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Extended model set, global data and threshold model identification of
severely non-linear systems

S. A. BILLINGSt and S. CHENt

New parameter estimation algorithms, based on an extended model set, a global
data model and a threshold model formulation, are derived for identifyingseverely
non-linear systems. It is shown that in each case an integrated structure determina­
tion and parameter estimation algorithm based on an orthogonal decomposition of
the regression matrix can be derived to provide procedures for identifying parsi­
monious modelsof unknown systemswith complexstructure. Simulation studies are
included to illustrate the techniques discussed.

1. Introduction
If the response of a system is dominated by non-linear characteristics it is often

necessary to use a non-linear model and this immediately raises the problem of what
class of models to use. The non-linear autoregressive moving average with exogenous
inputs (NARMAX) model which was first introduced by Billings and Leontaritis
(1981) and rigorously derived by Leontaritis and Billings (1985) provides a unified
representation for a wide class of discrete-time non-linear stochastic systems.

Model structure determination is often vital for identification of non-linear
systems. Even if attention is restricted to polynomial expansions of the NARMAX
model, a difficulty quickly arises because the number of terms can increase rapidly
leading to an excessively complex model and numerical ill-conditioning in the
identification procedure. In order to find an adequate model that uses only a few
terms it is necessary to select only the significant terms from a large set of candidate
terms. An orthogonal algorithm (Korenberg et al. 1988, Billings et al. 1988) has
proved to be very efficient in determining the significant terms and providing
corresponding parameter estimates. Chen et al. (1989) have shown that this estimator
is in fact an orthogonal least-squares algorithm based on the classical Gram-Schmidt
method and have derived several equivalent estimators by using different orthogonal
decomposition techniques such as the modified Gram-Schmidt and Householder
transformation algorithms, Numerous applications (for example, Billings et al.
1989 a, b, Liu et al. 1987) have demonstrated that these estimators provide very
powerful procedures for identifying parsimonious models of systems with non-linear
structure.

In the present study, the algorithms described above for the polynomial
NARMAX model are modified and extended using different model formulations so
that they can be applied to severely non-linear systems. By allowing functions such as
absolute value, exponential, logarithmic, sgn ( . ) to be terms within a linear-in-the­
parameters model, an extended model set is created. This broadens the base for
modelling non-linear systems and it is shown that the orthogonal estimator can be
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1898 S. A. Billings and S. Chen

employed to provide structure detection and parameter estimation for this class of
models. A new intelligent structure detection strategy is then introduced that learns
the threshold for term selection, this provides a fully automatic term-selection
algorithm.

Global data fitting is investigated as a means of estimating the parameters in a
single global model using several data sets, each of which covers a local region of plant
operation. This type of analysis is appropriate for systems where it is not possible to
excite the system over the total operating range in one experiment but where several
small perturbation experiments about different operating points are permitted.

If a system is severely non-linear, however, it may not be possible to find one
model that provides an adequate representation; the estimation of threshold models is
investigated as a solution to this problem.

Several simulation examples are included to demonstrate the effectiveness of the
new algorithms. For notational simplicity, only the single-input single-output case is
considered throughout although the results are valid for multi-input multi-output
systems.

2. System representation
Under some mild assumptions a discrete-time non-linear stochastic control

system can be described by the NARMAX model (Leontaritis and Billings 1985)

y(t) = f(y(t - I), ... , y(t - ny), u(t - I), ... , u(t - nul, 6(t - I), ... , 6(t - n,)) + 6(t) (I)

where y(t), u(t) and 6(t) are the output, input and prediction error, respectively, and
f( . ) is some non-linear function. A special case of the model (I) that may be referred
to as the non-linear autoregressive with exogenous inputs (NARX) model is

y(t) = f(y(t - I), ... , y(t - ny), u(t - I), ... , u(t - nu))+ 6(t) (2)

The model (I) is about as far as one can go in terms of specifying a general finite­
dimensional input-output non-linear system. Various possibilities of parametrizing
the function f( .) exist (Chen and Billings 1989), one of which is a polynomial
approximation of f( • ).

3. Orthogonal least-squares estimators
Solving least-squares problems by an orthogonal decomposition of the regression

matrix is a well-developed technique. Consider a linear regression description
n

y(t) = L <Pi(t)(Ji + 6(t)
i= 1

(3)

and assume that the data length is N. Collecting (3) from t = I to N together yields the
following matrix equation

(4)

where

(5)
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lIl j = [IMI) ... cMN)]T i = I, ... , n

1899

(6)

3.1. Orthogonal decomposition of the regression matrix

The matrix III is often referred to as the regression matrix. An orthogonal
decomposition of III is given as

lIl= WA (7)

Here

A= (8)

is an n x n unit upper triangular matrix and

is an N x n matrix with orthogonal columns that satisfy

WTW=D

and 0 is a positive diagonal matrix

D=diag{d 1 ••• d.}

with

dj = <W;, Wi)

where <.) denotes the inner product, that is

N

<Wi' W j ) = wTWj = L wi(t)wj(t)
r= 1

Equation (4) can now be rewritten as

V = [lilA - 1] [A0] + ::: = Wg + :::
where

A0=g

It is straightforward to show that

or

(9)

(10)

( II)

( 12)

( 13)

(14)

(15)

( 16)

(17)gj = «Wi> V) i = I, ... , n
w;, Wi)

Alternatively, by normalizing the columns of Wand augmenting the resulting
matrix with N - n further orthonormal columns to make up a full set of N



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

14
:4

5 
14

 S
ep

te
m

be
r 2

00
7 

1900 S. A. Billings and S. Chen

orthonormal vectors for N-dimensional euclidean space, a decomposition equivalent
to (7) is obtained

(18)

where R is an n x n upper triangular matrix with positive diagonal elements and

W=[W 1 ... wN ]

is an N x N orthogonal matrix, i.e.

(19)

i=j

i '" j

(20)

Using WT to transfer V results in

WTV=[YI - - - ]TY. Y.+ I ... YN (21)

It is readily seen that the parameter estimate ~ satisfies

R0=[Yl ... Y.Y (22)

3.2. Structure determination

Orthogonal least-squares methods were originally used as effective numerical
techniques to obtain the triangular system (15) or (22) and, consequently, to solve for
the parameter estimate ~. These include the classical Gram-Schmidt and modified
Gram-Schmidt methods (Bjorck 1967), the Householder transformation method
(Golub 1965) and the Givens method (Gentleman 1973). By modifying and augment­
ing these orthogonal least-squares estimators, efficient algorithms for combining
structure determination (or determining which terms to include in the model) and
parameter estimation can be derived (Chen et al. 1989).

From (14), the sum of squares of the output is

•
(V, V) = L gr (Wi> Wi) + (E:, E:)

i= I
(23)

The error-reduction ratio due to Wi is thus defined as the proportion of the output
variance explained by vv,

[err]. = g,,-,,--~(--,;W--,-i_,W.,.--'-i-,--)
, (V, V)

(24)

If the decomposition (18) is employed, a similar definition of error-reduction ratio is
given as

(yY
[err].=-- I ~i""n

, (V,V)
(25)

The error-reduction ratio offers a simple and effective means of selecting a subset
of significant terms from a large number of candidate terms in a forward-regression
manner. At each step, a term is selected ifit produces the largest value of [err]i among
the rest of the candidate terms. The selection procedure is terminated when..

1- L [err]i<p
t» 1

(26)
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Identification of severely non-linear systems 1901

where p (0 < p < I) is a desired tolerance, and this leads to a subset model of n, (n, < n)
terms. It is immediately seen that I - L: [err], is the proportion of the unexplained
output variance. Details of several such forward-regression orthogonal algorithms
have been given by Chen et al. (1989) and will not therefore be repeated here. The
general procedure is summarized below.

Procedure for the linear regression model

Initially the user specifies the full model set of n candidate terms and the value of p.
At the n, th stage:

(i) compute the values of the error-reduction ratio for each of the n - n, + I
remaining candidate terms by assuming that each is the n,th term in the
selected model, and perform the corresponding orthogonalization;

(ii) the term that gives the largest value of error-reduction ratio is then selected. If
condition (26) is satisfied, go to (iii). Otherwise set n, ,= n, + I and go to (i).

(iii) the final model contains n, terms and, depending on which orthogonal
decomposition technique has been used, its parameter estimate 0, is com­
puted from

A,a, = g, or R,a, = [Yl ... }'..JT (27)

where A, and R, are n, x n, unit or positive upper-triangular matrices
respectively.

4. Extended-model-set representation
In order to use model (I) or (2) as a basis for identification, a means of

parametrization is required. In the present study linear-in-the-parameters models are
considered, and such models take the following general form

n

y(t) = L: rI>,(y(t- I), ... , y(t-ny ) , u(t- I), ... , u(t-n.), e(t- I), ... , e(t -n'))!!i + Eft)
i= I

(28)

Equation (28) is a pseudo-linear regression model where the 'regressors' are
transformations of lagged input, output and prediction-error values. The analogous
linear regression model that corresponds to the NARX model (2) can be written as

n

y(t) = L: rl>i(y(t- I), ... , y(t- n,), u(t - I), ... , u(t-n.))!!, + eft) (29)
i= I

where the regressors are some non-linear functions of lagged inputs and outputs only.
Of course, before using model (28) or (29), the functions rl>i( .) must be specified.
Examples of rI>,( . ) are now given.

Polynomial model

If the function rI>,( .) are chosen as monomials of lagged input, output and/or
prediction-error values, a polynomial model is obtained. If the non-linear function
f( • ) in (I) is continuous it can always be arbitrarily well approximated by polynomial
models (Chen and Billings 1989). Thus the polynomial model offers a very general
representation for non-linear systems. Practical identification of many real non-linear
systems has been based on the polynomial model (Billings et al. 1989 a, b, Liu et al.
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1902 S. A. Billings and S. Chen

1987). When the system is severely non-linear it would be advantageous if other
choices of (/J;( • ) could be considered; this is investigated below.

Exponential time-series model

The exponential time-series model of Ozaki (1985) takes the form

m

y(t) = L [(Xi + Pi exp (- y2(t - I))]y(t - i)Oi + eft)
i= 1

(30)

where (Xi and Pi are parameters. Under very weak conditions the stochastic process
defined by (30) is stationary and the model (30) possesses rich dynamic behaviour
such as limit cycles associated with non-linear systems, which a linear model cannot
capture. The choice of exp (- y2(t - I)) is, however, rather arbitrary and there is no
reason against using the more general form

m

y(t) = L [(Xi + Piexp (- y2(t - k.J)]y(t - i)Oi + eft)
i= 1

(31)

It is highly desirable that an identification package can search through a set of terms
of the form exp (- itt - ki))y(t - i) and determine a suitable set of k, values that will
fit the observed time-series values better.

Other examples

Consider the discretization of a damped and forced non-linear oscillator governed
by, for example, the differential equation

(32)

where

dz(r) IdZ(r) I
dt di

is known as quadratic damping and z3(r) is called cubic stiffness. A simple pendulum
undergoing arbitrarily large oscillations, for example, would introduce the term
sin (z(r)). Assume that a zero-order-hold (ZOH) device is used, that is u(r) = u(r,),
r, ~ r < r,+ l' a fixed sample rate is employed with a sampling period hand t is used
to replace r,. Then an approximate difference equation model is obtained as

z(t) = 01 z(t - I) + O2z(t - 2) + 03 z(t - I) Iz(t - 1) - z(t - 2)1

+ 04Z(t - 2)lz(t - I) - z(t - 2)1 + OSZ3(t - 2)

+ 06 sin (z(t - 2)) + 07U(t - 2) (33)

using the forward difference scheme. If the output is corrupted by additive noise

y(t) = z(t) + eft) (34)

the absolute-valued and trigonometric functions of lagged outputs and prediction
errors will appear in the model. It is possible to use a polynomial approximation to
model this sampled non-linear oscillator. This would, however, require a large
number of terms to achieve an accurate approximation because, for example, the
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Identification of severely non-linear systems 1903

(35)

polynomial expansion of the sinusoidal function sin (x) is

x3 X S

sin (x) =x- 3T + 51 - ...

Clearly, the possibility of selecting the <Pi( • ) functions in (28) to match the specific
non-linear terms Iz(t - i) - z(t - j)!, sin ( .) in (33) would be preferable.

The swing equation for a class of synchronous generators can be described as
(Polchai and Hsu 1985)

H dZc5(r)
= p _ P ("(r)) _ q"(r)) dc5(r) (36)

dt? m e di

where c5( r) is the electrical load angle, H the inertia constant, Pm a mechanical input,
qc5(r)) the variable damping and Pe(J(r)) the electrical power output considering
transient saliency. The last two quantities are given by

qJ(r)) = b l sin? (<5(r)) + bz cos? (<5(r))}

Pe(<5(r )) = b3 sin (<5(r)) + b4 sin (2"(r))
(37)

Applying the same scheme as that for (32) produces a discrete-time model that is
linear-in-the-parameters with some of <Pi( • ) taken as trigonometric functions.

Some other common examples of <Pi( • ) that arise in non-linear dynamics are the
hyperbolic functions sinh ( '), cosh ( -) and tanh ( '), the inverse trigonometric
function atan ( . ), the Coulomb friction sgn ( . ), and the saturation.

It is clear from the above discussion that monomials of lagged input, output and
prediction-error values are primary choices for <Pi( • ), and these terms form a basic
model set from which a parsimonious model can be selected. This basic model set can
be extended to include terms such as sin ( . ), cos ( . ), exp ( '), sinh ( '), tanh( . ),
which commonly exist in non-linear systems. Such an extended model set gives a
much richer description to non-linear systems and more effective modelling can be
achieved. In practice, physical knowledge of the system to be identified can often be
used to narrow down the choice of <Pi( • ) and consequently to reduce the size of the
model set.

When identifying non-linear systems with unknown structure, it is important to
avoid losing significant terms that must be included in the final model; consequently
the experimenter is forced to start with a large model set. Even if only monomials are
used to form the model set, the number of terms can be huge. For example, if ny=
n. = n, = 10 and the polynomial degree is 1= 3, the number of terms for the full model
set is n = 5456. If other functions with different lagged inputs, outputs and predic­
tion errors are included in the model set, the size will become even larger. The
selection of a few significant terms from such a large number of terms is by no means
an easy task. Fortunately the orthogonal least-squares estimator can be adopted
(Billings et al. 1989 b, Chen et al. 1989) to provide an efficient solution.

4.1. Estimation and structure detection for the extended model set

Since the model (29) is a linear regression model, the procedure summarized in
§ 3.2 can be applied. For the general pseudo-linear regression model (28), however,
delayed prediction errors are involved in <Pi(t), and B(t) itself can only be computed if
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1904 S. A. Billings and S. Chen

the values of the parameters are given. An iterative procedure is therefore required.
Partition cJ) into

(38)

where each of the np columns in cJ)p is a known function of the measured input-output
data only, each of the n, columns in cJ), is a known function of the prediction errors
and the input-output data, and np + n, = n. cJ)p may be referred to as the full process
model set and cJ), as the full noise model set. A subset model cJ), of cJ) is similarly
represented as

(39)

Procedure for the pseudo-linear regression model

Initially the algorithm selects columns of cJ)P. from cJ)p in an identical way to that
indicated in the procedure for the-linear regression model. The selection is terminated
when the condition

1- t [err],<pp
i= 1

(40)

is satisfied where P» is the tolerance for the process model. The initial subset model
parameter estimate c;)~O) (having np• elements) can be computed and this in turn allows
the first prediction error or residual sequence {a(I)(t)} to be generated.

At the kth iteration (k ~ I), cJ)~k) can be formed from the kth residual sequence
{a(k)(t)} and the input-output data, and this enables the algorithm to select columns
of cJ)~~). Assume that after n~~) columns have been added to cJ)p, the condition

n +"dl

1- 't" [err); < P,
i=1

(41)

is satisfied, where P, ( < pp ) is the tolerance for the noise model, then the selection is
stopped. The kth subset model parameter estimate c;)~k) (having "», + n~~) elements) can
thus be computed and this allows the residual sequence to be updated. cJ)~k+ I) can then
be formed and the subset noise model re-selected. Experience has shown that typically
4 to 6 iterations are usually sufficient.

5. Intelligent structure detection
Consider first the linear regression model (29). It is clear that p, the stopping

criterion (26), is an important instrument that affects both the prediction accuracy
and complexity of the final model. If the value of P is chosen to be too large, the model
will be inadequate. If, on the other hand, p is chosen to be too small the model will
become unnecessarily complex. From (23) it is seen that ideally p should be larger
than but very close to the ratio a; /a;, where a; is the variance of the residuals and a;
the variance of the measured process output. Since a; is not known a priori, an
appropriate value of p may need to be found by trial and error. Fortunately, a simple
learning strategy can often be implemented. An initial guess is assigned to p. Once a
model is selected, an estimate ir; for a; can be computed and since a; is known from
the measured data; the-direction for improving p ·is given (choosing p close to ir; /a;).
lf model validity tests (Billings and Voon 1986, Billings and Chen 1989) are coupled
with the algorithm, the correct model structure can often be found very quickly.
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Identification of severely non-linear systems 1905

The criterion (26) emphasises only the performance of the model (variance of
residuals). Because a more accurate performance is often achieved at the expense of
using a more complex model, a trade-off between the performance and complexity of
the model is often appropriate. Akaike-type criteria which compromise between the
performance and the number of parameters take the form

A1C(I/) = N log (u;) + n,I/ (42)

where 1/ is the critical value of the chi-squared distribution with one degree of freedom
for a given level of significance. 1/ = 4 corresponds to the significance level of 0·0456
and is often a suitable choice (Leontaritis and Billings 1987 a). Other statistical
criteria (Soderstrom 1977, Bozdogan 1988) can also be employed to terminate the
selection.

For the pseudo-linear regression model (28) it follows from the discussion in § 4.1
that two tolerances P» and p, are required. It can be seen that the best value for o, is
closely related to the ratio u; lu;. There is, however, no simple way to determine the
best value for pp. Notice that the procedure given in § 4.1 decouples the selection of the
process and noise-model parameters and in this way it is convenient for updating
{g(t)}. However it also poses the problem of selecting a suitable value for P» that
defines the threshold at the initial stage of selecting process-model terms. Ideally the
process- and noise-model terms should be treated equivalently if {g(t)} is given, and
this suggests a slightly different procedure that alleviates the difficulty of selecting pp •

The procedure begins by assigning an initial guess to pp • Once a process model is
selected based on this Pp' {gO)( t)} can be computed and an estimate for P, can be
found. The process- and noise-model terms are then re-selected together and the
selection is terminated using p,. As this iterative procedure progresses, the estimate of
u; is improved and hence so is p: This strategy can also be combined with Akaike's
information criterion (AIC). First use AIC(I/) to terminate the process-model regres­
sion and to produce the initial residuals. At the kth iteration, the process- and
noise-model terms are reselected together and the procedure is stopped using AIC(I/).

6. Global-model fitting
Most processes encountered in the real world are non-linear. A non-linear global

model is often desirable in order to infer effectively the dynamic behaviour of the
system over a large range of operation and to design a global control law that is valid
for the whole operating range. A quick review of piecewise linearization and its
drawbacks provides a useful starting point for discussion.

Piecewise linear modelling identifies a series of locally linear models that
approximate the non-linear system under study over some defined operating range.
There are several possible ways in which non-linear systems can be approximated by
locally linear models (e.g. Billings and Voon 1987). The spatial piecewise linear model
will, providing the non-linearities are smooth, provide an adequate representation of a
non-linear system. This may, however, only be achieved at the expense of fitting a very
large number of linear models, each valid in a small region of operation. Alternatively,
if the non-linearity is produced by a measurable system variable, a series of signal­
dependent linear models can be estimated and these models can then be patched
together to yield a non-linear description of the system. The resulting non-linear
model will be valid only for relatively slow-moving inputs. That is, the model will
produce an excellent prediction of the system output when perturbed by the input
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1906 S. A. Billings and S. Chen

used for the identification or by an input that causes the system to traverse slowly
from one operating region to another. If, however, the non-linearity is not perfectly
dependent upon one signal or the model is perturbed by inputs that cause rapid
transient changes in the operating point, the model output will be considerably
different from the system output. This means that the identified model does not
provide an adequate representation of the non-linear system but is valid only for a
small class of input signals. It may be better in these situations to fit a non-linear
model to the system rather than attempting to approximate it by a series of linear
models.

The design of inputs for non-linear system identification is a very complex
problem and some useful results have been given by Leontaritis and Billings (1987 b).
Roughly speaking, whenever possible the input signal chosen for an identification
experiment should be persistently exciting. This means that the input should excite all
the frequencies of interest in the system and should also excite the process over the
whole amplitude range of operation. It is this last requirement that is often difficult to
meet in practice. Normal operation of an industrial plant is often concerned with
controlling the plant close to some operating points. Perturbing signals that the
experimenter injects into the plant can usually only have a small amplitude in order
not to cause large disturbances to the operation of the plant. If normal operation of
the plant includes several operating levels, the experimenter may be able to
superimpose on these levels a uniformly distributed or similar signal having a
bandwidth sufficient to excite all the dynamic modes within the plant without
violating the amplitude constraints for normal operation, as illustrated in Fig. l.
Instead of fitting several linear models to different data segments, a non-linear model
can be fitted simultaneously to the data segments (A), (B), (C) and (D). It is reasonable
to believe that the resulting non-linear model (called a global data model) will provide
an excellent global representation of the plant since typical operating regions have all
been taken into account. ln Fig. I, the data segments (A), (B), (C) and (D) are shown
as continguous. This will not usually be the case. Each of the experiments may have
been performed on quite separate occasions, possibly weeks apart, and the objective is
to process the data to estimate a global model.

(A)
-:;;
~
Q)

.5
'0..
co
ee..
"0

"
C.
E
<t

(D)

Figure I. Input design for non-linear systems.

Generally, assume that M separate sets of input-output data have been recorded
from a system of unknown structure and that each set corresponds to a different"
operating region of the system under study. Ideally, the regions should have some
degree of overlap. As discussed in § 4, (28) represents a wide class of non-linear
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Identification of severely non-linear systems 1907

systems and is used to model the system to be identified. This leads to M equations

Vlkl= «IIlkl0 + Elkl k = I, .... M (43)

where the superscript [k] denotes each individual experimental condition. Even if the
experiments were not contiguous. the data could be collected together in the model

[ V~ I I ] _ [«IIP1] [E:
11]

: - : 0+ :
VIM] «IIIMI ElM1

(44)

and the orthogonal least-squares algorithms of § 4.1 can readily be applied to (44).
Unlike the approach or piecewise linear modelling and the approach of Dang Van
Mien and Normand-Cyrot (1984), a single non-linear global data model is directly
identified. This technique provides a simple and practical way to obtain global
descriptions of non-linear systems.

An alternative application of the global data model (44) would be where a large
data set is available that cannot be processed in one pass because or limitations on the
size of vectors within the computer. For example. ten thousand data samples may be
available while only 1000 can be processed at anyone time. This scenario can be
accommodated within the framework of (44) by selecting subsets of the full data set
corresponding to each superscript in (43). Optimal search procedures that select
appropriate subsets according to preset criteria could be designed as part of such an
algorithm.

7. Threshold-model fitting
Using a global non-linear model to represent a non-linear system obviously has

many advantages. It all depends, however, upon whether the system under investi­
gation can be represented by a single model. Some severely non-linear systems may
require more than one model to capture different dynamic behaviour over different
operating regions. The threshold NARMAX (TNARMAX) model may be particu­
larly useful for modelling such systems. A general TNARMAX model can be
described as

where

y(t) =Pi(y(t - I) •... , y(t - ny ) . u(t - I)•... , u(t - nul, £(t - I) •... , £(t - n,ll

+ £(t) if Xi e 1R(i; i = I•... , p

X, = (y(t - I)•...• y(t - ny ) , u(t - I)•...• u(t - null

(45)

(46)

the lR(i are given regions of the (ny+ nul-dimensional euclidean space. and the fli( . )
are some non-linear functions. The lags ny • nu and n, for different sub-models Pi( . )
can take different values. Here. for the convenience of description, the same notation is
used for all the sub-models. Notice that x, does not include £( • ) since £(t) represents
the system noise and cannot be measured directly. Again our attention is focused on
the linear-in-the-parameters TNARMAX model because effective algorithms for
structure determination and parameter estimation discussed in the previous sections
can be applied. Thus (45) can be expressed as

n"
y(t) = L cfi}'(t)(J}' + £(t), if x, e 1R(i; i = I, ... , P

j=l
(47)
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1908 s. A. Billings and S. Chen

where </J)'(t) is shorthand notation for </J)'(y(t - I), ... , y(t - ny),u(t - I), ... ,
u(t - nul,E(t- I), ... , E(t- n,)). If none of the </J)'(t) involve E( '), model (47) becomes
a linear-in-the-parameters TNARX model. The TNARX and TNARMAX models can
be regarded as generalizations of the TNAR and TNARMA time-series models
(Ozaki 1981, Lai and Hsieh 1988), which have been widely used for modelling non­
linear random vibrations. Two cases of threshold model fitting are now considered.

The first situation is a direct extension of piecewise linear modelling where p sets of
data records have been obtained and each set corresponds to a different operating
region of the system. Assume that a global non-linear model has been fitted to the data
sets and that model validity tests (§ 8) have revealed that the model does not provide
an adequate description of the data. This warrants an investigation using the
TNARMAX model (47), where each threshold model corresponds to a particular
operating condition; thus from (43)

Vlk] = «!llk]0(k + Elk], if system is in operating region k; k = I, ... , P (48)

Each of the p sub-models can then be identified separately using the orthogonal
estimator. If the sub-models for some operating regions turn out to be very similar,
these models can be patched together or a single model can be re-identified to
represent these operating domains or combinations of them.

The second possibility corresponds to the situation where only a single data record
from one experiment that covers the whole domain of operation is available. If the
estimation of a global model produces a poor fit, the data should be split by defining a
threshold to yield two subsets of data and hence two models. The procedure could be
continued until an acceptable fit is obtained. This is almost the converse of the global
data model idea. The kth sub-model in such a procedure would be defined by

(49)

The algorithm is similar to that developed for threshold time-series models (for
example, Tong and Lim 1980). As a simple illustration, consider the following
TNARMAX model:

or more concisely

{

n"
j~l </J~I(t)O~l + E(t), if y(t - d) <;;; T

y(t) = n"
L </J~2(t)O~2 + E(t), if y(t - d) > T

j= 1

v(1 = «!l(l 0(1 +E(I, if y(t-d) <;;; T}

V(2 = «!l(20(2 + E(2, if y(t - d) > T

(50)

(51)

For given values of the time lag d and the threshold T, two subset models can quickly
be identified from (51) using the orthogonal estimator. The optimal values of d and T
can be found, based on AIC('1), by searching through a set of d and T (Tong and Lim
1980).

8. Model validation
If the model structure and parameter values are correct, E( t) will be unpredictable

from (uncorrelated with) all linear and non-linear combinations of past inputs and
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Identification of severely non-linear systems 1909

outputs; this can be tested by means of the following correlation functions (Billings
and Voon 1986, Billings and Chen 1989)

'I',,(k) = 0 k#O

'I'.,(k) =0 Ilk

'I',(,.j(k) = 0 k~O (52)

'1'.",( k) = 0 Ilk

'I'.",,(k) = 0 Ilk

where wit) = e(t + I)u(t + I), u2'(t) = u2(t) - u2(t) and the bar indicates the time
average, If these correlation functions fall within the 95 % confidence interval

± I'961ft, the model is regarded as adequate,
Alternatively a statistical test known as the chi-squared test (Bohlin 1978,

Leontaritis and Billings 1987 a) can be used to validate an estimated model. Define an
s-dimensional vector-valued function

fi(t) = fi(y(l), '''' y(t -I), u(I), ... , u(t -I), e(l), ''', e(t -I)) (53)
and

I N
rrr = - L fi(t)fiT(t)

N '=1

Then the chi-squared statistic is calculated using the formula

~=NJ1T(rTf)-IJ1

where
I N

J1 = - L fi(t)e(t)IIT,
N r e I

(54)

(55)

(56)

and IT; is the variance of the residuals, Under the null hypothesis that the data are
generated by the model, the statistic ~ is asymptotically chi-squared-distributed with s
degrees of freedom,

In previous applications (Leontaritis and Billings 1987 a, Billings and Chen 1989)
the following vector-valued function fi( t) has been proposed

fi(t) = [wit) wit - I) '" W(I- S + IW (57)

where w( I) is a monomial of past inputs, outputs and prediction errors, If the values of
~ for several different choices of w(t) are within the acceptance region (95 %), that is

(58)

the model can be regarded as adequate, where x2 (a) is the critical value of the chi­
squared distribution with s degrees of freedom for a given level of significance ex (0'05),
For the current extended-model set the choice of wit) as monomials of past inputs,
outputs and prediction errors is, of course, still valid, It is, however, very useful to
include commonly existing non-linear functions such as exp ( . ), sin ( . ), and atan ( . )
as additional choices for wit),

9. Simulation study
Three simulated examples are used to illustrate some of the techniques described

in the present study,
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1910 s. A. Billings and S. Chen

Example 1
The data were generated by

y(t) = 0·5y(t - I) + u(t - 2) + 0·lu2(t -1) + 0·5e(t -1) + 0'2u(t - I)e(t - 2) + e(t)

where the system noise e(t) was a gaussian white-noise sequence with mean zero and
variance 0·04 and the system input u(t) was a uniformly distributed independent
sequence with mean zero and variance 1·0. The inputs and outputs of the system are
shown in Fig. 2. This example was used in Chen et al. (1989) and the current purpose is
to demonstrate how the intelligent structure-detection strategy of § 5 works.

Illput

'00
-.11.+01 ':-1-'-__...u....J::.'-__-'-'-'-_-'-'--..LJ.'--_::..- -'-_-'-----;:"

500·-.25••01 ':-1-----'----------'-----'-'----'---------;-;.

Figure 2. Inputs and outputs of Example I.

A monomial model set with ny = nu = n, = 3 and non-linear degree 1=3 was used
to fit the data. The full model set contained 220 terms. Assume that the system is a
black box and the experimenter simply assigns an initial value 0·032 to P»: The results
obtained using the structure detection procedure of § 5 are shown in Table 1. It is seen
that the appropriate range of p, for this example is

0·025 < p, ~ 0·026

and the iterative procedure found an adequate value for p, through learning. Notice
how the structure of the system (or the terms within the estimated model set) changes
as the algorithm learns P" finally converging to both the correct model structure and
parameter estimates.

Example 2
The data were generated by

y(t) = 0·5y(t - 2) + u(t - I) + 0'4[tanh (u(t - 2»]2 + 0'5e(t - 1)

+ 0·2 sin (y(t - 1»e(t - 2) + e(t)



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

14
:4

5 
14

 S
ep

te
m

be
r 2

00
7 

Identification of severely non-linear systems 1911

Standard
Term Estimate [err], deviation

u(t - 2) O'IOllOe+OI 0'67 I04e + 00 0'IOI0ge - 01
y(t - I) 0'63448e + 00 0·28703e + 00 0·2107ge-01

u2(t_l) 0'86768e - 01 0·8552Oe - 02 0'7579ge - 02
Initial stage y(t - 3)u(t - 2) -0·20542e - 01 0·63062e - 03 0'7817ge - 02
Pp = 0'032 u3(t - 3) -0'64772e - 01 0·55407e - 03 0'11322e-01

y(t - 2) -0'68662e - 01 0'15841e - 02 0'13537e - 01
-2 0·5016ge - 01u,

U;/(J; 0'30603e - 01

u(t - 2) 0·10073e + 01 0'67104e + 00 0·93644e - 02
y(t - l) O'50464e + 00 0·28703e + 00 0·77004e - 02

1st iteration u2(t - I) 0'9246ge - 01 0·8552Oe - 02 0·71586e - 02

p,=O'03
e(t - 1) 0·40841e + 00 0'49355e - 02 0'43167e - 01

-2 0'44924e - 01a;
u;/a; 0·27404e - 01

u(t - 2) 0'10052e + 01 0'67103e + 00 0'89177e - 02
y(t-I) O'50226e + 00 0·28703e + 00 O' 7325ge - 02

2nd iteration
u2(t-l) 0·90645e - 01 0·8552Oe - 02 0'68288e - 02

p, = 0·027
e(t - I) 0·49454e + 00 0·61062e - 02 0'43467e - 01

u(t - I)e(t - 2) 0·22055e + 00 0'14793e - 02 0·4053ge - 01
-2 OA071ge- 01u,

u:/u; 0'2483ge - 01

u(t - 2) 0'10045e + 01 0'67 I04e + 00 0'88643e - 02
y(t - I) 0·50171e + 00 0·28703e + 00 0'72757e - 02

3rd iteration u2(r - I) 0·90395e - 01 0'8552Oe- 02 0'67828e - 02

p, = 0·025
e(t - 1) O' 54986e + 00 0'68936e - 02 0'4533Oe- 01

u(t - I)e(t - 2) 0·25074e + 00 0'17351e - 02 0'4229ge - 01
-2 0'4023Oe- 0 Ia;

a;/(J; 0·2454Oe - 01

u(t - 2) 0'10033e + 01 0'67047e + 00 0'89478e - 02
y(t - I) 0·5028ge + 00 0'28735e + 00 O'73364e - 02

4th iteration u2(t - I) 0·90966e - 01 0·8564Oe - 02 0'68505e - 02

o, = 0·025
e(l- I) 0'54796e + 00 0·69244e - 02 0'45523e - 01

U(l- I)e(t - 2) O' 23848e + 00 0'16174e-02 0·42076e - 01
-2 0'4102Oe- 01u,

ir:/u; 0'25073e - 01

U(l- 2) 0·10032e + 01 0·67047e + 00 0'8947ge - 02
y(t -I) 0·50281e + 00 0'28735e + 00 0·73374e - 02

5th iteration
u2(t-l) 0'91097e - 0 I 0·8564Oe - 02 0·68514e - 02

p, = 0·0251
r.(l- I) O' 54843e + 00 0'69317e - 02 0'4553ge - 01

u(t-l)e(I-2) 0'23785e + 00 0·16098e - 02 0'42062e - 0I
-2 0·4101ge - 01u,

u:/u; 0·25072e - 01

Table l. Iterative procedure for Example I.

where e(t) was a gaussian white-noise sequence with zero mean and variance 1·0 and
u(t) was an independent sequence of uniform distribution with zero mean and
variance 2·0. The inputs and outputs of the system are plotted in Fig. 3.

The correct model structure was identified using the procedure of § 5 from an
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1912 s. A. Billings and S. Chen

I DpU't

....e.G1

'00
-.,a'.'1 \-1 L...- ...J.:._---;<;;'

Figure 3. Inputs and outputs of Example 2.

Term Estimate [err],
Standard
deviation

u(t-I)
y(t - 2)
o(t - I)

[tanh (U(I - 2))]2
o(t - 2) sin (y(1 -I))

-2a,
i/;fa;

0·98346e + 00
0·45094e + 00
0·55903e + 00
0·45231e + 00
0·1760Ie+00
0·99213e + 00
0·23627e + 00

0·41375e + 00
0·25516e+00
0·69506e - 01
0·2164ge - 01
O·3664ge - 02

0·3111Ie-01
(}22825e - 01
0·4511Oe- 01
0·6653ge - 01
0·63326e - 01

Table 2. Extended-model-set identification of Example 2.

=

~.Il+...·,(t) ·1.1+"==
-10 '-=- 1-=5=-5;;;-10 -10 ~~"",;z"""T ==

-1.0 -1.'

I'
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t
O ....",.,
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·1.0
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Identification of severely non-linear systems

lIl(') = £(1-1)

lIl(') = £'(1-1)

1913

•••

lIl(l) =)'(t-1)

•••

lD(I) =.rin()i(H)

... k=====- _
(b)

Figure 4. Model validation for extended-model-set identification of Example 2; (a) correlation
tests; (b) chi-squared tests ( 95 % confidence limit).

extended model set containing 28 monomial terms (I = ny = nu = n, = 2), and 11 other
terms: tanh (u(t - i)), tanh (u(t - i)) tanh (u(t - j)), sin (y(t - i)), sin (y(t - i))e(t - j)
(i,j = 1,2). The final results are gived in Table 2. The model validity tests of Fig. 4 con­
firm that this model is adequate.
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1914 s. A. Billings and S. Chen

As a comparison, a polynomial model was also identified from a monomial set of
210 terms (I =4 and ny = n. = n, =2). The results are shown in Table 3. Although this
polynomial model is adequate, as can be seen from Fig. 5, it requires more terms than
does the model that was obtained on the basis of the extended model set.

Standard
Term Estimate [err], deviation

u(t - I) 0·75166e + 00 0·41375e + 00 0·81280e-Ol
y(t- 2) 0·4599ge + 00 0·25516e + 00 0·230/6e-Ol
e(t- I) 0·5575ge + 00 0·66522e - 01 OA5248e- 01

u2(t - 2) 0·24676e + 00 0·17627e - 01 0·58362e - 01
u4(t - 2) -0·32453e - 01 0·42702e - 02 0·1279Oe- 01
u3(t - 1) 0·4957ge - 01 0·298lie - 02 0·19628e - 01

y2(t-2)u(t-l) 0·1178ge - 01 O·23400e - 02 0·52121e - 02
y3(t_ l)e(t- 2) - 0·93298e - 02 0·16952e - 02 0·28514e - 02
y(t-l)e(t-2) 0·10523e + 00 0·32981e -02 0·39565e - 01

• 2 0·97497e + 00([,

&:/([; 0·23218e + 00

Table 3. Polynomial identification of Example 2.

Example 3

Two sets of data were generated from

y(t) = [0·4 - 0·3 exp (- u2 (t - 2))]y(1 - 1)+ [0·5 + 0·2 exp (- U
2 (1_ I))]y(t - 2)

+ U(I - 1)+ 0·2u(l- 2) + e(t)

where e(t) was a gaussian white-noise sequence with zero mean and variance 1·0,
u(t) = Urn + W(I), wit) was an independent sequence of uniform distribution with zero

==

-10

01.1+.2 ·,2'"

10

T
.1. 0

5(a)

10
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"'(I) =t(l-I)

10(1)=£'(/-1)

1915

•••

"'(I) = )1(1-1)

•.• t== _

10(1)= M(y(I-!))

... ~:====::::=-------------------20 4el'1

(b)

Figure 5. Model validation for polynomial identification of Example 2; (a) correlation tests;
(b) chi-square tests ( • 95% confidence limit).
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1916 S. A. Billings and S. Chen

mean and variance 0"; and

um=O'O and

Um = 10·0 and

0"; = 1·0

0"; = 0·04

for the first data set

for the second data set

These two sets of inputs and outputs are plotted in Fig. 6. This example was designed
to represent a situation where two experiments had been performed on a plant, each
about a different operating level. The object was to analyse the data as described in § 6
and to estimate a global data model.

O.lIe.Ol
ID,at

500
•• 1Te+Ol:-,_'_____...ll--"'-'-_-'----'-'_'---'---'-'"'-_....-'-'--- ----;-;;

t.1Se+01

500
•. STe+01;-,---------------------J.-------;c;.

6(a)

IDpDt.

O.n •• 01 !-I_'___.L...LJ"'-_..J...--'-_"'---'-....;.:......:. --'---'-'_-'---_'____..l- -"-;;;:

O.10e+02

O.lSe+U

'00
O.l1e.03 ~,--....:...------------.lL------'------___,;_:

Figure 6.

(b)

Inputs and outputs of Example 3; (a) 1st data set; (b) 2nd data set.
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Identification of severely non-linear systems 1917

The correct global model was identified from the extended model set: 28 mon­
omial terms (I = 2, n, = n. = 3 and n, = 0), and 21 other terms: exp (- u2(t - i)), exp
(-u 2 (t - i))u(t - j), exp (-u 2 (t - i))y(t - j) (i,j = 1,2,3). The final results are given
in Table 4 where AIC(4'0) was used to terminate the process-model regression pro­
cedure and the model validity tests are shown in Fig. 7.

As a comparison, models were also fitted to each of the two data sets separately.
The models were selected from the same 49-terms that defined the extended model set.
The results are presented in Tables 5 and 6, respectively, where AIC(4'0) was used to
terminate the model selection. These two models seem to fit the corresponding data

"}
tu(ko)

.. 'I
iU I1I.) <k )

=a=-
"

- ........ F"'" 20

.1. e .1. 0

--- • s::z:

-==-----==-'ll~'..(tJ~ '1.1"2"'"
--=- I -- .10 -10 ~~-;;;;z;..-T

·1,' -1.0

-10

··r....'
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-1. 0

7(a)

z<::: 20H"'I~
-1.0
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1918 S. A. Billings and S. Chen

•••

"'{I) = t'{I-l)

1::::====::::::.....-----------------~20dela,

O.U••02

•••

0>(') =I{I-I)

'-=----------------------2~.4ela,

o.ne.O:

•••

",(.) = ap("(I-I»

1=::::=:::::--------------------'-0 dela,

O.S3e.02

•••

(e)

"'(I) = t'{I-l)

L-__==:::::=:.- ,_. dela,

O.33e+02

...

"'(I) = 1(.-1)

L==::::::::==:::::::.....---------------,-o del.,.

•••

0>(')= ap("(I-I))

20 fel.,

(d)
Figure 7. Model validation for global-model fitting of Example 3; (a) correlation tests (1st

data set); (b) correlation tests (2nd data set); (e) chi-squared tests (1st data set); (d) chi-
squared tests (2nd data set) ( 95 % confidence limit).
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well, as can be seen from Figs 8 and 9. Both the models are different from the correct
global model because neither of the inputs alone covers the full amplitude range of the
plant; the inputs taken one at a time are not persistently exciting (Leontaritis and
Billings 1987 b).

"l
+u<t)

"'1

+'UlI)u.>

='" ----a=">""'"= 20 """" """"
,.,.,... E=' 2'

-1.0 .1. D

·1' .: I'

.1. 0

(a)

00(1) =1(1-1)

z::::: 10

•••

Cll(.) = up(u(I-I»

•••
(b)

Figure 8. Model validation for model given in Table 5 (using 1st data set); (a) correlation tests;
(b) chi-squared tests ( 95 % confidence limit).
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:;:z- - c:Z 20
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" , tl

-10 -==--==--: ------=- 10 -10 c:::ZZ::Z!5--'iz.-;--

-1.0 -1.0

=:s::o::::: 10

·1 • ......;:;:=---==-·--'l"'u
-1. ,

(a)

"'(I) = T(I-1)

10

O>(r) =ap<.(t-l))

•••
(b)

Figure 9. Model validation for model given in Table 6 (using 2nd data set); (a) correlation
tests; (b) chi-squared tests ( 95 % confidence limit).
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Term

y(t - 2)
u(t - I)
y(t - I)
u(t - 2)

y(t - I) exp ( - u2(t - 2))
y(t - 2) exp (_u 2 (t - I»

combined a;
combined a; /17;

Estimate

0-4859Oe + 00
0·10238e +01
0'40762e + 00
0·25041e + 00

-0'27497e + 00
0'17738e + 00
0·99334e + 00
0'13878e - 03

[err];

0'9996ge + 00
0·1058ge - 03
0'57197e - 04
0'44852e - 05
0'31337e - 05
O'23507e - 05

Standard
deviation

0'25534e - 01
0'42357e - 01
0·27508e - 01
0'50485e - 01
0'43928e - 0 I
0'4322ge - 01

Table 4. Global model fitting of Example 3.

Term

y(t - 2)
u(t - I)
y(t - I)

y(t - I) exp ( - u2 (t - 2))
u(t - 2) exp (-u 2(t - 2))
y(t - 2) exp (_u 2 (t - I))

-217,
a;/u;

Estimate

0·45036e +00
0'10363e + 01
0·47644e + 00

-0'34116e+00
0'68683e + 00
0'19363e + 00
0'99745e + 00
0'1778ge +00

[err];

0'52427e + 00
0'19738e +00
0'77093e - 01
0'13238e - 01
0'64432e - 02
0-3675ge -02

Standard
deviation

0'4153ge - 01
0'44163e-Ol
0'40412e - 01
0'60462e - 0 I
0·16657e + 00
0'6042Ie-Ol

Table 5. Identifying the first data set of Example 3.

Term

y(t - 2)
y(t - l)
u(t - I)

-217,
a;/u;

Estimate

0'50657e + 00
0·40991e + 00
0'1009Oe + 01
0·99027e + 00
0·69203e - 04

[err];

0·9999Oe+00
0'2162ge - 04
0'49086e - 05

Standard
deviation

0'37121e - 01
0·36902e - 01
0'1732Oe+ 00

Table 6. Identifying the second data set of Example 3.

10. Conclusions
Special attention has been given to non-linear models that are linear-in-the­

parameters. The concept of an extended model set has been introduced by augmenting
the set of polynomial models with other functions that commonly exist in non-linear
systems and this provides a unified representation for a large class of non-linear
systems. Intelligent structure detection strategies have been combined with orthog­
onal least-squares estimators to provide efficient procedures for identifying non-linear
systems, and it has been demonstrated how these algorithms can update the model
structure and parameter estimates al each iteration.

It is often advantageous to identify a non-linear model that is valid over the lotal
allowable operating regime whenever possible; and a global model fitting technique
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has been proposed. Threshold modelling based on the TNARMAX model has also
been discussed and shown to be complementary to the idea of global data modelling.

Simulation results have been included to illustrate the application of algorithms.
Extensive applications of the extended-model-set and global-and threshold-model
methods fitting real data are currently under way.
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