flows through the various straits in the Arctic, here

we have focused on the boundary current. It is important to note that the model was forced
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by surface relaxation to the Levitus 94 climatology (Levitus and Boyer 1994) for heat and

freshwater fluxes, and by ECMWF wind-stresses calculated from the period of 1986-1988

(Barnier et al 1995). As measurements are sparse in the Arctic Ocean, the full effects of

regional and seasonal buoyancy fluxes due to processes such as ice formation may be missing

in the air-sea fluxes used to force the model. These processes might be better represented

by the inclusion of an explicit sea-ice model, as especially the heat and freshwater fluxes in

the Barents Sea show little effect of ice processes, while this is known to be an important

area of sea-ice formation (Middtun 1985). Another short-coming of the model is the short

integration period, and the consequent use of wind-stresses from a limited period. The Arctic

Ocean is subject to significant variability (the Arctic Oscillation) affecting the wind-driven

flow at periods of 5-7 years, therefore this simulation only provides us with a snap-shot of

the Arctic Ocean circulation during one phase of the oscillation. However the model seems

to provide a realistic flow field at very high-resolution, and can be used to study mechanisms

behind flow features. We believe that this is the first model to produce a continuous boundary

current following the continental slope, as a very high-resolution grid is needed to resolve the

small Rossby radius at high latitudes. The model does not include a parameterization of

the Neptune effect, therefore this effect can only occur due to the resolved eddy-field in the

model.

The model shows many of the known and suspected features of the Arctic Ocean circu-

lation, such as the inflow of Atlantic Water along the eastern boundary of the Norwegian

Sea, strong flows near Fram Strait, an anti-cyclonic wind-driven gyre in the Beaufort Sea, a

boundary current around most of the Arctic Ocean, inflow of Pacific Water through Bering

Strait, a complex eddy-field north of Alaska, the Trans-Arctic Drift, and the East Greenland

Current carrying water from the Arctic into the Atlantic. One interesting feature is that the
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horizontal model grid-box size is approximately 13km, which means the Rossby radius is not

quite resolved, however still a narrow boundary current is produced. This is possibly the

result of the low stratification of the Arctic Ocean, which will tend to result in barotropic

currents following contours of f/H in order to conserve potential vorticity. Therefore the

currents tend to be steered by topography, and depending on how they are formed, may have

a width determined by the scale of the topography. In this case a realistic boundary current

may be produced as long as the model resolves topography.

By studying the simulated velocity field we have traced the formation area of the boundary

current back to the Barents Sea. Here it appears that a major source of the energy of the

current is dense water that flows off the continental shelves. If water on the shelf becomes

denser than water at the same depth in the ocean interior it tends to flow off the shelf as a

density driven current (Shapiro et al 2003). The turbulent boundary current that is produced

tends to mix with surrounding water masses, before spreading out at a stable depth in the

ocean interior. Such behaviour has been observed on the Barents and Kara Sea shelf edges by

Schauer et al (1997), however it has not been reported before in modelling studies, probably

due to resolution limitations. It is known that such buoyancy fluxes can set up boundary

currents in primitive equation models, as reported by Fennel and Mutzke (1997), through the

initial propagation of Kelvin waves that set up a boundary current in their wake.

In order to determine if this mechanism occurs in the OCCAM model we have looked

at pressure fields following the continental slope at constant depths. This has lead to the

discovery of a continuous pressure gradient all around the Arctic Ocean continental slope

at depths of 201m and 355m, which are typical depths for the boundary current in the

model. Another interesting feature is that these along-shore pressure gradients extend into

the Atlantic Ocean, where the lowest pressures occur in the Cape Hatteras area, indicating a
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connection between the pressure fields of these two oceans. High values of pressure are found

outside of the Arctic, for example as the 201m depth contour reaches the Mediterranean,

however the values along the NW European shelf remain approximately constant before an

increase along the 201m contour as it crosses the Barents Sea. Here a dynamic height increase

of approximately 5cm is seen, which is equivalent to a pressure increase of 500 N/m2. A similar

picture is seen along the 355m contour, which enters the Artic through Fram Strait, with a

dynamic height increase of 5cm as the contour enters the St Anna Trough. We associate the

high pressure areas in the Barents Sea and the St Anna Trough with the formation of extra

dense water masses in the Barents Sea, and the sinking of these dense water masses down

the slope of the St Anna Trough into the Arctic Ocean. It is well known that in reality dense

water formation occurs in the Barents Sea through cooling, evaporation and ice formation

(Middtun 1985), although in the OCCAM model the dominant term contributing to dense

water formation appears to be cooling. This dense water formation will increase the pressure

at depth, explaining the results in the Barents Sea. As this water then tends to sink down the

St Anna Trough it will spread out, pushing other water masses away. This will be countered

by the inertia and the Coriolis force which will lead to a high pressure region, which explains

the pressure maximum in the St Anna Trough at 355m.

To further determine and visualize the extent of the boundary current we have developed

a time-dependent variant of an ”off-line” particle tracking technique, that was originally

introduced by Döös (1994) for time-independent calculations. A similar extension for time-

dependent trajectories has been previously published by Döös and de Vries (2001), however

this method was only applied to 2D idealized gyres. Here we have deduced the method

independently, and applied it to simulated 3D velocity fields from the OCCAM global ocean

model. We have also extended the method with a representation for the random diffusive
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effects that are experienced by water parcels in the real ocean, using the theory of Brownian

motion. The resulting probability distribution used to generate the random displacements is

a Gaussian, which is the solution of the 1D diffusion equation and is of the same form as the

eddy viscosity terms used in the momentum equations of the OCCAM model. Therefore we

chose to take the diffusion coefficient in the random displacements to be equal to the eddy

viscosity parameters of the OCCAM model, as this will lead to the particles being displaced

on the scale of the model sub-grid scale turbulence. This choice of the diffusion coefficient

may however not be the best choice for representing the dispersion of water parcels in the

real ocean, although our results show significant resemblance to the propagation of observed

features in the ocean.

A comparison of the time-independent, time-dependent, and diffusive time-dependent

methods has lead us to believe that the diffusive time-dependent trajectories are most consis-

tent with observations, especially the distributiom of Atlantic Water and Barents Sea water

in the boundary current. The time-dependent trajectories show AW is the dominant water

mass in the boundary current, however it has been observed that most of AW recirculates

within the Eurasian Basin along the Lomonosov Ridge (Schauer et al 1997), and that BSW

is the dominant water mass in the boundary current as it enters the Canadian Basin. This

distribution is better observed in the diffusive time-dependent trajectories.

We have shown pathways of the waters in the boundary current, and conclude that the

OCCAM model only has a weak true circumpolar boundary current. The boundary current

waters are severely affected by the wind-driven flow features in the Canadian Basin. The

Beaufort Gyre acts to trap water in the Arctic, while the Trans-Arctic drift and the Lomonosov

and Mendeleyev Ridges are responsible for diverting water offshore out of the boundary

current.
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There are two pathways for AW into the Arctic Ocean. One branch flows through Fram

Strait (total of 9.8Sv), but most of this branch recirculates due to the Arctic front, leaving

only 3Sv to flow eastwards along the Barents Sea slope. The other branch flows through the

Barents Sea, where it is cooled and freshened, forming Barents Sea Water (BSW). This water

mass has been found to flow through the southern part of the Barents Sea, where it gets

denser through cooling. The BSW, originally at depths of 10-200m on the shelf, eventually

sinks down the eastern boundary of the St Anna Trough. It enters the Arctic Ocean at depths

of up to 1000m as an eastward flowing boundary current, while it is seen to push the AW on

the Fram Strait pathway offshore. Approximately 3.5 Sv. of BSW enters the ocean interior

in this manner. Both AW and BSW are found to provide significant contributions to the

intermediate and deep waters of the Arctic Ocean.

The outflow rate of the diffusive time-dependent particles from the boundary current

into the Atlantic can be accurately described by a 1D advection-diffusion equation, where

the particles are advected at a speed of approximately 2.9cm/s and diffused at a rate of

1.3 · 109cm2/s. This large diffusion coefficient is caused by the Beaufort Gyre which traps

water masses for several circuits around the Canadian Basin. This confirms that diffusion is

caused by basin-scale features such as the Beaufort Gyre and the Trans-Arctic drift, while

the advection rate of almost 3cm/s corresponds to the propagation speed found for an extra

dense outflow from the Barents Sea found along the continental slope of the Canadian Basin

by McLaughlin et al (2002). We have also estimated that the bulk of changes in the Barents

Sea outflow will propagate into the North Atlantic on a time-scale of the order of 30 years,

while the strongest signal occurs after 10 years, indicating the time-scales on which changes

in the Barents Sea outflow will impact the deep convection regions in the Atlantic.

The particle trajectories of BSW confirm that dense water flows off the shelf in the St
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Anna Trough, where the boundary current starts. We therefore considered the potential

energy available to drive the flows down the slope and the boundary current. As OCCAM is

one of the first ocean models to simulate a realistic high-resoltion Arctic Ocean circulation,

there have been no studies yet on energetics of specific processes on the continental shelves and

slopes in this region, and we have found this requires a new approach. Potential Energy (PE)

is not an absolute quantity, so it is necessary to define it relative to a suitable reference state.

In the case of the atmosphere, Lorenz (1955) used a reference state in which the atmosphere

was adiabatically resorted so that it had the lowest possible value of PE. Then the Available

Potential Energy (APE) was defined as the potential energy difference between the two states.

Studies of the ocean energetics have used a reference state which is the lowest possible PE

state of the ocean (eg. Huang 1998), which is known in the literature as the classic definition of

APE, giving a single value for the total APE of the global ocean. However regional processes

in the Arctic are more likely to be affected by nearby water masses and their stratification.

Therefore we have defined the APE as the potential energy relative to the mean offshore

density structure in the Arctic Ocean interior. In a study of Arctic Ocean model energetics

by Uotila et al (2004) a reference state is chosen of the mean stratification for the whole model

domain using an approximation of the original APE definition, and the authors discuss depth-

integrated fields of APE. However for our purpose of finding the amount of available energy

for a water parcel to fall off the shelf and create a boundary current, it was necessary to use

a 3D field of APE, as a 2D field of depth-integrated APE creates a distorted view due to

changes in topography. We found that using the classic definition of APE with a reference

state in the deep offshore ocean basin did not give an accurate estimate for the amount of

energy of a single water parcel on the shelf. Therefore we included terms accounting for the

adjustment of the reference state, and the compressibility of sea-water, defining the APE of
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each water parcel as the work done by moving it from the original depth to its stable depth in

the reference column. We think this provides an accurate estimate of the amount of energy

available on the continenatal shelves and slopes for driving local currents in the Arctic Ocean.

The energetics in the Barents Sea region are dominated by the inflowing AW. We have

found that this water already has a large amount of APE relative to the Arctic Ocean interior.

However, as dicussed previously, only a small part of this water is able to enter the Arctic

Ocean on the Fram Strait branch even though there is enough energy available for the AW

to flood the Arctic basin. The currents in the Fram Strait region are very complicated

(Aksenov and Coward 2001), however it seems that a large branch of AW turns back towards

the Atlantic due to the strong Arctic Front between the warm Atlantic and the cold Arctic.

The flow through the Fram Strait is then prevented by geostrophy. Water is only able to

pass through the strait if the flow is dominated by bottom friction, which is more important

than the Coriolis force in shallow water, therefore there is only a small branch close to the

Spitzbergen coast that is able to enter the Arctic Ocean. The preferred route for AW to enter

the Arctic is via a friction dominated route through the Barents Sea, that therefore acts as

a short-circuit for AW into the Arctic Ocean. Through a study of the APE balance we have

found that there is approximately 2000 W of APE flowing into the Barents Sea associated

with AW. In the Barents Sea approximately 1000 W of energy is gained due to cooling by the

surface heat flux, which dominates over the effects of freshening from the surface freshwater

flux. The majority of this energy is lost as the newly formed BSW sinks along the boundary

of the St Anna Trough, while some remains to help counter turbulence further along the

boundary current. It is found that only a small part of this energy loss is due to conversion

to kinetic energy (KE), while the majority of the APE is lost due to turbulence and mixing.

We have found that the amount of potential energy available is of the order of 100-1000
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times greater than the kinetic energy in the boundary current, indicating that the conversion

process is very inefficient. This large difference has been reported on before in estimates of

global APE by Oort et al (1994), who find that there is 50 times more APE than KE in the

worlds oceans.

We have also looked at the APE on the Chukchi Sea shelf, where waters flow into the eddy-

rich region offshore. These eddies have been studied in the real ocean by D’Asaro (1988a,b),

and are thought to consist of waters from the Chukchi Sea, and formed by baroclinic instability

at the shelf break. Therefore we have investigated whether dense water formation plays any

role here. The Chukchi Sea is dominated by inflowing Pacific Water that gains a large amount

of energy in equal amounts from the air-sea fluxes of heat and fresh water. Part of this water

appears to flow off the shelf towards the Beaufort Sea, where there is a large loss of APE and

a large gain of KE. This coincides with eddying motions of simulated water particles as they

flow off the shelf, indicating that there may be instabilities that convert APE to KE as the

dense PW meets the very light Beaufort Sea surface water. Another part of the PW inflow

flows into the East Siberian Sea, where it loses most of its energy due to freshwater fluxes

associated with river inflow and mixing with fresh Siberian shelf water. The light Siberian

shelf water can be seen to flow off the shelf into the Makarov Basin, where it has the possibility

to create instabilities near the surface.

In conclusion, we have shown that dense water in the form of inflowing AW, and changes

in AW due to air-sea fluxes on the Barents Sea shelf, are important in providing energy for the

Arctic circumpolar boundary current. The fact that the sinking in St Anna Trough seems so

important, and that the current slowly sinks as it makes its way through the Arctic, contra-

dicts the Neptune effect. This is the mechanism proposed most frequently in the literature,

however it would only act to drive flows along depth contours.
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This work has opened up several opportunities for further work. There are still open

questions on what role the Neptune effect plays in ocean models, and how fine the resolution

and how strong the eddy-field must be before resolving the Neptune effect. Therefore it

would be interesting to see what happens to the boundary current in the OCCAM 1/12◦

resolution OCCAM model, which is currently being run. It would be especially of interest to

see if the inflow of AW through Fram Strait is enhanced, which would occur if the Neptune

effect is better resolved, even though the resulting 8km grid-box size may still not completely

resolve the Rossby radius of 5-10km. The most challenging problem however is to estimate

the contribution of the Neptune effect to the boundary current in ocean models that do not

use a specific parameterization for the effect.

The forcing mechanism for the boundary current presented in this thesis presents the need

to investigate the effects of using more accurate forcing fields in ocean models. As the Arctic is

only sparsely observed, particularly the central Arctic, using surface relaxation to the Levitus

94 climatology may not provide an accurate simulation of the effects of air-sea fluxes on the

ocean circulation. Particularly it seems the seasonal signals of ice formation in the Barents

Sea are missing, while this is known to be an important area for ice formation in winter.

Therefore it would be desirable to see the effects of regional and seasonal ice processes by

coupling an ice-model to OCCAM, to see if there are any significant changes in the boundary

current and the contributions from the resulting surface fluxes of heat, brine and freshwater.

Another improvement in the ocean forcing could be obtained by using annually varying wind

fields to properly see the effects of the Arctic Oscillation, which has been shown to have a large

impact on how far Atlantic Water reaches into the Arctic (Maslowski et al 2000), especially

as our results have shown that if a water particle reaches the Canadian Basin it is likely to be

affected by the wind-driven circulation. However in order to simulate the boundary current
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through several phases (each phase is 5-7 years) a much longer simulation of the OCCAM

model is required, which at present is not feasible due to computing limitations.

There are also processes that occur in the boundary current that are of interest, and

can be investigated in OCCAM. As the current progresses through the Arctic, its direction is

constantly changing. The current can be thought of as an eastern boundary current, except for

when it flows in a south-eastwards direction. Then it acts as a western boundary current, and

it can be seen to intensify when this occurs, for example on the Kara Sea shelf edge. It would

be interesting to understand the dynamics of the change-over from western boundary current

to eastern boundary current, which is most likely to occur only in circumpolar currents.

Another important issue is the impact of the boundary current water masses on the deep

convection regions in the Atlantic. These water masses are thought to play an important

role (Mauritzen 1996a,b, Andersson et al 1999), and therefore the pathways of the boundary

current are of interest as it leaves the Arctic as part of the East Greenland Current for the

Atlantic. Preliminary work (not reported on) shows the possibility that there is a split in

pathways between deeper water masses of the boundary current that follow a pathway through

the Faraeo-Shetland channel and shallower water masses that follow a pathway across the

Greenland-Iceland ridge.

Another area for further study is the impact the Arctic boundary current has on climate,

as it acts as a heat pump by drawing warm Atlantic waters to high latitudes. There has been

much talk lately of a collapse of the overturning circulation in the Atlantic, maybe leading to

a new ice age. Therefore it would be interesting to know if the Arctic boundary current could

continue to form in glacial conditions, and whether it is responsible for enough northwards

heat transport in the Atlantic to maintain Europe’s mild climate. This is especially relevant

to our forcing mechanism as it is thought that the Barents Sea was covered by a grounded
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ice sheet during the last glacial maximum (Siegert and Dowdeswell, 2004), which would shut

off the short-circuit pathway for Atlantic Water into the Arctic Ocean.

There is also opportunity to further develop the methods introduced in this thesis. For

example, the diffusion value used in the random displacements in our particle trajectories was

simply taken to match the sub-grid scale turbulence in the OCCAM model, however this might

not be the best value for representing the spread of water parcels in the real ocean. There are

several radioactive tracers in the real ocean that are used for studying the circulation in the

Nordic Seas and the shelf seas around the UK, such as the release of Technetium-99 from the

Sellafield nuclear power plant in the UK (eg. Gao et al 2005). This comparison could provide

a validation of the diffusion value, and also for the OCCAM simulated velocity fields. Also

the energetics of the strong eddy-field in the Canadian Basin require further thought, as this

is by nature a time-dependent problem, and therefore it is necessary to extend the study of

this region by looking at sources of the eddy kinetic energy, rather than the annual mean KE.
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[75] C. Mauritzen and S. Häkkinen. Influence of sea ice on the thermohaline circulation in

the Arctic-North Atlantic Ocean. Geophysical Research Letters, 24:3257–3260, 1997.

[76] T.J. McDougall. Thermobaricity, Cabbeling and Water Mass conversion. Journal of

Geophysical Research, 92 (C5):5448–5464, 1987.

[77] F. McLaughlin, E. Carmack, R. MacDonald, A.J. Weaver, and J. Smith. The Canada

Basin, 1989-1005: Upstream events and far-field effects of the Barents Sea. Journal of

Geophysical Research, 107(C7):3082–3102, 2002.

[78] F.A. McLaughlin, E.C. Carmack, R.W. MacDonald, and J.K.B. Bishop. Physical and

geochemical properties across the Atlantic/Pacific water mass front in the southern

Canadian basin. Journal of Geophysical Research, 101(C1):1183–1197, 1996.

[79] H. Melling. Hydrographic changes in the Canada Basin of the Arctic Ocean, 1979-1996.

Journal of Geophysical Research, 103 (C4):7637–7645, 1998.

[80] L. Middtun. Formation of dense bottom water in the Barents Sea. Deep Sea Research,

32:1233–1241, 1985.

[81] L. Nazarenko, G. Holloway, and N. Tausnev. Dynamics of transport of ’Atlantic sig-

nature’ in the Arctic Ocean. Journal of Geophysical Research, 103 (C13):31003–31015,

1998.

[82] J.L. Newton, K. Aagaard, and L.K. Coachman. Baroclinic eddies in the Arctic Ocean.

Deep-Sea Research, 21:707–719, 1974.

[83] J.L. Newton and B.J. Sotirin. Boundary undercurrent and water mass changes in the

Lincoln Sea. Journal of Geophysical Research, 102:3393–3403, 1997.



BIBLIOGRAPHY 214

[84] O.A. Nost and P.E. Isachsen. The large-scale time-mean ocean circulation in the Nordic

Seas and Arctic Ocean estimated from simplified dynamics. Journal of Marine Research,

61(2):175–210, 2003.

[85] A.H. Oort, L.A. Anderson, and J.P. Peixoto. Estimates of the energy cycle of the

oceans. Journal of Geophysical Research, 99 (C4):7665–7688, 1994.

[86] A.H. Oort, S.C. Ascher, S. Levitus, and J.P. Peixoto. New estimates of the available

potential energy in the world ocean. Journal of Geophysical Research, 94 (C3):3187–

3200, 1989.

[87] R.C. Pacanowski and S.G.H. Philander. Parameterisation of vertical mixing in numer-

ical models of tropical oceans. Journal of Physical Oceanography, 11:1443–1451, 1981.

[88] R.S. Pickart and W.M. Smethie Jr. How does the Deep Western Boundary Current

cross the Gulf stream? Journal of Physical Oceanography, 23:2602–2616, 1993.

[89] A.B. Pippard. Classical Thermodynamics. Cambridge University Press, 1966.

[90] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical recipes in

Fortran 77: the art of scientific computing. Cambridge University Press, 1992.

[91] A. Proshutinsky, V. Pavlov, and R.H. Bourke. Sea level rise in the Arctic Ocean.

Geophysical Research Letters, 28(11):2237–2240, 2001.

[92] A.Y. Proshutinsky and M.A. Johnson. Two circulation regimes of the wind-driven

Arctic Ocean. Journal of Geophysical Research, 102(C6):12493–12514, 1997.

[93] D. Quadfasel, B. Rudels, and K. Kurz. Outflow of dense water from a Svalbard fjord

into the Fram Strait. Deep-Sea Research, 35A(7):1143–1150, 1988.



BIBLIOGRAPHY 215

[94] D. Quadfasel, A. Sy, and B. Rudels. A ship of opportunity section to the North Pole:

Upper ocean temperature observations. Deep Sea Research I, 40:777–789, 1993.

[95] R.O. Reid, B.A. Elliott, and D.B. Olson. Available potential energy: A clarification.

Journal of Physical Oceanography, 11:15–29, 1981.

[96] A.T. Roach, K. Aagaard, C.H. Pease, S.A. Salo, T. Weingartner, V. Pavlov, and M. Ku-

lakov. Direct measurements of transport and water properties through the Bering Strait.

Journal of Geophysical Research, 100:18443–18457, 1995.

[97] B. Rudels, L.G. Anderson, and E.P. Jones. Formation and evolution of the surface mixed

layer and halocline of the Arctic Ocean. Journal of Geophysical Research, 101(C4):8807–

8821, 1996.

[98] B. Rudels, H.J. Friedrich, and D. Quadfasel. The Arctic circumpolar boundary current.

Deep-Sea Research, II 46:1023–1062, 1999.

[99] B. Rudels, E.P. Jones, L.G. Anderson, and G. Kattner. On the origin and circulation

of the Atlantic layer and intermediate depth waters in the Arctic Ocean. The Polar

Oceans and their role in the shaping the global environment, edited by Johannessen,

Muench, Overland, Geophysical Monograph Series, Vol 85. AGU., pages 33–46, 1994.

[100] B. Rudels, R.D. Muench, J. Gunn, U. Schauer, and H.J. Friedrich. Evolution of the Arc-

tic Ocean boundary current north of the Siberian shelves. Journal of Marine Systems,

25:77–99, 2000.

[101] P.M. Saunders. The Dense Northern Overflows. Ocean Circulation and Climate, edited

by Siedler, Church and Gould, International Geophysics Series Volume 77, Academic

Press., Chapter 5.6:401–417, 2001.



BIBLIOGRAPHY 216

[102] U. Schauer. The release of brine-enriched shelf water from Storfjord into the Norwegian

Sea. Journal of Geophysical Research, 100 (C8):1601516028, 1995.

[103] U. Schauer, R.D. Muench, B. Rudels, and L. Tomokhov. Impact of eastern Arctic shelf

waters on the Nansen Basin intermediate waters. Journal of Geophysical Research,

102(C2):3371–3382, 1997.

[104] U. Schauer, B. Rudels, E.P. Jones, L.G. Anderson, R.D. Muench, G. Bjork, J.H. Swift,

V. Ivanov, and A.M. Larsson. Confluence and redistribution of Atlantic Water in the

Nansen, Admundsen and Makarov basins. Annales Geophysicae, 20(2):257–273, 2002.

[105] P. Schlosser, D. Grabitz, R. Fairbanks, and G. Bönisch. Arctic river-runoff: mean

residence time on the shelves and in the halocline. Deep Sea Research, 41:1053–1068,

1994.

[106] G.I. Shapiro, J.M. Huthnance, and V.V. Ivanov. Dense water cascading off the conti-

nental shelf. Journal of Geophysical Research, 108 (C12):art no: 3390, 2003.

[107] M.J. Siegert and J.A. Dowdeswell. Numerical reconstructions of the eurasian ice sheet

and climate during the late weichselian. Quaternary Science Reviews, 23:1273–1283,

2004.

[108] S.R. Signorini and D.J. Cavalieri. Modeling dense water production and salt transport

from Alaskan coastal polynyas. Journal of Geophysical Research, 107(C9):art no: 3136,

2002.

[109] M.A. Spall. Dynamics of the Gulf stream/Deep Western Boundary Current crossover.

Part I: entrainment and recirculation. Journal of Physical Oceanography, 26:2152–2168,

1996.



BIBLIOGRAPHY 217

[110] M. Steele and T. Boyd. Retreat of the cold halocline layer in the Arctic Ocean. Journal

of Geophysical Research, 103:10419–10435, 1998.

[111] M. Steele, J. Morison, W. Ermold, I. Rigor, M. Ortmeyer, and K. Shimada. Circulation

of summer Pacific halocline water in the Arctic Ocean. Journal of Geophysical Research,

109(C2), 2004.

[112] M. Steele, J.H. Morison, and T.B. Curtin. Halocline water formation in the Barents

Sea. Journal of Geophysical Research, 100:881–894, 1995.

[113] J.H. Swift, E.P. Jones, K. Aagaard, E.C. Carmack, M. Hingston, R.W. MacDonald,

F.A. McLaughlin, and R.G. Perkin. Waters of the Makarov and Canada basins. Deep-

Sea Research II, 8:1503–1529, 1997.
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Appendix A

Time-dependent particle tracking -

solution process

A.1 Introduction

Here we describe the solution process for calculating the crossing times of the particles.

We discuss the numerical solution process, the series expansions used for the evaluation of

functions, how the boundaries are handled when performing random jumps, and how the

particles are selected at the start.

The method described in the chapter 5 can be used to calculate a huge number of particles.

The main limitation for calculating the time-dependent trajectories is the time it takes to load

the 3D velocity and property fields after each time-interval.

A.2 Numerical solution

Here we calculate the crossing time s from equation (5.32). The equation is solved nu-

219
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merically using the hybrid Newton-Raphson root-finding algorithm from Press et al (1992)

to solve

r(s)− ri = 0. (A.1)

Valid solutions must be within the grid-box [ri−1, ri], and within the time-interval [s0, sn].

Here s0 ≥ sn−1 is the starting time.

To start the solution process a bracket [sa, sb] is needed that contains the solution s. Then

a combination of the Newton-Raphson method and the bisection method is used to calculate

the root. The Newton-Raphson method is given by

st+1 = st − r(st)
[
dr

ds
(st)

]−1

. (A.2)

The derivative in this method is calculated using equation (5.17). Locally this method con-

verges quadratically, however it does not converge globally. In the case that it does not

converge the linearly converging bisection method is used, which is guaranteed to converge (if

a root exists). In this method the function r(s) is evaluated at the midpoint of the bracket,

and the bracket is halved so it contains the root.

An initial bracket is obtained from the time sample interval [sn−1, sn]. However usually

this bracket is not sufficient. A more exact approximation of the lower limit is given by the

earliest time the particle could reach the exit face, which is

sa = s0 +
ri − r0

um
, (A.3)

where um is the maximum flow rate, and is taken as the maximum of the absolute values of

the transports at the surrounding points (r0, s0), (ri, s0), (r0, sn), (ri, sn).

The bracket can be improved by looking at the time-averaged acceleration rates at both

sides of the grid-box. In the case that the initial transport at the exit face U(ri, s0) < 0,
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the particle cannot pass through the face unless the transport changes sign within the time-

interval. Therefore if the transport at the end of the time-interval U(ri, sn) > 0 then it is

possible for the particle to pass through ri, and an estimate of the earliest time of positive

transport is given by

sa = s0 − U(ri, s0)

[
d2r

ds2
(ri)

]−1

,
d2r

ds2
(ri) =

U(ri, sn)− U(ri, s0)
sn − s0

. (A.4)

Equivalently if the initial transport at the exit face U(ri, s0) > 0, while the transport at the

end of the time-interval U(ri, sn) < 0, we can estimate an earliest time of negative transport

sb = s0 + U(ri, s0)

[
d2r

ds2
(ri)

]−1

. (A.5)

After this time it is not possible for the particle to pass through ri.

Another estimate is obtained by looking at sign of the transport at the initial position.

If the initial transport at the exit face U(r0, s0) < 0, the particle can not move in the right

direction (towards ri) until the transport becomes positive. An estimate of the earliest time

of positive transport at r0 is

sa = s0 − U(r0, s0)

[
d2r

ds2
(r0)

]−1

. (A.6)

These estimates are used to find the smallest bracket possible before entering the numerical

solution process.

It is also possible to identify the case that there are no solutions. A solution is only

possible if the transport U(ri, s) > 0 at either s0 or sn. If this is not the case then the flow

is always in the wrong direction for the particle to cross the wall at ri. Equivalently the

transport at the initial position r0 must be positive for either s0 or sn for the particle to move

in the right direction.
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Also a particle can only cross through the wall at ri if the flow is strong enough. This is

the case when a particle moving at the maximum flow rate um towards ri does not reach the

exit face within the time-interval. Therefore if

x0 + um · (tn − t0) < xi, (A.7)

a solution is not possible.

If there is no solution in all three spatial directions then we calculate the exact position

of the particle in the grid-box at sn, and move to the next time interval.

A.3 Series expansions

The evaluation of function r(s) requires the calculation of error functions, and Dawson’s

integral. The error function erf(ζ) is calculated using the series expansion of Press et al

(1992). The error function can be written in terms of the incomplete gamma function

P (a, x) =
γ(a, x)
Γ(a)

= 1− Γ(a, x)
Γ(a)

, Γ(a) =
∫ ∞

0
ta−1 exp(−t)dt, (A.8)

where and Γ(a, x) and γ(a, x) are given by

Γ(a, x) =
∫ ∞

x
ta−1 exp(−t)dt, γ(a, x) =

∫ x

0
ta−1 exp(−t)dt. (A.9)

Then erf(ξ) is given by

erf(ξ) =
2√
π

∫ ξ

0
exp(−t2)dt = P (

1
2
, ξ2). (A.10)

Then we compute P (1
2 , ξ2) using a series expansion. If ξ2 < 3

2 the fastest conversion is

obtained using the series

P (
1
2
, ξ2) = exp(−ζ2)ξ

∞∑
n=0

1
Γ(3

2 + n)
ξ2n. (A.11)
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Using Γ(1/2) =
√

π the other values are calculated using the identity Γ(a + 1) = aΓ(a).

If ξ2 ≥ 3
2 the fastest conversion is obtained using a continued fraction development

P (a, ξ2) = 1−
[
Γ(

1
2
)
]−1

exp(−ξ2)ξ
[

1
x + 1− a−

1(1− a)
x + 3− a−

2(2− a)
x + 5− a−

. . .

]
, (A.12)

where a = 1/2.

Dawson’s integral is also calculated following Press et al (1992). For |ξ| < 0.2 D(ξ)

converges to zero, and a simple power series is used. For |ξ| ≥ 0.2 Rybicki’s formula is used

D(ξ) = lim
h→0

1√
π

∑
n odd

1
n

exp(−(ξ − nh)2). (A.13)

.

A.4 Implementation of random displacements

The implementation of the random displacements representing the diffusive effects dis-

cussed in chapter 5 requires some exceptions due to the presence of topography. A random

displacement can cause a particle to move onto land, or jump into or from an isolated area

of water, or move out of the model domain. Therefore the calculations of the random dis-

placements are repeated until a suitable displacement is found. The particle is assumed to be

stuck if a large number of repeats are necessary, in which case the trajectory is halted.

A.5 Selection of initial particles

The initial particles all start on a vertical section. In order to get a larger number of

particles starting in areas with stronger flow the particles are distributed on the starting

section so they all have similar transports.
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Here we consider a vertical starting section in (y, z) space, along a constant model lon-

gitude x. We define a transport Un, which will approximately be the transport represented

by each particle. The total volume transport through each vertical grid-box on the starting

section is given by

UT = u(x, y, z) ·∆y∆z. (A.14)

The number of sub-boxes per grid-box N is then set by

N =
[
UT

Un

]
. (A.15)

Then a subdivision of K ×K sub-boxes within the grid-box is chosen where K is an integer

such that

K ≈
√

N. (A.16)

Then each particle in one of the K2 sub-boxes transports

[
UT

K2

]
≈
[
UT

N

]
= Un m3/s (A.17)

at the start of the trajectory.

Figure A.1A shows an example of the particle distribution on a vertical section associated

with the volume flux through the section given in figure A.1B.
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A

B

Figure A.1: (A) Initial particle distribution on vertical section (B) Volume flux (m3/s) through

vertical section.


