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INT. 1. CONTROL, 1989, VOL. 50, No.6, 2151- 2171

Modelling and analysis of non-linear time series

S. CHENt and S. A. BILLlNGSt

The modelling of non-linear time series is reviewed and new results are introduced
by employing some ideas from the identification of non-linear control systems. Both
global and local conditions for stationarity and invertibility are established for the
general non-linear time-series model and it is shown how these results provide a
framework for time-series estimators. Methods of computing multistep-ahead
predictions are studied and the usefulness of polynomial models is discussed.

I. Intraduction
The theory and practice of linear time-series analysis is now a well-established field

(see e.g. Box and Jenkins 1976). Most processes encountered in the real world,
however, are non-linear to some extent, and in many practical applications non-linear
models may be required in order to achieve an acceptable predictive accuracy. For
over a decade time series analysis has moved towards the non-linear area and various
non-linear time-series models, such as bilinear models (Granger and Andersen
1978 a), linear and non-linear threshold autoregressive models (Tong 1983, Ozaki
1981), exponential autoregressive models (Ozaki 1985), state-dependent models
(Priestley 1980) and doubly stochastic models (Tjestheirn 1986), have been developed.
Practical applications have shown that non-linear models cannot only provide a
better fit to the data but can also reveal rich dynamic behaviour such as limit cycles
and bifurcations, which cannot be captured by linear models.

The present study reviews existing non-linear time-series models. By adopting the
results from the realization of stochastic control systems, a unified representation,
namely the NARMA (Non-linear AutoRegressive Moving Average) model, is
introduced. Various existing non-linear time-series models can then be viewed as
particular parametrizations of the NARMA model. Threshold time-series models are
discussed in a separate section because of their special structure.

Stationarity conditions for the general non-linear time series model are analysed
next. Unlike linear models, which are either stationary or non-stationary, stationarity
of a non-linear time series model can be a local property. The novel definitions of
global and local stationarity are therefore introduced. As a dual to stationarity,
general invertibility conditions are also investigated, and the new concepts or global
and local model-invertibility or m-invertibility are proposed. It is shown how these
new concepts provide important implications for the estimation of polynomial time­
series models, and this provides a new perspective on previous results that questioned
the usefulness of such models (Granger and Andersen 1978 a). The computation of
multi-step ahead predictions and the application of some of the concepts to the annual
sunspot numbers is also included.
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2152 S. Chell and S. A. Billings

2. The NARMA time-series model
It is well known that input-output descriptions that expand the current output in

terms of past inputs and outputs provide models that represent a broad class of non­
linear stochastic control systems, and a unified representation called the NARMAX
model has been derived under some mild assumptions (Leontaritis and Billings
1985 a, b, Chen and Billings 1989 b). Adopting this approach for time-series model­
ling leads to the following general model:

y(l) = f(y(t - I), ... , y(t -lIy ) , e(t - I), ... , e(t -lie)) + e(t) (I)

where {y(t)} is a time series, {e(t)} a strictly white-noise process andf( . ) some non­
linear function. The model (I) is about as far as one can go in terms of specifying a
general finite-dimensional non-linear relationship (Priestley \980) and can be referred
to as the NARMA model because of its resemblance to the ARMA model

y(t) = ao + Eaiy(t - i) + I bie(t - i) + e(t)
i= I i=1

(2)

The derivation of (1) can follow the same procedure as the NARMAX model by
regarding e(t) as the system 'input' (for details see Leontaritis and Billings 1985 a, b).
An interpretation of (1) is that y(t) is separated into two components. The part of y(t)
that can be predicted from the past is given by the conditional expectation

E[y(t) Iy(t - I), y(t - 2), ...J= f(y(t - I), ... , y(t -lIy ) , e(t - I), ... , e(t -lie)) (3)

or equivalently

E[y(t) le(t - I), e(t - 2), ...J = f(y(t - I), ... , y(t -lIy ) , e(t - I), ... , e(t -lie)) (4)

(recalling from (1) that y(t - i) is a function of e(r - 1), e(t - 2), ... ) and the unpredict­
able part e(r) defined as the innovation. Before using (J) in non-linear time-series
modelling and analysis, the form of the non-linear functionf( . ) must be given and, in
doing so, various existing time-series models are obtained.

2.\. The state-dependent model

Priestley (1980) developed an interesting form for f( . ) and called the resulting
time series model a state-dependent model. If

X, = (e(t -lie + I), ... , e(t), y(t - ny + 1), ... , y(tW (5)

is regarded as the 'state vector' at time t then the state-dependent model can be written
as

"v "
y(t) = JL(XI - 1 ) + l: cPi(x,-Ily(t-i) + t.. l/J,(x,_l)e(t-i)+e(t) (6)

i= 1 j= 1

Many existing time-series models can be interpreted as special cases of(6) by choosing
particular forms for cPi( • ) and l/J i( . ).

Linear model

By taking JL( x.; 1)' cP( x.; I) and l/Ji( X,_ .l as constants for all i, (6) reduces to the
ARMA model (2).
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Non-linear time series 2153

Bilinear model
The general bilinear model is given by (Granger and Andersen 1978 a, Subba Rao

and Gabr 1984)

y(t) = ao + I aiy(t - i) + I bie(t- i) + I ~ Cije(t- i)y(t - j) + eft) (7)
i=1 i=1 i=1 j=l

and this can be viewed as a special case of (6) by taking Il(X,-l) and 4>i(X,-I) as
constants and putting

",
l/Ii(X,-I)=bi + L cijy(t-j)

j= 1

Exponential model
The exponential AR model of Ozaki (1985) takes the form

",
y(t) = L {lXi + P exp [ - y2(t_ l)]}y(t- i) + eft)

t» 1

and this can be obtained by setting Il(x,- tl = 0, l/Ii(X,- tl = °and

4>,(x,_ tl = IXi + Piexp [ - y2(t - 1)]

In the present study the more general exponential ARMA model defined by

",
y(t) = L {lXi + Piexp [ - y2(t_ ki)]}y(t- i)

i= 1

+ I {Yi + 'Ii exp [- y2(t - mi)]}e(t- i) + eft)
i= 1

(8)

(9)

(10)

is introduced, which is again a special case of (6).
Other models such as the threshold AR model (Tong and Lim 1980) can also be

interpreted in a similar manner. Threshold time-series models are discussed in § 3.
It can be seen that the state-dependent model provides a useful framework for

non-linear time-series modelling. It does, however, create a problem of how to identify
the functional form of Il(X,-I)' 4>i(X,-tl and l/Ii(X,-I)' Realizing that a linear
approximation

4>;(X,) = (W) + XTBi}

l/I;(x,) = l/IlO) + xTb i

does not have the generality required, Priestley (1980) suggested that a, and b, should
each take the form of a random walk. While this endows the state-dependent model
with considerable flexibility, it complicates the identification procedure (see e.g.
Priestley 1980, Haggan et al. 1984). Notice that this interpretation of the state­
dependent model brings it very close to the doubly stochastic time-series model of
Tjestheirn (1986).

2.2. The polynomial model

The first-order approximation of (10) does not provide sufficient accuracy to
approximate the general NARMA model (I). A straightforward solution would be to
use a higher-order approximation, and this yields the polynomial ARMA model

y(t) = p(y(t - I), ... , y(t- ny ) , e(t- I), ... , e(t- nell + eft) (II)
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2154 S. Chen and S. A. Billings

(12)

where p( • ) is a polynomial function of degree 1. It is obvious that the model (II) can
be viewed as a particular parametrization oft I). While several authors have suggested
this form of model as a natural extension of the ARMA model, Leontaritis and
Billings (1985) provided a rigorous derivation to justify the use of this description.

While the polynomial model often produces higher predictive accuracy in
practical applications, it has been criticized for being explosive (Granger and
Andersen 1978 a, Ozaki 1985). It is clear that if y(t) and e(t) are unrestricted then the
model ( II) will almost certainly become explosive. This, however, does not imply that
polynomial models are not very useful in modelling non-linear time series whose
underlying process is stable and non-divergent. This aspect is further discussed in § 4.

2.3. The rational model

The rational difference-equation model was introduced by Sontag (1979) follow­
ing a study of polynomial response maps for deterministic non-linear control systems,
and an extension to stochastic control systems was given by Billings and Chen (1989).
Consider initially e(t) to be a physical input. If the response function F;(e(t),
e(l- I), ... ) of the underlying process is polynomial and has a finite-dimensional state­
space realization then the underlying process satisfies a rational time-series model
as a consequence of Sontag's results:

)
p,(y(t-l), ... ,y(t-ny),e(t-I), ... ,e(t-ne)) ()

y(l= +et
P2(y(t - I), ... , y(t - ny), e(t - I), ... , e(t - nell

where PI ( -) and P2( .) are polynomial functions of degrees II and 12 respectively.
Again, the model (12) can be considered as another parametrization of (I).

Note that the conditions for the existence of such a rational model are very mild
and the model (12) is not valid only at points where P2( • ) = O. It can immediately be
seen that the polynomial time-series model (II) is included in (12). However, the
rational time-series model is no longer linear in the parameters.

2.4. The linear-in-the-parameter model

A class of non-linear time-series models that are linear in the parameters are
worthy of special attention because rich linear identification techniques can readily be
applied to this class of models. A general linear in the parameters model takes the
form

y(t) = I z;(r)O; + e(t)
i= 1

(13)

where the 0; are parameters and the Zi(l) are 'regressors', which are some transform­
ations of lagged y(r) and e(t):

Zi(l) = Zi(y(t - I), ... , y(t -lIy), e(t - I), ... , err - nell (14)

For the ARMA model (2) the z;(I) are a constant and past values of y(t) and e(t). If
the cross-products of y(t - i) and e(t - j) are further included, (13) represents the
general bilinear model (7). If the Zi(t) are chosen to be monomials of lagged y(t) and
err), a polynomial model is obtained. For an exponential ARMA model some of the
zi(l) take the form exp [ - y2(1 - kj)] y(t - j) and exp [- y2(t - mj)] e(t - j). The
choice of 'regressors' is, however, not restricted to these cases. In other applications,
for example, Zi(t) may take the forms log [y2(t - j)], tanh [e(t - j)] etc. In practice,
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Non-linear time series 2155

( 15)

physical knowledge of the underlying process can often be used to help in selecting the
forms for Z,(t).

The model (13) is often referred to as a linear or pseudolinear regression model
depending on whether the z,(t) include lagged eft). The flexibility in the choice of Zi(t)
allows a wide class of non-linear time series to be represented by (13), and unified
computer software can therefore be developed to identify such models.

3. The threshold NARMA model
If a non-linear system displays significantly different dynamic characteristics in

different regions, a single model may not adequately represent the process, and a series
of models may therefore be required in order to capture the different dynamic
behaviour of the system. Threshold models are particularly useful in such a situation
and have been widely used in modelling non-linear random vibrations (Tong and Lim
1980, Ozaki 1981).

A general threshold non-linear model can be described as

y(t) = Pil(y(t - I), ... , yet - ny), e(t - 1), ... , eft - ne ) )

+ e(t) if Yr-l ERu>, i = I, ... , q

where
Yr-I = (y(t - I), ... , yet - nyW ( 16)

(17)

the Rill are given regions of ny-dimensional euclidean space, and the fUI( . ) are some
non-linear functions. The model (15) may be referred to as the TNARMA (Threshold
NARMA) model. Some special examples of (15) are now given.

The self-exciting threshold linear model of Tong (1983) can obviously be
generalized to the non-linear case:

y(l) = fUI(y(t - 1), ... , yet - ny), e(l- I), ... , eft - ne ))

+e(t) ifr,_ 1 <y(t-d)~ri' i= I, ... ,q

where the r, are thresholds satisfying

(18)

and d (I ~ d ~ ny) is a physical time lag. The model (17) represents a class of
TNARMA models that are important from the point of view of practical identific­
ation. If the Pil( .) are chosen to be polynomial functions then (17) includes the
threshold non-linear model given by Lai and Hsieh (1988). If these polynomial
functions are further independent of lagged eft) then (17) becomes the threshold non­
linear model of Ozaki (1981). The present study will restrict attention to thoseflil( . )
that are linear in the parameters. Such TNARMA models can be described as

n~1

y(t)= L zj'I(I)Oj'I+e(t) ifr i _ 1 <y(t-d)~r" i= l, ... ,q (19)
l> I

where the z)'l(t) are given non-linear functions as defined in (14).

4. Stationarity
Stationarity conditions for the linear model (2) are well known. If the roots of

.y
A(i) = 1- L a,z' = 0

i= 1
(20)
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2156 S. Chell alld S. A. Billings

(21)

are all outside the unit circle in the i-plane then the stochastic process generated by (2)
is stationary. The stationarity of a linear model is a 'global' property in the sense that
the model is either stationary or non-stationary-the stationarity of the model does
not depend on the statistical properties of eft) apart from eft) being stationary, and no
amplitude restriction is required. This can be viewed from another angle. A linear
system is either stable or divergent, and the stability does not depend on the initial
conditions or the amplitude of input. On the other hand, the stability of a non-linear
system is generally dependent on the initial conditions and input amplitudes. An
investigation of stationarity for a general non-linear time-series model is a very
complicated matter. Only in a few very simple cases can the conditions for the linear
case be directly extended. Consider the simple rational model

0'99+e2(t - l )
y(t) = 1 + 0'l y2(1- I) + e2(t _ I) y(l- I) + eft)

This model is stationary because

O
0'99+e2(1-1)

< <I
1+ 0'l y2(1- 1)+ e2 (t - I)

The stationarity conditions for the first-order NAR model

y(l) = f(y(t - I)) + eft) (22)

have been investigated by Jones (1976). In particular, if If(y)1 < Iyl, that is f( • ) is a
contraction mapping, the process is certainly stationary. For the exponential AR
model

y(t) = {1'95 + 0·23 exp [ - y2(t - I)]}y(t - I)

- {0'96 + 0·24 exp [ - y2(t - I)]}y(t - 2) + e(l) (23)

which Ozaki (1985) has shown is stationary, it is interesting to study the transient
phase of the process. Assume that e(t) has a small amplitude and y(O) = y( -I) = O.
The model starts in the non-stationary region and y(t) is explosive until the amplitude
of y(l) becomes large enough. Then the process settles down to the stationary region.
If e(t) has a larger amplitude, the process will reach the stationary area more quickly.

In general, a non-linear process can be stationary when y(t) and e(l) are in a
region, non-stationarity is introduced when they move to another area. In the
following the results of Lin et al. (1989) are used to show that under certain conditions
the non-linear time series generated by (I) is asymptotically stationary and converges
in the mean-square sense to a stationary time series. The definitions of global and
local stationarity are then introduced. First define II = max {lIy , lie} and rewrite (I) as

y(l) = f(y(t - 1), ... , y(t -II), eft - I), ... , eft -II)) + e(l)

Assumplioll I
It is assumed that the function f( . ) in (24) has the following properties.

(i) The non-linear equation

y = fry, ... , y, 0, ... , 0)

has at least one solution. Denote a solution of (25) by Y.

(24)

(25)
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(ii) For any P > 0 and o » 0 the collection of mappings

{f( " Y2' ... , Yn, e" ... , e.) IY2' ..., Y. E 51(y, p); el , .... e. E 5 2(0. u)}

2157

{f(YI, .... Y.-" -, e l , ... , en)IY, ..... Yn-I E s.o. p); e l ..... en E 5 2(0, u)}
(26)

{f(YI' .... Yn, " e2, ... , e.) IYI .... , Y. E 5 I (y, p); e2' .... e. E 52(0. u)}

{fey I ..... Yn. e1> .... e. - I •. ) IYI, .... Yn E 5 I (Y. p); eI' ..., en - I E 52(0, u)}

are equi-Lipschitz-continuous in a mean-square metric on 51(y, p) and
5 2(0, e) with Lipschitz constants a, (p, e), ... , a.(p, u) and b l (p, e), ... , b.(p, e)
respectively, where

5,(y,p)={YIIIY-YII";p}, 5 2(0,u)={elllell";u} (27)

The norm II . II is a mean-square norm, and YI' ... , Y. E 5, (Y, p) means

YI E 5dy, p), ... , Y. E 5dY, p)

Definition I

For any t and N", - t define the series

YN(t) = F'N(Y( - N - I), ... , y( - N - n), e(t - I), ... , e( - N - n)) + e(t) (28)

where

F'N(Y( - N - I), ... , y( - N - n), e(t - I), ... , e( - N - n))

= F~-df(y( -N -l), ... ,y( -N -n),e( -N -I), ... ,e( -N -n)) +e( -N),

y( - N - I), ... , y( - N - n + I), e(t - I), .... e( - N - n + I)) (29)

with

and

y(-N-I)= ... =y(-N-n)=y (30)

F'_,(y(t - I), ... , yet - n), e(t - I), ... , e(t - n))

= f(y(t- I), ... , yet - n), e(t -I), ... , e(t - n)) (31)

Note that YN(t) is simply the time series yet) defined in (24) with the specific initial
condition (30).

Theorem I

Let Assumption I hold and assume that for any p > 0 and a > 0 there exist 0 <
PI"; P and 0 < u l ,,; a such that Il(p" u,) < 1. where Il(PI, uil is the maximum
eigenvalue of the matrix (ATA) 1/2 with

(32)
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2158 S. Chen and S. A. Billings

Then there exist 0 < P2~ PI and 0 < IT2 ~ ITI such that

(i) the non-linear time series y(t) defined in (24), with initial conditions y( - N
- I), ... , y( - N - n) E 8 1(ji, P2) and restriction e(t), ... , e( - N - n) E

8 2(0, IT2), is bounded in a mean-square metric; that is, y(t) E 8 1(ji, PI),
t~ -N;

(ii) with the restriction e(t), ... , e(N - n) E 8 2(0, IT2 ) , for any t and N ~ -t, the
sequence {YN(t)}~= -r t is a Cauchy sequence and the time series

y*(r) = y*(e(r), e(t - I), ...) = lim YN(t)
N-oo

(33)

is well defined;

(iii) the time series y*(r) defined in (33) is stationary;

(iv) the time series y(t) defined in (24) with y(O), ... , y( -n + I) E 8 1( ji, P2) and
e(t), ... , e(-n + I) E 8 2(0, IT2 ) converges in the mean-square sense to y*(t).

Proof
See Lin et al. (1989). This theorem is a simplified version of Theorem 1 in that

paper.

Assertion (i) of Theorem 1 may be interpreted as meaning that 'bounded input'
leads to 'bounded output' in the mean-square sense. Note that in assertion (iii) of
Theorem I the stationarity of the noise process e(t) is implicitly assumed (in fact, e(t) is
assumed to be independently identically distributed). The key requirement in
Theorem I is that

(34)

Given P2> 0 and IT2 > 0, Theorem 1 states that the time series y(t) defined in (24) is
stationary if initial series values belong to 8 1 (ji, P2), the noise process e(t) is bounded
in 8 2(0, IT2 ) , and there exist PI ~ P2 and ITI ~ IT2 such that (34) holds. It can
immediately be seen that, given a non-linear function f( . ), P2 and IT2 may not be
arbitrarily chosen if the requirement (34) is to be satisfied. This suggests the following
definition.

Definition 2
If P2 and IT2 in Theorem I can be arbitrarily large then the time series defined in

(24) is globally stationary; otherwise, it is locally stationary on 8 1 (ji, P2) and
8 2(0, IT2)'

The reason for the choice of the words 'global' and 'local' is as follows. The process
generated by a globally stationary model is always stationary for all kinds of
distributed e(t) as long as e(t) is stationary. That is, the stationarity is globally valid on
the normed space of all the stationary distributions. A locally stationary model, on the
other hand, can only generate a stationary process on a region of this normed space,
that is on 8 2(0, IT2). As an example of global stationarity, consider the exponential
ARMA model (9). If the roots of

R y

A(i) = 1- L (Xi? = 0
i=1
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all lie outside the unit circle in the i-plane then the time series defined by (9) is globally
stationary (see Ozaki 1985).

4.1. Local stationarity of polynomial models

Local stationarity is not a rare phenomenon among non-linear time-series models,
and a typical example is the polynomial model (11). For models that are linear in
lagged y(t), conditions for local stationarity can easily be derived. For example,
consider

y(t) = lXe2(t - I)y(t - I) + e(t), IX #-0

Because

Ily(t)II.,; 11X111e2(t -1)lIlly(t -1)11 + Ile(t)II

this model is stationary if

However,

Ile2(t-1)11 ~ Ile(t-I)lllle(t-I)11

if the mean-square norm is chosen as Ilell = (E[e 2
] ) 1/2, Ile(t - I) II = (Je> where (J; is the

variance of e(t). The model is therefore stationary if

(J; < IIXI- 1

It is seen that (J2 can be chosen as

o< (J2 < IIXI- 1/2

The choice 'of P2 is arbitrary. Note that no restriction on the amplitude le(t)l is
imposed in this case. For more general polynomial models that are non-linear in
lagged y(t), however, additional amplitude restrictions on e(t) and initial series values
may be required in order for such models to be locally stationary. This implies that the
distribution of e(t) should be truncated, otherwise there might be no P2 and (J2 such
that (34) holds.

Using polynomial models in simulation with gaussian noise excitation e(t) can
therefore often lead to explosive behaviour. This is because if the noise is really
gaussian-distributed, it may occasionally have a large amplitude value resulting from
the tails of the gaussian distribution (although the possibility of e(t) taking such a
value is very small). When this occurs, the model output may jump out of the stability
region, causing divergence of the future model-output values. A simple illustration is

y(t) = lXy2(t - l)y(l- I) + e(I), 0 < IX < 1

Assume that at time 1= k the realization of e(k) takes a very large value, resulting in
Cly2(k) » I. From I> k, y(tJ becomes divergent unless at some future time the net
result of lXyJ(t - I) + e(l) happens to become small again.

Limiting the noise amplitude is not a mild restriction. For example, it rules out the
gaussian noise process. The gaussian assumption is, however, an idealization of many
real situations, and for most real systems the noise may well have limited amplitude
values. It is of course an advantage that a model is globally stationary or locally
stationary without the restriction on noise amplitude. Unfortunately the general
polynomial model does not belong to this class.
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2160 S. Chen and S. A. Billings

4.2. Usefulness oj polynomial models

The explosive nature is a disadvantage of the polynomial model. This does not
mean, however, that the polynomial model has little value in modelling non-linear
time series when the underlying process is stable and non-divergent. In practice, for
stable and non-divergent time series, polynomial models often fit the observed time­
series values better and produce more accurate predictions than linear models.

The better fit to data can be explained by non-linear approximation theory. Most
processes encountered in the real world are non-linear and can generally be
represented by the NARMA model (I). A linear model is only a first-order
approximation ofJ( . ) that is valid in a small region around a choice of y. If the non­
linearity is severe, a linear approximation may be totally inadequate. It is also known
from systems theory that the class of bilinear models is not sufficient to approximate
all non-linear functionsJ( . ) in a region around y(see e.g. Fliess and Normand-Cyrot
1982). The set of polynomial models is, however, sufficient to approximate (I) within
an arbitrary accuracy in a region around y (see e.g. Chen and Billings 1989 b). Given
an accuracy requirement, the region in which a polynomial model holds is usually
much larger than that for a linear model.

Using a fitted polynomial model to simulate the underlying process may often
result in divergent behaviour. It is, however, quite another matter to compute h-step­
ahead predictions using a polynomial model. This is because in the latter case
observed past time-series values are used in the calculation. For a stationary non­
linear time series generated from an underlying process within a stable region,
provided that h is not too large, the prediction calculated based on observed time­
series values should remain stable. As an illustration, consider the stable first-order
NAR process of (22), where the function J( . ) for this model is shown in Fig. I. It is
expected that a linear model

y(t) = exy(t - I) + e(t), lexl < I (35)

will provide a poor fit to the data generated from such an underlying process, and a
polynomial model

y(t) = p(y(t - I)) + e(t)

f( y )

___L-_-----l__----L_------:...r-""---_--'---__-"---__.L-__ y

Figure 1. A non-linear function.

(36)
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Non-linear time series 2161

will produce a much better fit to the data. Simulation using these two models under
gaussian noise assumptions will produce a stationary model output from the linear
model (35) and almost certainly a divergent model output from the polynomial model
(36). This does not imply, however, that this polynomial AR model cannot be used to
model the given underlying process and to predict future time-series values. In fact, it
fits the data better, and the one-step- and two-step-ahead predictions based on (36),

yet + 11 t) = p(y(t)) }
(37)

yet + 21t) = E[p(y(t + 1))lt] = E[p(p(y(t)) +e(t + l))lt]

(see § 5.2) are certainly stable. In general, provided that h is not too large, the h-step­
ahead prediction based on (36) will be stable. Since (36) is a better approximation to
the given underlying non-linear process than (35), it is obvious that predictions based
on (36) will be more accurate.

Two of the most important criteria for non-linear time-series models are

(i) parsimonious structure so that statistical identification entails no excessive
computation;

(ii) multistep-ahead predictions should be easily obtained from the fitted model
and the overall predictive performance should be an improvement upon the
linear model.

The polynomial time-series model, or at least the polynomial AR model, is seen to
satisfy both these requirements. The linear-in-the-parameters structure of such a model
enables the direct application of many linear identification techniques. Modelling
non-linear time series using polynomial models is therefore practical and useful. Of
course the explosive nature of the polynomial model should be carefully monitored. A
possible way to alleviate this problem is to employ a threshold structure with both
non-linear and linear model sets. For example, for the above first-order NAR process
an even better model is

{

P( y(t - 1)) + e(t) if Iy(t - 1)1";;; r
yet) =

ao + e(t), if Iy(t - 1)1> r

A more general example of a threshold polynomial model is

{

P(y(t - 1), ... , yet - ny), e(t - 1), ... , e(t - nell + e(r)

y( t) = ny n.

ao + L a;y(r - i) + L b;e(t - i) + e(t)
t» 1 i= 1

which can be globally stationary.

if Iy(t -d)I";;;r

if Iy(t -d)1 >r

(38)

(39)

5. Prediction and m-invertibility
One of the most important uses for time-series models is to provide forecasts or

predictions. In order to use the general non-linear time-series model (I) for prediction,
it is necessary to estimate the unobserved system noise sequence {e(t)} based on the
observed time-series values {yet)} and the given model. This is also crucial in the
identification of time-series models with a non-linear MA part. Granger and Andersen
(1978 b) introduced a generalized definition of invertibility as follows. Assume that the
system is modelled exactly by (I) and that all yet) are known. Let a prediction error or
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2162 S. Chen and S. A. Billings

residual sequence {6(t)} be generated from

6(t) = y(t) - f(y( t - I), ... , y( t - ny ) , 6(t - I), ... , 6(t - n,)) (40)

with an arbitrary initial condition

6(t)=S., t=-n,+I, ... ,I,O

Then the model (I) is said to be invertible if

E[(e(t) -6(t))2]-+0 as t-+C1J

(41 )

(42)

A slightly modified version was given by Hallin (1980). The above definition of
invertibility for time series is not very suitable for practical situations because the
system is often much more complex than the models that are estimated. A more
realistic definition of invertibility called model-invertibility or m-invertibility has been
introduced to deal with this aspect (Chen and Billings 1989 a).

Let us adopt the non-linear-filtering point of view and regard the estimation of
{6(t)} as an inverse problem where the data-generating mechanism is the given model,
y(t) becomes the system 'input' and 6(t) the system 'output'. Note that there is no
requirement for the underlying process producing y(t) to be modelled exactly by the
given model. In fact, the model may not be anything related to the generation of y(t).
An inverse theorem of Theorem I is given as follows.

Assumption 2

It is assumed that the function f( • ) in (24) has the following properties:

(i) the non-linear equation

6 = -f(O, ... , 0, 6, ... , 6) (43)

has at least one solution; we denote a solution of (43) by s;
(ii) if 8, (j', p) and 8 2 (0, e) in Assumption 1 are replaced by 8, (0, p) and 8 2 (E, u)

respectively then the second condition (ii) in Assumption 1 holds.

Definition 3
For any t and N;;, -t, similarly to Definition I, define a series 6N (t) as the series

generated by

6(t) = y(t) - f(y(t - I), ... , y(t - n), 6(t - I), ... , 6(t - n))

with the specific initial condition

6(- N - I) = ... = 6(- N - n) = E

(44)

(45)

Theorem 2
Let Assumption 2 hold and assume that for any p > °and a > °there exist °<

p, ~ p and °< a [ ~ a such that ii(p 1, U tl < I, where ii(p l' U tl is the maximum
eigenvalue of the matrix (BT B) '/2 with

(46)
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Non-linear time series 2163

Then there exist 0 < P2 ,,; P I and 0 < U2 ,,; UI such that

(i) the inverse non-linear time series E(t) defined in (44), with initial conditions
E( -N -I), ... , E( -N - n) E S2(i~, (2) and restriction y(t), ... , y( -N - n) E

SdO, P2), is bounded in a mean-square metric; that is, E(t) E S2(e, ud,
t?> - N;

(ii) with the restriction y(t), ... , y( -N - n) E 5 1(0, P2) for any t and N?> -t, the
sequence {EN(t)}N'= -I is a Cauchy sequence and the time series

E.(t) = E.(y(t), y(t - I), ...) = lim EN(t)
N-oo

(47)

is well defined;

(iii) if y(t) is stationary then the time series E.(t) defined in (47) is stationary;

(iv) the inverse time series E(t) defined in (44) with E(O), ... , E( -n + I) E S2(e, (2)
and y(t), ... , y( -n + I) E 5 1(0, P2) converges in the mean-square sense to
E.(t).

Proof

This theorem is a dual to Theorem 1.

The key requirement in Theorem 2 is that

,ii(Pl,ul)<1 (48)

Given P2 > 0 and U2> 0, for any two sequences {E1i(t)} i = 1,2 with two different
initial conditions satisfying

E1i(t) E S2(e, ( 2), t = -n + I, ... , 0, i = 1,2 (49)

if the process y(t) is bounded in SdO, P2) and there exist PI ?> P2 and a I?> U2 such
that (48) holds then Theorem 2 ensures that E1i(t), i = 1,2, are bounded in S2(e, ud
and they both converge in the mean-square sense to the same process. As a
consequence,

E[(E1I(t)-EI2(t))2]-+0 as t-+<XJ (50)

This becomes the definition of m-invertibility given by Chen and Billings (1989 a). In
particular, if it is further assumed that the underlying process is exactly described by
the given model then (50) is equivalent to (42). That is, the estimated sequence E( t)
converges in the mean-square sense to the unobserved noise process e(r). The rn­
invertibility condition in this case coincides with the definition given by Granger and
Andersen (1978 b). As in the case of stationarity, the definitions of global and local m­
invertibility are now introduced.

Definition 4

If U2 and P2 in Theorem 2 can be arbitrarily large, the model (24) is called globally
m-invertible; otherwise it is locally m-invertible on S2(e, ( 2) and 51(0, P2)'

The interpretations of the words 'global' and 'local' are similar to those in the case
of stationarity. E(t) can always be computed from a globally invertible model
regardless of the statistical properties of y(t), while the ability to compute E(t) from a
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2164 S. Chen and S. A. Billings

locally invertible model depends upon the statistical properties of y(/). An example of
a globally invertible model is the ARM A model (2) with the roots of

B(Z) = 1 + I bit = 0
i= 1

all lying outide the unit circle in the i-plane. Invertibility (corresponding to local m­
invertibility in Definition 4) conditions for certain types of bilinear time-series models
have been investigated previously (see e.g. Granger and Andersen 1978 b, Quinn 1982,
Subba Rao and Gabr 1984), and these conditions can be extended to similar types of
polynomial models that are linear in lagged E(t):

y(t) = Po(y(/- I), ... , y(t - ny ) ) + I p;(y(t - 1), ... , y(t - ny)jE(t - i) + E(t) (51)
i= 1

where Pi( .), j = 0, I, ... , n. are polynomials of finite degree (Chen and Billings
1989 a, b). As a simple example, consider the model

y(t) = ay2(t - I)E(t - 1)+ E(/), a *0

This model is invertible if
1 N

a 2 lim - L E[y4(t)] < 1
N-ro N I~I

(see Chen and Billings 1989 a). If y(t) is stationary, (52) becomes

a2 E[y4(t)] < I

(52)

(53)

and the model in this case is locally m-invertible on 5 2(0, (12) and 51(0, P2) with

0< P2 < 11X1- 112
}

(54)
0<(12<00

where the norm is chosen as Ilyll = (E[y2])112.
For the polynomial model that is non-linear in lagged E(/), if the amplitude of y(l)

and the initial values for E(t) are not limited, P2 and (12 in general do not exist and the
model is not even locally invertible. For example, consider

y(/)=aE3(/-1)+E(t), O<a<1 (55)

If ly(t)1 is not small enough, this model is not invertible because the generation of E(/)
is explosive. The invertibility of the general polynomial ARMA model (11) there­
fore depends upon particular realizations of y(/). For some observed time-series
sequences, {E(/)} may be computed using models like (55), and in other cases the
generation of E(/) using models like (55) is divergent.

5.1. lnvertibility and identification of non-linear M A models

M-invertibility plays an important role in identifying models with a non-linear
MA part (Chen and Billings 1989 a). Let the model (1) be parametrized with a
parameter vector 0 of dimension n8 :

y(t) = f(y(l- I), ... , y(t - ny ) , E(I- 1,8), ... , E(I-n., 8); 8) + E(I, 8) (56)

where 8 E DM with DM a subset of n8-dimensional Euclidean space. Identification
consists of selecting a model (a parameter vector 8) within DM that best describes the
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Non-linear time series 2165

recorded data. It is obvious that, in order to proceed with the identification, there
must exist a subset DM • of DM , for each 0 E DM • so that 6(t, 0) can be calculated using
(56) with given {y(t)}. That is, there must exist a non-empty DM • such that the model
(56) is at least locally m-invertible on some 5 2 (t , 0"2) and 51 (0, P2)' It has previously
been shown that the convergence of recursive identification algorithms depends
crucially upon m-invertibility (Chen and Billings 1989 a).

For polynomial models that are linear in lagged 6(t, 0), such DM . , 5, (0, P2) and
5 2(8, 0" 2) exist, although their explicit expressions are usually difficult to obtain. For
polynomial models with terms that are non-linear in lagged 6(t, 1.1), the situation is
much more complex. A general observation is that, unless the amplitude of y(t) is
restricted within a certain bound, DM• does not exist and it is impossible to identify
terms like l.Iin;~ IS'i(t - j, 1.1) using algorithms that require the calculation of 6(r, 0).
How small ly(t)1 should be in order to guarantee the existence of DM • is generally
impossible to say, and is dependent on particular examples. The authors' experience in
identifying non-linear control systems has shown that, in some cases, terms like
€(I - i, 0)6(t - i. 1.1) can be identified without difficulty, while in other examples the
generation of 6(t, 0) become explosive and the identification procedure fails. This
confirms the above analysis.

5.2. Computing multistep-ahead predictions

In this subsection the computation of multistep-ahead predictions is considered.
Given a model and observed time-series values up to t, the task is to compute
y(t + hit), a prediction of y(r + h). It is well known that

is minimized if and only if

E[(y(t + h) - y(t + hi t))2]

y(t + hlr) = E[y(t+ h)lt]

(57)

(58)

where E[y(r + h) It] is the conditional expectation of y(t + h) based on y(k), k '" r.
For the linear model it is easy to calculate the optimal prediction of y(r + h), and

for simple bilinear models the optimal prediction of y(t + h) can be obtained after
some algebraic operations (see Granger and Andersen 1978 a). For simple polynomial
models the optimal prediction can similarly be obtained based on conditional­
expectation operations. A simple example is

y(r) = at y2(r - I) + a2y(t - l)y(t - 2) + e(t)

Since

y(r + 1) = aly2(t) + a2y(t)y(t- I) + e(t + I)

the optimal one-step-ahead prediction is

y(t + 11r) =a IE[y2(r)lt] +a2E[y(t)y(t-l)lr] + E[e(r + I)t]

= al/(r) + a2y(t)y(r - I)

Similarly, since

y(t + 2) = at y2(t + 1)+ a2y(t + l)y(t) + e(t + 2)
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2166 S. Chen and S. A. Billings

the optimal two-step-ahead prediction is

y(1 + 211) =a,E[y2(1 + 1)11] + a2E[y(1 + l)y(I)II] + E[e(r +2)11]

=a,E[y2(1+ 1)11]+a2E[y(l+ 1)II]y(t)

=a,E[y2(r+ 1)lt]+a2y(r+ 1)lt)y(t)

Note that

E[y2(t + I) II] = E[{a l y2(t) + a2y(t)y(t- I) + e(t + IW II]

= E[{a, y2(t) + a2y(t)y(t - IW It]

+ 2E[ {a, y2(t) + a2y(t)y( t - I) )e(t + I) It] + E[e2(r + I) It]

= {a,y2(t) +a2y(t)y(t -IW +u; =y2(t + 1)11) +u;

Therefore the optimal two-step-ahead prediction is

In a practical implementation u; would usually be replaced by an estimate iT;.
For complex polynomial models the computation of optimal h-step-ahead pre­

dictions can become cumbersome as h increases and may even be prohibitive. A prac­
tical solution is to replace terms like E[/(t+i)lt] and E[y(t+i)y(t+j)y(t+k)ll]
by terms like /(t+ilt) and y(t+ilt)y(t+jlt)y(t+klt) respectively. The prediction
computed by this kind of substitution is of course suboptimal because in general

E[/(I + i) II] ¥- (E[y(t -tt i) 11])k }

E[y(t + i)y(t + j)y(t + k) It] ¥- E[y(t!i) It]E[y(t +j) It]E[y(1 + k) II]
(59)

where i,j, k", I. A suboptimal two-step-ahead prediction for the model (36) is for
example y(1 + 211) -~ p(p(y(t))). Note that the computation of optimal multistep-ahead
predictions using a general bilinear model is also by no means an easy task and may
require some kind f suboptimal solution in practice.

As an illustration Ihat polynomial models can produce better predictions than
linear models, the time series of the annual sunspot numbers for the years 1700-1955
are considered. These 256 observations are listed in Appendix AI of Tong (1983).
Gabr and Subbat Rao (198'\) fitted the following linear and bilinear models to the first
221 observations:

(a) full AR model /

y(t) = 1'2163y(t- I) - 0'467~1- 2) - 0'1416y(1- 3) + 0'169Iy(t- 4)

- 0'1473y(1- 5) + 0'0543y(l- 6) -:- 0'0534y(1- 7) +0'0667y(t- 8)

+ 0'1129y(l- 9) + 0'1900Ym + e(t) (60)

(b) subset A R model

y(l) = 1'2496y(1- I) - 0'5510y(l- 2) + 0'1450y(r - 9) + 0'1564Ym+ e(l) (61)
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(c) subset bilinear model

y(l) = 1-5012y(t - I) - 0-7670y(l- 2) + 0-1I 52y(t - 9) + 6-8860

- 0-01458y(t - 2)e(t - I) + 0-OO6312y(t - 8)e(t - I)

- 0-0071 52y(t - Ilett - 3) + 0-006047y(l- 4)e(t - 3)

+ 0-003619y(t - I)e(t - 6) + 0-004334y(t - 2)e(t - 4)

+ 0-001782y(t - 2)e(t - 2) + e(t) (62)

where the mean Ym of y(t) for the first 221 observations is 43-481. In the current study
the following polynomial AR model was fitted to the first 221 observations:

(d) subset polynomial AR model

y(t) = H 171y(t - I) - 0-091963y(t - 2) + 0-38299y(t - 9) - 0-000028084y3(t - I)

+ 0-004432Iy(t - I)y(t - 8) - 0-00016203y(t - 2)y(t - 5)y(t - 8)

- 0-0025043y2(t - 9) + 0-000095842y(t - I)y(t - 5)y(t - 8)

+ 0-000011992y(t - 5)y2(t - 7) - 0-21815y(t - 3)

+ 0-0000095906y(t - 2)y(t - 3)y(t - 4) + e(t) (63)

These four models were then used to calculate the predictions of the last 35
observations. The optimal prediction formulae for the linear models (60) and (61) can
easily be written down. For the polynomial AR model (63), although it is easy to
derive the optimal formulae for one-step- and two-step-ahead predictions, the optimal
formulae become very complicated for h > 2, and therefore suboptimal predictions
discussed above were used for the model (63) in actual computation, Using the
bilinear model (62) to compute optimal predictions also becomes very complicated for
h > 6_ The error of a prediction y(t + h II) is defined as

e(t + hit) = y(t + h) - y(t + hit) (64)

and the mean sum of squares of the errors of predictions for the period 221 + h to 256
is

I 256-h

iT; (h) = 36-h 1=~21 e
2(t+hlt)

(65)

iT;Ul obtained using the linear and polynomial AR models for h = I, , 10 and the
bilinear model for h = I, , 6 are given in the Table, where iT; is the variance of the
residuals from 10 to 221. iT;(h), h = I, , 5, for the models (60)-(62) are very close to
those given by Gabr and Subba Rao (1981)_

It is seen from the Table that the polynomial model (63) not only fits the first 221
observations better (smaller u;) but also gives better predictive accuracy except in the
case h = 3 when compared to the linear models (60) and (61)_ The model (63) also
seems to be better than the bilinear model (62) when it is used to predict several steps
ahead.

The performance of long-term predictions using (63) is particularly remarkable.
To gain some insight into this, let us consider the unforced response of the general
model (I); that is,

yo(t) = f(Yo(t - I), , yo(t - ny ) , 0, , 0) (66)
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Subset Subset
Full AR Subset AR bilinear polynomial

Model (60) (61) (62) (63)

'2 198·45 202'28 123-74 121·54(J,

&;(1) 190·87 216·09 123-79 177·69
&;(2) 414·75 429·97 337-60 393'85
&;(3) 652·07 676·22 569-69 786·89
&;(4) 725·71 734·97 658·59 571'94
&;(5) 770·84 775·86 718·06 539-62
&;(6) 786·41 797·50 727·96 554·64
&;(7) 789·01 814·67 545-96
&;(8) 827-79 860'76 457·59
&;(9) 862'06 899·37 396-24

&;(10) 895'58 936·34 447·19

Values of &;(h) (annual sunspot numbers).

It has long been noticed that the record of sunspot numbers reveals an intriguing
cyclical phenomenon of an approximate II year period (see Fig. 2). It is therefore
reasonable to assume that the underlying process of this time series when unforced
should possess some kind of cyclical behaviour such as a limit cycle. The unforced
responses for all four models with initial condition yo(l) = y(I), I = I, ... , 9, are shown
in Fig. 3. As expected, the responses of the linear and bilinear models die out. The
polynomial AR model (63), however, produces a sustained oscillation. The model (63)

Figure 2. Annual sunspot numbers for the years 1700-1955.
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Figure 3. Unforced response: (a) full AR model; (b) subset AR model; (e) subset bilinear
model; (d) subset polynomial AR model. --, model unforced response; -----,
observations.
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may therefore be a better approximation to the underlying process in this aspect and
this may also explain the better performance of long-term predictions using this
model.

6. Conclusions
A unified approach to non-linear time-series modelling has been introduced.

Several non-linear time-series models have been studied under the framework of a
general representation known as the NARMA model. The TNARMA time-series
model has also been discussed.

The general stationarity conditions have been investigated and the novel concepts
of global and local stationarity have been introduced. If the stationarity of a model is
globally valid on the normed space of all the stationary distributed noise processes
then the stationarity is referred to as a global stationarity. If, on the other hand, the
stationarity is only valid in a region of this space then it is called a local stationarity.
The general invertibility conditions have been given as a dual case to stationarity, and
the new concepts of global and local m-invertibility have been defined. If the
invertibility of a model is independent of the statistical properties of the observations
then it is known as global m-invertibility; otherwise it is called a local m-invertibility.
The implications of these concepts for polynomial time-series models has been studied
and it has been shown that, although Granger and Andersen (1978 a) were correct in
criticizing the explosive nature of polynomial models, this model can still be very
useful in modelling time series when the underlying process is stable and non­
divergent. The time series of annual sunspot numbers has been used to illustrate these
proposals.

The derivations of algorithms for selecting subset models for all the models
discussed in this paper have been completed and extensive applications of these
algorithms to real-life time series are currently under way. The results will be
published in due course.
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