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Abstract: The paper investigates the application 
of a simple nonlinear structure to the problem of 
adaptive channel equalisation. Based on the Bayes 
decision rule, it is shown that the optimal equal- 
isation solution is an inherently nonlinear 
problem and, therefore, it is desired to incorporate 
some degree of nonlinearity in the design of equal- 
iser structure. The approximate realisation of the 
optimal equalisation solution is implemented 
using a polynomial-perceptron architecture and 
simulation results are included to support the 
theoretical analysis. 

1 Introduction 

Communications channel equalisation is concerned with 
the reconstruction of digital signals that have been passed 
through a dispersive channel and then corrupted with 
additive noise. Traditional techniques for solving this 
equalisation problem are based on linear finite filters. 
Adaptive linear equalisers are robust and can easily be 
implemented. The operation of an equaliser at each 
sample instant is typically based on a finite number of 
channel observations and decisions are usually made on 
a symbol-by-symbol base. Even under this classical infor- 
mation constraint, it has been shown that channel equal- 
isation is an inherently nonlinear problem [4] regardless 
of whether a channel is minimum or nonminimum phase. 
Nonlinear structures are therefore required to achieve 
fully or near optimal performance. 

Gibson et al. [4] proposed a nonlinear equaliser struc- 
ture based on the multilayer perceptron and demon- 
strated its superior performance over the linear equaliser. 
The multilayer perceptron has a very general ability of 
nonlinear decision making and, theoretically, a multilayer 
perceptron equaliser with sufficient size can realise the 
optimal performance. There are, however, some practical 
difficulties associated with this highly nonlinear structure 
that require further investigation. The selection of archi- 
tecture and parameter values for the multilayer percep- 
tron equaliser is mainly by experiment. The training 
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algorithms are usually gradient based algorithms, such as 
the back propagation algorithm [7], and training times 
are typically very long. Although the use of recursive 
Gauss-Newton algorithms [2, 91 can significantly 
improve the convergence properties of the multilayer per- 
ceptron equaliser, these algorithms require more compu- 
tation at each recursion and will have difficulties in 
meeting the real-time requirements of high-speed data 
transmission where adaptive equalisation is mostly 
needed. 

In this paper an alternative nonlinear equaliser struc- 
ture is examined. Using the Bayes decision rule, it is 
shown that the optimal equalisation solution is highly 
nonlinear, a result identical to that derived in [4] by a 
different approach. An old technique, namely polynomial 
approximation, is then employed as a means of approx- 
imately realising the optimal solution. This leads to a 
polynomial-perceptron equaliser that is theoretically 
more tractable compared with the multilayer perceptron 
equaliser as the filter parameters are almost linear with 
respect to the output error. Simple simulation examples 
are included to compare the performance of this 
polynomial-perceptron equaliser with the optimal one. It 
is also demonstrated that a direct polynomial approach 
[6] may converge to a fallacious classification function if 
polynomial degree is not large enough and a nonlinear 
perceptron activation is beneficial in such a situation. 
Further justifications of introducing nonlinear decision 
making ability into the adaptive equaliser structure are 
provided by  examining the performance of the Wiener 
filter, which is the performance bound for any linear 
equaliser. 

2 Channel equalisation 

The digital communications system considered in this 
paper is depicted in Fig. 1. A random binary sequence 

Fig. 1 Schematic diagram of data transmission system 
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x(t) is transmitted through a linear dispersive channel 
modelled as a finite impulse response filter whose transfer 
function is given by 

The channel output is corrupted by an additive Gaussian 
white noise e@). The task of the equaliser at the sample 
instant t is to reconstruct the input symbol x(t - d) using 
the information contained in the channel output observa- 
tions dt), ..., o(t - m + l), where the integers m and d 
are known as the order and the delay of the equaliser, 
respectively. The following assumption on the data 
sequence x(t)  is introduced to simplify the analysis. 

Assumption 1: x(t) is an independent sequence taking 
values of either 1 or - 1 with an equal probability. 

The above assumption on the channel model and signal 
conditions is, however, mostly for convenience. In fact, 
the approach discussed in the present study can directly 
be applied to the case of nonlinear channel model and 
additive non-Gaussian correlated noise without any 
modification [3]. It does not really matter whether x(t) 
takes value 1 with a higher probability, or vice versa. 

The information constraint on the general equaliser 
structure depicted in Fig. 1 is characterised by the equal- 
iser order m and delay d, and the equaliser makes deci- 
sions on a symbol-by-symbol base. Given a channel 
response and a noise distribution, an important question 
is: what is the best possible performance, in terms of bit 
error rate, that an equaliser with fixed m and d can offer? 
An understanding of this question clearly helps to design 
better equalisers. As the equalisation of digital communi- 
cations systems, described in Fig. 1, can be viewed as a 
two-state classification problem, optimal solution of the 
two-state classification problem is briefly summarised. 

2.1 
Consider the two-state classification problem in which 
the state s is known to be either sA or s B .  Based on a 
measurement o = C O ,  ... oJ', a decision is made as to 
whether s = sA or s = sB .  A common strategy of solving 
this problem is to minimise the expected or average risk 
of making a wrong decision and this strategy leads to the 
following Bayes decision rule [lo] : 

Two -state Ba yes decision rule 

Here qA and qB are the a priori probabilities of 
occurrences of sA and sB,  respectively, and qA + qB = 1. 
L A  is the loss associated with the decision qo) = sB when 
actually s = sA and, similarly, LB is the loss associated 
with qo) = sA when s = s,.fs,(o) andfs,(o) are the condi- 
tional density functions of o given s = sA and s = s B ,  
respectively. Eqn. 2 can be rewritten as 

where 

(3) 

(4) 

is known as the decision function and the set of points o 
that satisfy 

fde(O) = (5 )  
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is often referred to as the decision boundary, which parti- 
tions the m-dimensional Euclidean space R" into two dis- 
joint sets DA and DB. The decision making process, eqn. 
3, can alternatively be stated as 

S A  if o E DA 
S B  if o E DB 

i(0) = 

When a measurement o satisfies eqn. 5, making the deci- 
sion either way has a same expected risk and we may 
then arbitrarily decide i(o) = sA in this situation. D ,  plus 
the decision boundary, denoted as DA , will be called the 
decision region. 

2.2 Optimal equalisation solution 
The optimal equalisation solution can be directly 
obtained from the above Bayes decision rule. The state 
concerned here is the transmitted data symbol x(t - d) 
with two possible values sA = 1 and sB = - 1. According 
to assumption I ,  x(t - d) = 1 and x(t - d) = - 1 have the 
same probability 0.5. The estimate of x(t - d) is denoted 
as %(t - d). Mistakes %(t - d) = -1 when x(t - d) = 1 
and %(t - d) = 1 when x(t - d) = -1 cause equal 
damage and, therefore, each case should be assigned with 
a same loss level. It is clear, under these conditions, that 
k = 1, and this results in the following minimum error- 
probability or bit-error-rate equaliser 

a(t - d) = sgn ( fde (o ( t ) ) )  = sgn (fi(o(t)) -f- l(o(t))) (7) 
where o(t) = [o(t) . . . o(t - m + l)]' is the channel obser- 
vation vector, f,(o(t)) and f- ,(o(t)) are the conditional 
density functions of observing o(t), given x(t - d) = 1 and 
x(t - d) = - 1, respectively, and 

is a slicer. The above result is identical to that derived in 
Reference 4. The approach used here is more general and 
can be applied easily to other situations. The noise-free 
channel output vector 6(t) = [a(t) . . . 6(t - m + l)]', 
which is generated from input sequence x(t), ..., 
x(t - m + 1 - n), can only take finite states or values. 
These values can be partitioned into two classes: 

(9) I P,,,, A l )  = { q t )  E R" I ~ ( t  - d) = l} 
PmJ--l) = {qt) E R"Ix(t - d) = -1} 

The task of the equaliser is to decide whether a channel 
observation vector o(t) represents a noise corruption of 
an element in P,,,, A l )  or P,,,, A- 1) and thus to determine 
the input sample x(t - d). The sets P,,,, d(1) and P,,,, A- 1) 
are determined by the channel transfer function H,(z), the 
equaliser order m and the delay d. These two sets, 
together with the distribution of the additive noise 4t). 
completely specifiy the optimal decjsion function he() or 
the corresponding decision region D,. 

2.3 Some illustrations 
We shall consider the case of equaliser order m = 2 
simply because graphic display is difficult in higher 
dimension. 

Example 1: Channel transfer function is H,(z) = 1.0 
+ 0 .5~- '  and the equaliser delay d = 0. 

The elements of the sets P2, o( 1) and P2, o( - 1) are plotted 
in Fig. 2 using the symbols 'circle' 0 and 'cross' X ,  

respectively. If there is no additive noise, the channel 
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output vector will be either a 'circle' or a 'cross' in this 
two dimensional space. Each point in P2,0(l) and 
P 2 , 0 ( - 1 )  has a same probability of appearance. This 
channel is minimum phase, therefore the two classes 

plane in the same space. Therefore, any linear equaliser 
structure is inherently suboptimal and this motivates the 
investigation of nonlinear architectures capable of reali- 
sing highly nonlinear boundaries. 

-1 5 1  x 

- 2  5 -1 5 - 0  5 0 5  1 5  2 5  
o ( t )  

Fig. 2 Channel output points and optimal decision boundaries 
Channel 1.0 + O S - ' ,  additive Gaussian white noise with variance U:,  equaliser 
order rn = 2 and delay d = 0 

P2,  o(l) and P 2 ,  o( - 1) are linearly separable and a linear 
equaliser can perfectly reconstruct input signals in the 
noise-free case. 

Because of additive Gaussian white noise, the channel 
observation vector is actually a random variable having a 
Gaussian probability distribution centred at one of the 
points of P 2 ,  o(l) and P 2 ,  o( - 1). The lines in Fig. 2 are the 
optimal decision boundaries corresponding to different 
noise variances. We observe that the optimal boundary is 
always nonlinear. If a channel observation vector lands 
on the left-hand side of the optimal boundary, the 
optimal equaliser will produce the estimate n(t)  = - 1 ,  
otherwise it gives ?(t) = 1. In this way the equaliser 
makes least possible mistakes. Because a linear equaliser 
can only generate a linear decision boundary the bit error 
rate of the linear equaliser will be considerably larger 
than that of the optimal equaliser. 

Example 2: The channel transfer function is H,(z )  = 
0.5 + l.Oz-', and the additive Gaussian white noise has a 
variance 0.2. 

The elements of the sets P 2 ,  o(l) and P 2 ,  o( - 1)  are shown 
in Fig. 3, and the shaded region in Fig. 3 is the optimal 
decision region D1 under the constraint d = 0. Notice 
that P 2 ,  o(l) and P 2 ,  o( - 1) are not linearly separable 
because the channel is nonminimum phase, and a linear 
equaliser with a zero delay is incapable of reconstructing 
input signals even in the noise-free case. 

We now examine the case of nonzero delay. P2,1(1) 
and P 2 ,  - 1) are given in Fig. 4. Although these two 
classes are linearly separable, the optimal classification 
boundary is nonlinear and a linear equaliser will not be 
able to realise such a boundary, as can be seen clearly 
from Fig. 4. 

In general, the optimal boundary is a hypersurface in 
the m-dimensional space and can be highly nonlinear. 
The decision boundary of a linear equaliser is a hyper- 
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Fig. 3 
Channel 0.5 + I.Oz-', additive Gaussian white noise with variance 0.2, equaliser 
order rn = 2 and delay d = 0 

Channel output points and optimal decision region 
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Fig. 4 
Channel 0.5 + I.Oz-', additive Gaussian white noise with variance 0.2, equaliser 
order rn = 2 and delay d = 1 
.~ optimal boundary 
_ _ ~ ~  linear boundary 

Channel output points and decision boundaries 

3 

As the optimal decision function fde( ) for a communica- 
tions channel is generally not available and can be time 
varying, a means of adaptively approximating this func- 
tion or generating the corresponding decision region is 
essential to realise the optimal equaliser solution. We 
shall assume that he() is continuous and this requires 
that the noise distribution satisfies the following condi- 
tion. 

Polynomial approximation of optimal decision 
function 
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Assumption 2: The distribution of e(t) is continuous. 

The usual Gaussian distribution satisfies this require- 
ment. 

The use of a polynomial function to approximate a 
continuous function is an old but effective technique and 
is widely applied to the identification of nonlinear 
systems [l]. Let Z be a compact subset of R" and denote 
Co(Z) as the space of all continuous functions from Z 
into R. With the help of the Stone-Weierstrass theorem 
[a], it can be shown that the set of all polynomial func- 
tions from Z into R is dense in Co(Z). This means that 
any continuous function can be approximated to within 
an arbitrary accuracy by a polynomial function with a 
sufficient size. 

The following polynomial decision function can there- 
fore be employed as an approximate realisation of&( ): 

m 

m m  

ne 

... o(t - i ,  + 1) = Ceiyi(t) (10) 

where 1 is the polynomial degree, the ydt )  are monomials 
of o(t), . . . , o(t - rn + 1) from degree-0 (constant 1 )  up to 
degree-1 (o(t - i ,  + 1) ... o(t - i l  + 1)) and the Bi are the 
corresponding coefficients co to cil _ _ _  i l .  The number of all 
the coefficients is given by 

i =  1 

1 

n, = ni ,  no = 1, ni = ni-l(m + i - 1) / i ,  i = 1, . . . , I  
i = O  

(11) 
The polynomial expansion, eqn. 10, is also known as the 
Volterra series. 

4 Polynomial-perceptron equaliser 

The polynomial decision function (eqn. 10) can be imple- 
mented by first expanding the input space into an 
extended nonlinear space and then employing a linear 
combiner structure on this space. Notice that what really 
matters is the sign of pb() .  If p g )  can always realise the 
same sign of fde( ), the optimal performance is achieved. 
Based on this observation the following polynomial- 
perceptron equalser is introduced : 

~ ( t  - d )  = sgn (gfii(o(t)))) = sgn (gs( zlei  yi(t))) (12) 

where 

Notice that g s ( c  0,yAt)) has the structure of a single per- 
ceptron [5 ]  with a sigmoid activation function given in 
eqn. 13. The need to include such a nonlinear activation 
function is explained in Section 5 and the particular 
choice of the sigmoid function (eqn. 13) reflects the 
bipolar nature of the transmitted signal x(t). 

The structure of the polynomial-perceptron equaliser 
is specified by the equaliser order m and the polynomial 
degree 1. Fig. 5 shows a detailed implementation for 
m = 2 and 1 = 3. From eqn. 1 1  it is seen that the number 
of parameters increases exponentially as 1 increases. Our 
experience suggests that, in practice, restricting 1 = 3 or 5 
is often adequate, and this is also supported by the other 
results of the authors in the field of nonlinear systems 
identification. The selection of the equaliser order is to a 
large extent influenced by a phenomenon called noise 
enhancement. In a high noise level situation it is pre- 
ferred to employ a low equaliser order. More quantified 
discussion is given in Section 6. 

The polynomial-perceptron equaliser is computa- 
tionally more demanding compared with a simple linear 
structure. Increasing computation complexity and dimen- 
sionality is a common price for employing a nonlinear 
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architecture. The structure and operation of the 
polynomial-perceptron equaliser are, however, simpler 
than those of the multilayer perceptron equaliser [3]. 

4.1 Training algorithms 
The training of the equaliser (eqn. 12) can be carried out 
either by the stochastic gradient algorithm 

e,(t + 1) = e,(t) + BE([)  (1 - z2(t))yi(t) 1 G i G ne 2 

(14) 
or by the smoothed stochastic gradient algorithm 

l < i d n ,  

(15) 
i Ai@ + 1) = YAM + E@) ; (1 - Z2(t))Y&) 

ei(t + 1) = ei(t) + AAt + 1) 

where 

z ( t )  = Y.( ~leAt)Yi(t)) 

and 

(16) E(t) = x(t - d) - z ( t )  

B and y are the adaptive gain and momentum constant, 
respectively, E(t) is the error signal and OSa(1 - z2(t))yi(t) 
is the gradient of z(t) with respect to e&). Eqn. 15 is 
referred to as the back propagation algorithm in the 
neural network context [7]. Using a smoothed stochas- 
tic gradient usually improves the performance at the cost 
of more computation in each recursion. During data 
transmission, x(t - d) is substituted by its estimate 
%(t - d) and the algorithm of eqn. 14 or eqn. 15 can con- 
tinuously be employed to track a time varying environ- 
ment. The computational complexity of the algorithm of 
eqn. 14 or eqn. 15 can be shown to be an order of ne. 

4.2 Simulation results 
In all the cases, the algorithm of eqn. 15 was used in the 
training and the adaptive gain and momentum constant 
were set to B = 0.001 and y = 0.8. 

3 -  

2 -  

1 -  

- 
-? 

= 0 -  

-1  

- 2  

2 5  

1 5  

0 5  
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T- - 
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-0 5 

- 1  5 

- 2  5 

- 

- 

opt i mal 

X 

X 

2 5  - 1 5  -0 5 0 5  1 5  2 5  
o( t )  

Fig. 6 
Channel 1.0 + O S - ' ;  additive Gaussian white noise with variance 0.2; equaliser 
order m = 2; polynomial degree I = 3 and delay d = 0 

IEE PROCEEDINGS, Vol. 137, Pt.  I ,  No. 5,  OCTOBER 1990 

Decision region formed by polynomial-perceptron equaliser 

The ability of the polynomial-perceptron equaliser to 
form nonlinear decision regions is illustrated using exam- 
ples 1 and 2. The parameter CI for the sigmoid function 
(eqn. 13) was chosen to be CI = 1.0, and the equaliser 
order was given as m = 2. 

For the channel of example 1 with a noise variance 
0.2, the equaliser has the structure of 1 = 3 (ne = 10) and 
d = 0. Fig. 6 gives the decision region formed by this 
equaliser after training, where it is seen that the decision 
region shows a close correspondence with the optimal 
equaliser. 

For example 2, a trained polynomial-perceptron 
equaliser of zero delay and 1 = 5 (ne = 21) produces the 
decision region depicted in Fig. 7. By introducing a delay 
d = 1 into this equaliser, it generates the decision region 
given in Fig. 8 after training. 

A third example is given to compare the bit error rates 
achieved by the optimal and polynomial-perceptron 
equalisers for different signal-to-noise ratios. 

-3 L 
-3 

X 

X 

I 

- 2  
o ( t )  

Fig. 7 
Channel 0.5 + 1.02-l: additive Gaussian white noise with variance 0.2; equaliser 

Decision regionformed by polynomial-perceptron equaliser 

ordei 

3 

2 

1 

- 
7 

'0 
0 

-1 

-2 

- 3  

I = 2; polynomial degree I = 5 and delay d = 0 

optimal 

i ( t - I  1 

- 3  - 2  -1 0 1 2 3 
o ( t )  

Fig. 8 
Channel 0.5 + 1.02-I; additive Gaussian white noise with variance 0.2; equaliser 
order m = 2; polynomial degree I = 5 and delay d = 1 

Decision region formed by polynomial-perceptron equaliser 
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For Example 3, the channel model is H,(z)  = 0.3482 
+ 0.8704z-’ + 0.3482z-’. The equaliser employed the 

structure of order rn = 4, polynomial degree 1 = 3 (ne = 
35) and delay d = 1. 

-1 

-2 

(L W 
m 
m - 3  
- 

- 1  

-5 

The results obtained are displayed in Fig. 9, where the 
bit error rate was computed over 500000 points of differ- 
ent realisations of stochastic processes x(t)  and e(t). a was 
set to 1.0 when noise level was high and was gradually 
increased to 8.0 as the signal-to-noise ratio improved. 

- 

- 

- 

- 

- 

2 -  

X 

- 6 1  
0 5 10 15 20 25 

signal to noise ratio, dB 

Fig. 9 Performance comparison 
Channel 0.3482 + 0.8704-’ + 0 . 3 4 8 2 ~ - ~ ;  equaliser order rn = 4; polynomial 
degree I = 3 and delay d = 1 
-0- optimal equaliser 
- x - polynomial-perceptron equaliser 
-A- polynomial equaliser (without sigmoid activation) 

A similar simulation study was given by Gibson et al. 
[4] for the multi-layer perceptron equaliser and the 
results were very close to the present simulation study. 
The training of a polynomial-perceptron equaliser is, 
however, much easier compared with that of a multilayer 
perceptron equaliser. 

5 

It may be asked whether it is really necessary to intro- 
duce the sigmoid activation (eqn. 13). A direct mini- 
misation of the mean square error 

The need for a sigmoid activation 

(17) 

where E[] is the expectation operator, would appear to 
be a better approach because eqn. 17 is quadratic in the 
parameters 0, . The least mean square algorithm 

1 ne 
E[&’(t)] = E ( ~ ( t  - 6) - c e,yi(t))’ [ i =  1 

Oi(t + 1) = e,@) + Bit)yi(t) 1 < i < ne (18) 
or its momentum version 

(19) Ai(t + 1) = rAi(t) + B O Y X t )  1 < . < 
1 1 1 n g  

ei(t + 1) = e,(t) + Ai(t + 1) 1 
would be capable of achieving the single global minimum 
of eqn. 17, where 

This approach is suggested in [6] as a viable alternative 
to the multilayer perceptron structure. 

In the channel equalisation setting of Fig. 1, unless p 2 )  
is closely matched to&=(), that is unless a very high poly- 
nomial degree 1 is used, the single global minimum of 
eqn. 17 may correspond to a bit error rate far away from 
the optimal bit error rate. This is because the minimum 
mean-square-error solution of eqn. 17 does not necessar- 
ily correspond to the best classification accuracy and may 
even produce a fallacious decision function if 1 is not 
large enough. Because an analytical solution is very dim- 
cult, if not impossible, to obtain even for a simple 
channel equalisation example, we shall use a relevant 
two-state classification problem to illustrate this aspect. 

The example considered is a simple classifer, the input 
of which is a scalar x uniformly distributed within the 
interval [ - 1, 11. The desired output is given as 

1 x E CO, 0.51 
-1 otherwise 

d(x) = 

The classifier function is chosen to be a quadratic func- 
tion 

p;(x) = e, + e,x + e,xz (21) 
which classifies an input x according to 

It is straightforward to show that the minimum mean- 
square-error solution is 

P;(x) = (- 3 + 3 6 ~  - 135x2)/96 (22) 
which gives the minimum mean-square error -2.779 dB. 
This is, however, a fallacious classification function 
having 25% misclassification as can be seen from Fig. 10. 

. 
N 

X m 

Y O  
x 
W D 

m 
v 

-1 

d ( x )  
\ 

- 2  I 
-1 0 -0 5 0 0 5  1 0  

X 

Fig. 10 Minimum mean-square-error quadratic classifier 

Notice that p;(x) < 0 for all x E [ - 1, 11 and, therefore, 
all x E [0, 0.51 are misclassified. Because the mean- 
square-error surface contains the single minimum of eqn. 
22, the quadratic classifier of eqn. 21, trained by gradient- 
based algorithms, will converge to this solution and this 
has been confirmed in our simulation study. The correct 
quadratic classifier for this problem does exist and in fact 
gives 0% misclassification. It can easily be written down 
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as 

pi(x) = p(x - 2x2) p > 0 (23) 
This class of classifiers all produce a mean-square error 
larger than -2.779 dB. The case of p = 20, for example, 
gives a huge mean-square error of 26.294 dB. 

By introducing the nonlinearity tanh ( ), the landscape 
of the mean square error surface is changed dramatically. 
The classifier tanh (2qx - 2x2)), depicted in Fig. 11, for 

- 6  

'r 

X 

J 

- 2  I J 

-1 0 -0  5 0 0 5  1 0  
X 

Fig. 11 Quadratic tanh classi/ier 

instance, produces an extremely small mean-square error 
of - 14.069 dB. The mean-square-error surface for the 
quadratic-tanh classifier function 

(24) 
may contain many minima and their analytical solutions 
are not easily obtained. Moreover, it can be shown that 
the mean-square error for tanh (p(x - 2x')) will tend to 
zero as p tends to infinity. We shall not address the 
detailed analysis of the mean-square-error surface for this 
example in the present study. Rather we point out that, 
as long as the absolute values of the initial parameters 
are not chosen to be too large, the quadratic tanh classi- 
fier (eqn. 24), trained by gradient-based algorithms will 
converge to tanh @(x - 2x2)), where the particular value 
of p depends on the chosen initial parameter values. This 
has been observed during an intensive simulation study. 
The reason for not choosing too large initial parameter 
values is because tanh function may otherwise become 
saturate over the whole interval [-1, 13 or part of it. 
Two such examples are (0,, O,, 0,) = (10, 10,20) and (0,, 
0 2 ,  0,) = (0, 10,20). In the former case, the gradient com- 
ponent (d(x) - z(x))(1 - z2(x)) is virtually zero over [- 1, 
11, and thus no training will actually take place. In the 
latter case, the gradient is virtually zero for x 2 0.5, and 
training will not take place in this part of the interval. 

It is seen that, although the sigmoid function does 
complicate the mean-square-error surface, at least the 
classifier of eqn. 24 will converge to the correct solution 
when initial parameters are inside a certain sphere. This 
is in contrast tc the pure quadratic classifier of eqn. 21 
which always converges to the wrong solution (eqn. 22). 

We emphasise that the real criterion is the classi- 
fication accuracy and the mean square error criterion is 
only a too for training a classifier to obtain, hopefully, an 

Z(X) = tanh (0, + 0 , ~  + O3x2) 
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acceptable level of misclassification. Multiminima of the 
mean square error, introduced by the inclusion of the 
tanh function, may not always be bad and they may 
actually improve the flexibility of the classifier, as shown 
here. The alternative to this is to increase the polynomial 
degree sufficiently and to suffer the consequence of filter- 
dimension explosion (terms increase exponentially as I 
increases). Our experience shows that, by introducing the 
tanh function, we can restrict 1 to be 3 or 5. The resulting 
classifier or equaliser is able to realise complicated deci- 
sion regions, such as the one shown in Fig. 3. 

A second difficulty associated with the direct poly- 
nomial approach is that the gain /3 in eqn. 18 or eqn. 19 
often has to be restricted to an extremely small value in 
order to guarantee convergence. This can easily be 
understood because E[y(t)yT(t)] ,  where y'(t) = Cyl@) . . . 
y,(t)], is often very ill-conditioned and has a large range 
of eigenvalues. For Example 3, to guarantee convergence 
for all the signal to noise ratios tested, the gain in eqn. 19 
had to be reduced to /3 = O.OOO1 and the performance 
achieved using this algorithm is also given in Fig. 9. It is 
seen that the sigmoid activation introduced in the equal- 
iser of eqn. 12 is indeed required. 

6 

For the channel and equaliser delay specified in Example 
3, the performance of the linear equaliser of order 4 is 
plotted in Fig. 12 where it is also shown that the 

Performance of the linear equaliser 
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-51 \ 

polynomial-perceptron equaliser of the same order sig- 
nificantly improves the bit error rate over the linear 
equaliser. It might be argued that such a comparison is 
unfair since a linear equaliser of order 4 only has four tap 
weights compared with 35 tap weights for the 
polynomial-perceptron equaliser of I = 3. We now 
examine whether we can improve the performance of the 
linear equaliser by simply increasing its order. 

Because the weight vector of the linear equaliser after 
convergence should approximate the Wiener optimal 
filter of same order, the bit error rate achievable by the 
linear equaliser can therefore be predicted from that of 
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the Wiener filter. Under the conditions given in Section 2, 
the Wiener filter weight vector 

can be easily obtained. The bit error rate of the Wiener 
filter is defined by 

Prob {+‘o(t) -= 0 Iqt) E Pm, Al)} 

or 

Prob {WO@) > 0 I q t )  E Pm, d( - l)} 

It is not difficult to compute the probability of eqn. 26 
because +‘o(t) is Gaussian distributed with mean +‘@t) 
and variance o:$%’+, where n,’ is the variance of additive 
noise e(t). For the channel and equaliser delay defined in 
Example 3, Fig. 13 shows the relationship between the 

-0’51 
SNR 10dB t -x-+x-x-x----k--x-x4 

SNRz15dB 
LI -’ x‘ x - x - x - x ~ - x - x - x ~  w 
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Fig. 13 
Channel 0.3482 + 0.87042-’ + 0.34822-’ and equaliser delay d = 1 

Bit error rate versus Wienerfilter order 

theoretical bit error rate (eqn. 26) and the Wiener filter 
order in a variety of noise conditions. It is clear that the 
performance achievable by simply increasing the order of 
the linear equaliser cannot match the polynomial- 
perceptron equaliser of low order. Furthermore, little 
advantage can be gained in a noisy environment by 
employing a linear equaliser which has an order greater 
than 4 for this example. 

The phenomenon shown in Fig. 13 is known as the 
noise enhancement. As the order of the equaliser 
increases, the total noise power on the equaliser input is 
also increased and this tends to diminish any advantage 
gained by increasing the equaliser order. On the contrary, 
it could be argued that increasing the order may only 
lead to an increase in complexity, training time and mis- 
adjustment, and ultimately a decrease in eficiency, in a 
high noise environment. The above results provide 

further justification for considering nonlinear equalisers 
of low order in high noise conditions. 

7 Conclusions 

By viewing the communications channel equalisation as a 
classification problem, the optimal equalisation solution 
has been derived, based on the Bayes decision rule. It has 
been shown that an equaliser which incorporates some 
degree of nonlinear decision making ability can achieve a 
bit error rate superior to that offered by linear equalisers. 
A polynomial-perceptron structure employing a sigmoid 
activation has been considered as an adaptive equaliser 
which is capable of approximating the optimal equaliser 
solution. 

The complexity of the polynomial-perceptron equal- 
iser is determined by the two structure parameters, 
namely, equaliser order and polynomial degree. Practical 
selection of polynomial degree has been discussed and it 
has been shown that employing a low equaliser order is 
justified in poor signal to noise ratio conditions. 
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