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ABSTRACT

This paper investigates the potential value of
applying nonlinear architectures to the adaptive
equalisation of a bipolar signal passed through a
dispersive channel in the presence of additive noise.
The problem is first described as a geometrical clas-
sification problem and consideration is given to the
factors affecting the complexity of the problem. In
particular, it is shown that some degree of non-
linearity is desirable in the equaliser structure when
signal to noise ratios are poor. The paper then
proceeds by describing two nonlinear architectures
which might be considered as adaptive equalisers,
before evaluating their performance in this role by
means of computer simulation. From this, the
advantage which these structures enjoy over their
linear counterparts is readily discerned.

1. INTRODUCTION.

In this paper we investigate the application of non-
linear structures as adaptive channel equalisers and
demonstrate the advantage which they can offer over the
linear transversal equaliser (LTE) [1], especially in the
high noise environment.

The system which we shall consider throughout this
paper is that depicted in Figure 1. A random sequence
x; is passed through a linear dispersive channel of finite
impulse response (FIR), which is modelled by a FIR
filter with response function
ag + asz 14 - + apz*, where the coefficients
aj, 0=j=k, are all real valued and ag, g; are nonzero,
to prl?ducc a sequence of outputs, y; where

yi = > aj%_j. A term, n;, which represents additive
i=0
noise ’in the system, is then added to each y; to produce
an observable sequence y;. The problem to be con-
sidered is that of utilising the information represented by
the observed channel outputs ¥;, J;i—1, * * * > Yi—m+1 tO
produce an estimate of the input symbol, x; 4. A device
which performs this function is known as an equaliser .
The integers m and d are known as the order and the
delay of the equaliser respectively. Throughout, the

input samples are chosen from {1, 1} with equal proba-
bility and are assumed to be independent of one another.
The additive noise samples, n;, are chosen independently
from a Gaussian distribution with mean 0 and variance

n2. The above system has been used to model a variety
of communications systems such as the HF communica-
tions channel [2].

Traditionally, channel equalisation is considered as a
deconvolution problem in which the aim is to construct
an equaliser such that the impulse response of . the
channel/equaliser combination is as close to z™ as possi-
ble. By contrast, the approach adopted in this paper is.
to utilise the fact that the transmitted signal is bipolar in
nature and to design an equaliser which will reconstruct
such a signal as accurately as possible. When viewed in
this light, the problem can be viewed as a geometric spa-
tial decision problem and some of the shortcomings of
the LTE readily discerned.
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Figure 1. Schematic of data transmission system.

2. GEOMETRIC FORMULATION OF THE EQUALI-
SATION PROBLEM

We shall continue to use the notation and defini-
tions introduced in the previous section. In addition we
make the following definitions. For the system depicted
in Fig.1, let

P(m,d)(_l) = {X, €R™ | Xig = —'1},
where y; denotes the vector of channel outputs
i Yi=25++¥i -m+1)> With P, 1)(1) equivalently defined.
Thus P (s, 4)(1) and P, z)(~1) represent the sets of pos-
sible channel output vectors (y;, ..., ¥j—m+1) Which can
be produced from sequences of channel inputs,
X;»Xi—1, ", which have x4 =1 and x_4; = -1
respectively. The observed channel output vectors, ¥;,
represent elements of P, 4)(1) or P, 4y(—1) which are
corrupted in each component independently by Gaussian
noise, and the task of the equaliser is to decide whether

~

an observed output vector, y; represents the noise corr-
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uption of an element of P, 4)(1) or Py 4)(—1). An
equaliser must therefore produce some function
g:R™ - {~1, 1}, where #; = g (%)

From Figure 1 we can readily discern the main fac-
tors which will contribute to the equalisation problem,
these being the response function of the channel, a(z),
and the power of the additive noise, n“. Given a priori
knowledge of these variables it is possible to specify the
equaliser of order m and delay d which is optimal in the
sense that it minimises the probability of a wrong deci-
sion in the estimation of the transmitted symbol x;_; as
follows. Let f; be the probability density function of the
observed channel output vectors

{F5eR™ | yi€P (m.a)(D}
and let f_; be similarly defined. Now consider the
equaliser whose output is the function defined by

8 ()=sgn(f1(3) — f Q)
where sgn(x)=1 if x=0 and -1 otherwise. It can be
proved that this equaliser achieves the least possible bit

error rate (BER) for its order. The decision boundary of
the optimal equaliser consists of the set of points

er™ | £10) = f a0}
and represents the topological boundary of the closed set
Q).

Figure 2 illustrates the sets P (5 (1) and P (5 y(—1),
whose elements are represented by t?le symbols « and X
respectlvcly, for the channel with response function
1.0 + 0.5z, along with the optimal decision bounda?
for several different values of additive noise power, n
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Figure 2. Channel output points and optlmal decision
" boundaries.

We observe that for very low levels of additive noise the
decision boundary has a piecewise linear appearance,
becoming progressively smoother as the noise power
increases. Furthermore we remark that the optimal deci-
sion boundary is certainly nonlinear. This points us to
one of the shortcomings of the LTE which necessarily
forms decision boundaries which are hyperplanar and

therefore different from the optimal boundary, leading to
a significantly suboptimal bit-error rate in the high noise
environment.

Another shortcoming of the LTE is that it requires
the sets P, 4)(—) to be linearly separable if it is to suc-
cessfully reconstruct the transmitted sequence. This will
not in general be true, and for 4 =0 it will be true only if
the channel is minimum phase (all roots of z%a (z) must
lie strictly within the unit disc in the complex plane).
This is illustrated for examples of minimum phase and
nonminimum phase channels in Figure 3.
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(a) a(z) = 1.0+0.8z "1+0.5z ~% (minimum phase).
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(b) a(z) = 0.5 + 1.0z ! (nonminimum phase).
Figure 3. Channel output points

Furthermore, in the high noise situation the LTE
suffers from the problem of noise enhancement. As we
allow the order of the equaliser to increase, so we
increase the total power of the noise on the equaliser
input, and this tends to diminish any advantage gained
by increasing the equaliser order.

Figure 4 quantifies this effect by displaying the rela-
tionship between the Wiener solution of order m, to
which an LTE trained by the LMS algorithm should
approximate after convergence, and the resultant BER in
a variety of noise environments for the equalisation of
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the above channel. In the high noise environment it is
clear that there is little to be gained in terms of BER by
increasing the order of an LTE beyond 4 or 5. At this
point we recall from Figure 2 the nonlinear nature of the
decision boundary of the theoretically optimal equaliser
of order 2. When this is taken into consideration along
with the curves displayed in Figure 4, this provides some
justification for considering equalisers of low order which
have some nonlinear decision making ability incorporated
into their design, when noise conditions are adverse. In
the following section we describe two structures with this
capability.
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Figure 4. Relationship between Wiener filter order and
BER.

3. NONLINEAR ARCHITECTURES

In this section we give a brief description of the
architecture and capabilities of the multilayer perceptron
(MLP) [3] and the Volterra series classifier (VSC), the
structures which we shall consider as the candidates for
our alternative equaliser design.

The basic building block of the multilayer percep-
tron is the single neuron or node which we depict in Fig-
ure 5 below. A node receives a number of real inputs
X1, o5 X, 52y, Which are then multiplied by a set of
weights w, ..., w, and the resultant values are summed.
To this weighted sum of inputs is added a constant 6,
known as the node threshold and the output of the node
is obtained by evaluating a nonlinear function, f, of the
total. In this paper we restrict our attention to percep-
trons where the node activation function, f, is defined
by

fE)= @@ —e™)(1 +e™)
the graph of which is shown in Figure 5.
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Figure 5. Perceptron node structure and activation
function.

In the multilayer perceptron a number of nodes of
the type described above are arranged in layers, as dep-
icted in Fig.6. A multi-dimensional input is passed to
each node in the first layer. The outputs of the first
layer nodes then become inputs to the nodes in the
second layer, and so on. The output of the network is
therefore the outputs of the nodes lying in the final layer.
Thus, weighted connections exist from a node to every
node in the succeeding layer, but no connections exist
between nodes in the same layer. We shall describe the
architecture of a perceptron by a sequence of integers
ng —ny — - -+ —nj where ng is the dimension of the
input to the network, and the number of nodes in each
layer, ordered from input to output, is ny, ... , n;. In
this notation, the perceptron therefore produces a non-
linear mapping, g:R™ - R™.

no n, N, nj -1 n.i
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Figure 6. Multilayer perceptron structure.

In this paper we shall concern ourselves with percep-
trons which have a single node in the output layer and
which therefore produce a mapping g:R" -~ R. For such
a perceptron, we define its decision region to be the set
of points

{xeR™ | g(x)=0}.

Perceptrons which have three layers are essentially capa-
ble of forming any desired decision region and it is this
architecture which we shall consider as a possible candi-
date for our nonlinear equaliser. When required to learn
a task adaptively, perceptrons can be trained by means of
the back-propagation (BP) algorithm [4]. This a simple
stochastic gradient descent algorithm whose mode of
operation is as follows. At the i iteration a training
sample x; is presented to the perceptron and the resultant
output, g(x;), compared with a desired output, d(x;)
(which will always be 1 or -1 in our application), to pro-
duce an error, ¢;. The weights and thresholds of the
nodes in the network are then updated in such a manner
as to decrease the square of the error ¢;, according to
the following equations.

(Ei+17ﬂi+l) = (-"luﬂz) + Ai
(e
3(w; ,8;)
where B is the adaptive gain and o is a momentum

parameter which "smooths out" high frequency variations
in the weight/threshold vector during training.

The alternative nonlinear architecture incorporates
polynomial nonlinearities in its structure and we shall
refer to it as a Volterra Series Classifier (VSC). Its

Ai = —B + aAi_l
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mode of operation is as follows. Given an input, xeR*®,
the VSC produces an output

g(x) = f(pe(x))

where f is the function defined above and pg(x) is a
polynomial in the components of x of fixed degree, :.
We shall refer to this architecture as an (s,r) VSC. The
vector § represents the coefficients of the polynomial and
has dimension equal to the binomial coefficient ¢*)C,.
Like the multilayer perceptron the VSC can be trained
by performing gradient descent on the weight vector §.
We can similarly define the decision region of the VSC
to be the set of inputs resulting in a positive output, just
as was done for the MLP.

4. SIMULATION RESULTS

In a previous section we described the manner in
which the performance of an LTE of order m degrades
under certain conditions on the channel response func-
tion, a(z), and the power of the additive noise, n? In
the first case, we saw that the sets P, (1) and
P (s 0)(—1) are never linearly separable if the ¢ annel is
ponminimum phase. We also considered the problem of
noise enhancement, which restricts the length of LTE
which can effectively be employed. We now present
simulations which illustrate the potential advantages
which nonlinear structures might offer over the LTE. In
all the simulations presented the system depicted in Fig-
ure 7 was employed.
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Figure 7. System employed for simulations.

The first simulation results presented demonstrate
the performance MLP and VSC employed to equalise the
channel with response function 0.5 + 1.0z 71, for which
the sets P, 70)( -), m=1,2 were depicted in Figure 3. As
this channel is nonminimum phase, a linear equaliser is
incapable of reconstructing the input sequence ( without
the introduction of some delay ). In Fig.8 we show the
decision region formed by a 2—6—4—1 perceptron after a
training sequence of 1000 samples, along with the deci-
sion region of (2,5) VSC after 300 samples. The power
of the additive noise was 0.01, representing a signal to
noise ratio of approximately 21dB. It is clear that for
both structures Py g)(1) lies within the shaded region
and and Pyg)(—1) lies within its complement which
indicates that g)oth MLP and VSC are correctly recon-
structing the input sequence, though they employ radi-

cally different solutions to do so. We further remark that
the VSC requires many fewer samples to learn the partic-
ular task.
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Figure 8. Decision regions for nonminimum phase
channel.

We recall from Section 2, the situation where the
channel is minimum phase, so that there exists an integer
m such that P, (1) and P, g)(—1) are linearly separ-
able, but the signal to noise ratio is poor. In Figure 9 we
see the respective decision regions formed by a 2-9-5-1
perceptron and (2,5) VSC equaliser, equalising the chan-
nel with response 1.0 + 0.5z7%, following a training
period of 300 samples duration. The power of the addi-
tive noise, n%, was 0.2, representing a signal to noise
ratio of approximately 8dB. The solid curves in Figure 9
show the position of the decision boundary formed by
the optimal equaliser discussed in a previous section. It
can be seen that the decision region formed by the per-
ceptron coincides in the region of interest with that of
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the optimal equaliser, which suggests that the perceptron
is utilising the available information with something
approaching maximum efficiency. Likewise the VSC
decision region shows a close correspondence with the
optimal equaliser. This suggests that the performance of
the nonlinear structures should compare favourably with
the performance of their linear counterpart, and this is
verified by the following simulations.
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Figure 9. Decision regions for minimum phase channel.

We now turn our attention to a more realistic situa-
tion which is more representative of the kind of channel
which may be encountered in practice. The simulations
which we now present demonstrate clearly the superior
performance enjoyed by the perceptron equaliser in com-
parison with the LTE. Figure 10 compares the respec-
tive BERs achieved by a 5-9-3-1 perceptron, a (5,3)
VSC and an LTE of order 5, when the equalisers are set
the task of equalising the channel with response function
0.3482 + 0.8704z 1 + 0.3482z 2. All three structures
operate with delay d =1, the sets P (s 1)(—) being linearly
separable.

The simulations clearly show that the nonlinear clas-
sifiers enjoy a superior performance, in terms of the

BER achieved, to that of the LTE over the range of
signal-to-noise ratios considered.
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Figure 10. Comparison of bit-error rates achieved by
MLP, VSC and LTE.

5. CONCLUSIONS

By incorporating a degree of nonlinearity in the
design of an equaliser it is possible to produce a structure
which can achieve a BER superior to that offered by
linear structures, when equalising bipolar signals passed
through linear channels, especially when signal to noise
conditions are poor. It may be that these structures also
have some value in overcoming problems associated with
the equalisation of nonminimum phase channels. The
multilayer perceptron has been cited as one architecture
capable of realising this improvement, and the computer
simulations presented in this paper suggest that this is
justified. However at present there is little known con-
cerning the theoretical analysis of such networks and the
high dimensionality and degree of nonlinearity make this
a difficult proposition. An alternative structure which
uses polynomial nonlinearities has also been proposed as
an adaptive equaliser, and these may prove to be more
theoretically tractable than the perceptron. In summary,
we feel justified in claiming that nonlinear structures in
general can offer advantages over their linear counter-
parts in the design of adaptive equalisers and are cer-
tainly worthy of further investigation. ;
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