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A Generic Postprocessing Technique for Image Compression
S. Chen, Z. He, and B. L. Luk

Abstract—A postprocessing technique is developed for image filtering also causes unwanted over-smoothing on image edges,
quality enhancement. In this method, a distortion-recovery model this class of methods is not appropriate for applications which
extracts multiresolution e.dge features from the decompressed require genuinely good image quality with minimum distor-
image and uses these visual features as input to estimate thet. Th del f method v h i th
difference image between the original uncompressed image and lons. . ?.Secon class ormethodas rely QaYI y(?n € acpuracy
the decompressed image. Coding distortions are compensatedOf @ priori image models used and the optimization algorithms
by adding the model output to the decompressed image. Unlike adopted. These methods often involve adaptive filtering to
many existing postprocessing methods, which smooth blocking |imit excessive smoothing. In addition, existing postprocessing
artifacts and are designed specifically for transform coding or methods are specifically designed for block-based coding

vector quantization, the proposed technique is generic and can . b . .
be applied to all of the main coding methods. Experimental methods with fixed coding block sizes, such as transform

results involving postprocessing four coding systems show that coding (TC) and vector quantization (VQ), where blocking
the proposed technique achieves significant improvements on the artifacts are serious sources of distortions. They cannot be

q_uality_ of reconstructed im_age_s, bpth in terms of the objective applied to nonblock-based predictive coding (PC), where
distortion measure and subjective visual assessment. blocking artifacts do not exist and blurred edges are main
Index Terms—mage compression, image recovery, neural net- coding distortions. These methods are also impractical to use

works, postprocessing, visual features. for quadtree (QT) coding [12], which has variant block sizes.
The motivation of this research is the need for a postpro-
I. INTRODUCTION cessing technique which is able to correct the actual coding

] o ) _distortions and applicable to all the major coding systems. The

I MAGE (?ODING is a prlnc!pal technique for redqcmgkey here is the ability to recover the distortion image, defined as

the requirements on bandwidth and storage capacity. T difference between the original and decoded images. It can
majority of current image-coding methods cause distortiogg shown that main coding losses are due to edge distortions,
in reconstructed images. In practice, it is always a tradegffciuding blurred edges and blocking artifacts (the latter can
between the coding bit rate and the coded image qualifa regarded as spurious edges). This suggests that the basic
Generally speaking, increasing coding bit rate can improygsk of postprocessing is to correct these edge distortions. Our
the quality of the reconstructed image, but this is limited Byistortion-recovery model consists of a visual feature extractor
channel bandwidth or storage capacity. Altematively, posf; extract edge information from the decoded image, and a
processing—which improves the quality of the reconstructgfapping to map the visual features of the decoded image onto
image after coding and decoding have been completed—cane gistortion image. Specifically, visually important edge
an effective approach to achieve a good-quality reconstruci@diyres are computed as multi-scale first-order derivatives.
image without requesting extra bit rate. Existing postprocessifigerestingly, this gradient extractor imitates certain charac-
methods can roughly be divided into two categories: those efgristics of visual cortex [13]-[15]. As the exact relationship
ploying filtering to smooth blocking _artifacts in reconstructe%etween the gradient features of the decoded image and the
images [1]-[5] and those formulating postprocessing as gfstortion image is unknown, a neural network—referred to as
image-recovery problem [6]-{11]. the neural network visual model (NNVM)—is trained to learn

The filtering approach is mainly designed to achieve bettg{is relationship.
viewing quality because smoothing basically provides somewe demonstrate the advantages of the proposed postpro-
artificial “make-up” on reconstructed images. This is aCCGPéESing technique on four coding systems, namely TC, VQ, and
able and adequate for applications where obtaining pleasgf¥ coding and PC. Our experimental results confirm that the
viewing quality for entertainment is the main purpose. SinggNyVM achieves significant improvements on the quality of

reconstructed images, in both the objective distortion measure
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The schematic of the proposed approach is depicted in Fig. 1.
In our approach, a distortion-recovery model estimates the digs. 2. schematic of the proposed distortion-recovery model. The
tortion image from the decompressed image and adds this gstprocessing block size is x n and the total number of gradient features
timate to the decoded image to compensate coding distortiofig?-

Obviously, the relationship between the decoded image and the
distortion image is highly complicated and may be impossibfistortion-recovery model. The basic idea is that after learning,
or unadvisable to correct all the coding distortions. We start withe output of the model will be a good estimate of the distortion
a brief discussion on main sources of coding distortions for tfi@age, which can then be added to the decoded image to com-
three major coding methods, PC, TC, and VQ. This will point tbensate actual coding distortions.
the way for building up an efficient distortion-recovery model.

B. Edge-Feature Extractor
A. Main Coding Distortions Edge features of an image block are extracted as multiscale

The coding error of the most popular PC system, the differefirst-order directional derivatives, since gradients are known to
tial pulse code modulation (DPCM) consists of the slope overpresent edges well. Psychovisual experiments have demon-
load and granular noise [16]. The slope overload causes visagihted that stimuli in vertical and horizontal directions have
blurring at the edges in the reproduced image, and these edyse visual sensitivity than stimuli in other directions [17]. The
distortions are visually more annoying than granular noise [1Horizontal and vertical derivatives are, therefore, chosen to rep-
In a TC system, such as the DCT coding, high spatial frequen®sent edges along vertical and horizontal directions, respec-
components are either coded with very few bits or deleted cotively. Furthermore, the combination of these two directional
pletely [18]. This helps to achieve significant data compressiaterivatives can represent edges in any other directions. To cal-
but also causes distortions mainly at the edges in the reproducathte derivatives for anx n block in different scales, the block
image. The process of VQ is to find a representative codewasdrecursively divided into four equal-size sub-blocks until the
in the codebook for each input vector [19]. Since a codewordsgb-block size is reduced 2o« 2. For a generic sub-blockK ; of
the centroid (average) of all the vectors in a class, the proceszen, x n,, a pair of horizontal and vertical derivatives,, d.,)
of averaging leads to smoothed edges in the reproduced image. calculated as
Coding methods based on nonoverlapping blocks, such as TC S . .
and VQ, also give rise to the blocking artifacts, namely visible NN L - - L
discontinuities between adjacent blocks [20]. Blocking artifacts A = Z Z Xoliog) = Z Z Xolirg) (@)
may be viewed as exotic or spurious edges. no/2

Perceptually, edges and contours of objects in an image be- A . o o .
long to the most important features which characterize the pic- dy = Z Z Xa (i) = Z ZXS(Z’]) @
ture. Errors at edges have more influence on the picture quality

than errors in other image regions [21]. Therefore, the qualiyhere X, (i, j) is the pixel value at positioti, j) in X,. The

of the reproduced image relies very much on the fidelity of thetputs of the visual feature extractor, the multi-scale deriva-
reconstructed edges. The main coding distortions are edge @ifss, can be arranged in a vector form

tortions, including blurred edges and blocking artifacts. These
edge distortions are the main visual disturbances for human ob- d=[dido...du]". 3)
servers viewing images. Reducing these distortions can signifi- o .
cantly improve visual quality of reproduced images. The distoFhe total number of derivatives/, for ann x n block is deter-
tion-recovery model in Fig. 1 is a realization or approximatioftined by the formula
of the underlying functional relationship between the decoded .
. ; g . . ogo 1t 9
image and the distortion image. It is clear that the main task of _ n

_ . et the main & M=2> (). 4
this model is to correct edge distortions. To achieve this aim, we —~ A\
adopt the following strategy. A decoded image of skex N
is divided into blocks of sizex x n, and pixels of each block Itis worth emphasizing that this edge-feature extractor incor-
are fed into a visual feature extractor, which extracts edge fa@rates certain characteristics of visual cortex. It is known that
tures of the block. These edge features are then mapped dhgye are visual feature detectors in visual cortex, called simple,
the corresponding block in the distortion image. We will refesomplex, and hypercomplex cells, which are sensitive to edge
ton x n as the postprocessing block size. Fig. 2 illustrates thiatterns of various orientations in different scales [13]-[15]. A

i=1 j=1 =1 j=14n,/2

i=1 j=1 i=l4n,/2 j=1
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Fig. 3. Images used for: (a) training and (b) testing.

simple cell responds maximumly to edges with particular oriethe model. Ideally, the block size should be as large as possible.
tation in its receptive field. A complex cell also responds maxdowever, too large a block size would make computation and
imumly to edges, but has a larger receptive field. A hypercoratorage impractical. From (4), it can be seen that the total
plex cell responds mostly to edge patterns and can generalizeniisnber of derivatives increases exponentiallyrascreases.
response over several complex cells. In the proposed edge-fElae size of the model therefore increases dramatically as
ture extractor, an image block of certain size is divided intihe postprocessing block size increases. On the other hand,
smaller sub-blocks. Derivatives of small sub-blocks can modektreasingn can provide more gradient information, and
visual features detected by simple cells, and derivatives of largkis can result in a better performance, provided that enough
sub-blocks can represent features detected by complex cdlgining data are available to train the model properly. For
The collection of multi-scale derivatives can mimic the respongestprocessing of block-based coding systems, such as TC and
of a hypercomplex cell, which is able to generalize all the d&Q, the postprocessing block size should be larger than the
tails over the given area in the visual field. coding block size, so that blocking artifacts at coding block

Obviously, the choice of the postprocessing block sizen  boundaries can be corrected. Experimental results on choosing
has important influence on the complexity and performance block size will be given later.
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Fig. 4. Postprocessing gain averaged over eight test images as a function of postprocessing block size. The NNVM has 40 hidden neurons. (a) 3R&G with Qu
= 7. (b) JPEG with quality= 14. (c) VQ with bit rate= 0.25 bpp. (d) VQ with bit rate= 0.5 bpp. (e) QT with bit rate= 0.25 bpp. (f) QT with bit rate= 0.5 bpp.
(g) PC: coding bit= 1, quantizing steg= 4. (h) PC: coding bit= 2, quantizing step= 4.

C. Neural Network Visual Model to the rangé—1, 1); the hidden-layer outputs of the NNVM are

We use a one-hidden-layer neural network to learn the refdven by
tionship between the edge features and distortion patterns, and M
callthe rgsultlng distortion-recovery model the NNVM. Speglfl- hi = f Z Vip-di+Vor|, 1<k<H, (5)
cally, the inputs to the NNVM, the edge features, are normalized )
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Fig. 5. Postprocessing gain averaged over eight testimages as a function of the number of hidden neurons in the NNVM. The postprocessinglbleckésize is
for JPEG, VQ, and QT, andl x 8 for PC. (a) JPEG with Quality= 7. (b) VQ with bit rate= 0.25 bpp. (c) QT with bit rate= 0.25 bpp. (d) PC: coding bit 1,
quantizing step= 4.

whereH,, is the number of hidden neurons, and the outputs whages should be used in order to collect sufficient training data

the NNVM are given by samples.
Hy
V(i) =a-f > Wi, i) bx+Woli,j) | + 8,
o IIl. EXPERIMENTAL RESULTS AND COMPARISON

_ _ o 1sdgsn (8 1pe proposed postprocessing technique was applied to four
wherea and/ are fixed scaling and shlftlng_constants for MaPeoding methods, TC, VQ, and QT coding and PC. The coding
ping the model outputs onto the range of pixel values. The acligorithms employed were the JPEG [24] for TC, the algorithm
vation functionf is the blpolar25|gm0|d function based on the Kohonen self-organizing feature map [25] for VQ

flz) = — -1 (7) design, the improved QT algorithm [12] for QT coding, and the
The number of the hidden-layer neurot,, is determined glgorithm uging a neural ngtwork predictpr [26] for PC. Sixteen
during training using the following procedure. Given an agMages of sizé12 x 512 with 8 bits per pixel (bpp), as shown

propriate block size: x n, we start with a small hidden Iayer'n Fig. 3, were involved in the experiment. The first eight im-

and gradually increase the size of the hidden layer until tRYes were used to provide training data, and the other eight im-

performance stops improving. The network weights. and ages were used as testimages. We also implemented two typical

o . . : ... existing postprocessing methods, Reeve'’s filtering method [1],
Wi (t,4) are learned using the stochastic gradient algorithm ) - o
[22], [23]. The total number of adjustable parametBrsiyy; and Paek’s modified projection onto convex set (PCS) method

for th . [8] to compare them with our approach in the identical TC and
or the NNVMis VQ coding environments. It should be pointed out that these

Punvm = nxn x (Hyp +1) two existing algorithms are impractical for postprocessing of
logam 2 QT and PC systems.
+Hyx (142> (5) . (8) Fig. 4 shows the postprocessing gains averaged over the eight
i=1

i test images as a function of the postprocessing block size, ob-
With H,, = 40 andn x n = 16 x 16, for example.’xnvai = tained by the the NNVM withH,, = 40. In Fig. 4, whem x n
17 336. To collect training data from a coding system, a trainingycreased t32 x 32, a sharp drop in peak signal-to-noise ratio
image of sizelV x NV is compressed and then decompressegeSNR) gain occurred. This was because the training data set
The corresponding distortion image is obtained by subtractings too small, compared with the model size. The number of
the decoded image from the original image. The decoded atilden neurons for the NNVM,, also had to be determined.
distortion images are divided intox n blocks. A pair of blocks Fig. 5 depicts the postprocessing gains averaged over the eight
gives rise to a pair of input and desired output. As an image cast images versus the number of hidden neurons, given the post-
only provide(N x N)/(n x n) pairs of training data, many processing block siz&6 x 16 for JPEG, VQ, and QT coding,
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Fig. 7. Face portions of VQ coded (bit rate 0.25 bpp) and post-improved
images of “Lena.” (a) VQ coded (PSNR 26.53 dB). (b) NNVM (PSNR gain
= 1.13dB). (c) Reeve’s (PSNR gain0.64 dB). (d) Paek’s (PSNR gain 0.02
dB).

(b) (©

(d) (e)

Fig. 6. Face portions of original, JPEG coded (Quality= 7) and
post-improved images of “Lena.” (a) Original image. (b) JPEG coded (PSNR
= 28.85. (c) NNVM (PSNR gair= 0.81 dB). (d) Reeve’'s (PSNR gain 0.69 @) ()
dB). (e) Paek’s (PSNR gaiz 0.36 dB).
Fig. 8. Face portions of QT coded (bit rate 0.25 bpp) and post-improved
images of “Lena.” (a) QT coded (PSNR 29.66 dB). (b) NNVM (PSNR gain
and8 x & for PC. The results in Fig. 4 suggest that a block size 0.91 dB).

of 16 x 16 is adequate for postprocessing of JPEG, VQ, and QT
coding. The JPEG algorithm used had a stan&axd® coding
block size and the VQ employed in the study had a coding bloc!
size of4 x 4. The QT had variable block sizes, depending on
image activities, and majority of the blocks were 4 and8 x 8.
A postprocessing block size larger than coding block sizes en
sures that the distortions at coding block boundaries can be co
rected. The PC is nonblock based and a smaller postprocessi
block size of8 x 8 appears sufficient. The results of Fig. 5 sug-
gest thatH,, = 40 is sufficient for the NNVM to achieve ade-
quate performance.
Tables I-IV compare the postprocessing gains obtained using (@) (b)
the NNVM and_ two existing algont_hms f(_)r the ‘]F,)EG an_d VQFig. 9. Face portions of PC coded (coding itl, quantizing step= 4) and
Tables V-VIII list the postprocessing gains obtained using thgst-improved images of “Lena.” (a) PC coded (PSNR4.17 dB). (b) NNVM
NNVM for the QT coding and PC. Fig. 6 depicts the original antPSNR gain= 2.87 dB).
JPEG-coded images of “Lena” together with the three post-im-
proved images. Fig. 7 shows the VQ coded image and the thoegresponding post-improved images of “Lena.” Figs. 8 and
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TABLE | TABLE 1l
PSNR \ALUES (dB) oF JPEG ®DING PSNR \ALUES (dB) oF VQ CODING (BIT RATE = 0.25 bpp) AND
(QUALITY = 7) AND POSTPROCESSINGSAINS (dB). THE POSTPROCESSING POSTPROCESSINGSAINS (dB). THE POSTPROCESSINABLOCK SIZE FOR THE
BLock SIZzE FOR THENNVM Is16 x 16 AND THE NNVM HAs 40 NNVM Is16 x 16 AND THE NNVM HAs 40 HDDEN NEURONS
HIDDEN NEURONS
Coding VQ coded PSNR gain (dB)

Coding JPEG coded PSNR gain (dB) image PSNR (dB) NNVM | Reeve's Paek’s
image PSNR (dB) NNVM Reeve’s Paek’s Lena 96.53 113 0.64 0.02
Lena 28.85 0.81 0.69 0.36 Littlegirl 27.34 1.10 0.69 0.06

Littlegirl 29.04 0.79 0.77 0.26 Zelda 28.79 1.01 0.67 0.11
Zelda 29.98 0.80 0.73 0.68 Boats 25.19 0.97 0.45 0.07
Boats 28.23 0.81 0.52 0.28 Cablecar 24.51 0.95 0.33 0.06

Cablecar 27.84 0.79 0.69 0.16 Hatgirl 27.37 1.17 0.61 0.03

Hatgirl 30.60 0.75 0.72 0.47 Kids 25.34 0.93 0.37 0.05
Kids 28.19 0.69 0.68 0.24 Soccer 23.85 1.19 0.56 0.08
Soccer 27.34 0.73 0.64 0.21 Averagetstandard deviation | 1.06+0.10 | 0.54+0.13 | 0.06+0.03

Averagetstandard deviation | 0.77£0.04 | 0.68£0.07 | 0.33£0.16

TABLE IV
TABLE 1 PSNR \ALUES (dB) oF VQ CODING (BIT RATE = 0.5 bpp) AND
PSNR \ALUES (dB) oF JPEG @DING (QUALITY = 14) AND POSTPROCESSING ~ POSTPROCESSINGGAINS (dB). THE POSTPROCESSINABLOCK SIZE FOR THE
GAINS (dB). THE POSTPROCESSINABLOCK SiZE FOR THENNVM IS 16 X 16 NNVM Is16 x 16 AND THE NNVM HAS 40 HDDEN NEURONS
AND THE NNVM HAS 40 HDDEN NEURONS
Coding VQ coded PSNR gain (dB)

Coding JPEG coded PSNR gain (dB) image PSNR (dB) NNVM | Reeve's Pack’s
image PSNR (dB) NNVM Reeve's Paek’s Lena 30.20 0.80 0.25 0.01
Lena 31.67 0.71 0.30 0.15 Littlegirl 31.50 0.83 0.43 0.02

Littlegirl 32.26 0.69 0.59 0.08 Zelda 32.49 0.81 0.35 0.01
Zelda 33.22 0.55 0.38 0.19 Boats 20.74 0.76 0.10 -0.01
Boats 31.01 0.77 0.07 0.13 Cablecar 28.72 0.58 0.06 0.00

Cablecar 30.96 0.71 0.23 0.07 Hatgirl 32.51 0.76 0.17 0.00

Hatgirl 34.15 0.58 0.21 0.24 Kids 29.73 0.65 0.03 0.00
Kids 31.56 0.64 0.21 0.05 Soccer 28.65 0.78 0.38 0.01
Soccer 30.76 0.68 0.54 0.05 Averagetstandard deviation | 0.75£0.08 | 0.2240.14 | 0.01£0.01

Average-=standard deviation | 0.67+0.07 | 0.32+0.17 | 0.1240.07

TABLE V

9 compare the QT and PC coded images of “Lena” with the PSNR \ALUEes (dB) oF QT CoDING (BIT RATE = 0.25 bpp) AND

i ; ; ; ; ZPOSTPROCESSINCGAINS (dB). THE POSTPROCESSINABLOCK SIZE FOR THE
post |mp.roved |m§ges Obtameq using the.NNVM’ reSpe.CtIV(.:"I " NNVMIs16 x 16 AND THE NNVM HAs 40 HDDEN NEURONS
These pictures give face portions of their corresponding im-

ages for a clearer visual evaluation. The results given in Ta- Coding QT coded NNVM
bles I-1V, and Figs. 6 and 7 demonstrate that the NNVM has image PSNR (dB) | PSNR gain (dB)
superior performance over Reeve’s and Paek’s algorithms for Lena 29.66 0.91
postprocessing of TC and VQ systems, in terms of both the ob- Littlegirl 29.87 0.96
jective PSNR measure and subjective visual evaluation. For the gzﬁz g;gg é.gg

VQ case, Fhe pe_rformance of Pael_<’s algorithr_n was particularly Cablecar 97.83 0.91
poor, as it is designed for the TC with &x 8 coding block size. Hatgirl 33.29 1.14

The results shown in Tables V=VIII, and Figs. 8 and 9, confirm Kids 28.38 0.92

that the NNVM is particularly effective for post-improving QT Soccer 25.83 1.11
coding and PC systems. Averagetstandard deviation 0.98+0.10

Reeve’s and Paek’'s methods were used in the comparative

study, as they represents two typical approaches of the eXiStingthod [4], and another modified PCS method [9], the authors

postprocessing methods and can readily be implemented. of . . . .
. . q(| not provide any numerical distortion measurements.
many other existing postprocessing methods, we can make

some comparisons using the results reported in the literature.
For the sophisticated space-variant filtering method [2], the
improvement given by the authors was 0.40 dB for a VQ A generic postprocessing technique for image coding has
coded “Lena” image at an original coding PSNR of 29.9Been developed. Unlike many existing postprocessing methods,
dB. The NNVM achieved a postprocessing gain of 0.80 d®hich basically smooth blocking artifacts to achieve better
for a VQ coded “Lena” image at an original coding PSNR ofiewing quality, the proposed technique corrects actual coding
30.20 dB. For Tien and Hang’'s postprocessing methods [B)sses. Our model is inspired by the mechanism of visual
their experimental results gave a postprocessing gain of 0@ ception in visual cortex. It uses gradient features to estimate
dB at most for TC-coded images, while the NNVM achievedoding distortions. This has been shown to be very effective
average improvements up to 0.77 dB for TC-coded images. kor dealing with blurred edges and blocking artifacts, the
the adaptivex-filtering method [5], the varying postfiltering two main coding distortions. An important advantage of our

IV. CONCLUSION
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TABLE VI
PSNR \ALUES (dB) oF QT CoDING (BIT RATE = 0.5 bpp) AND
POSTPROCESSINGSAINS (dB). THE POSTPROCESSINGBLOCK SIZE FOR THE
NNVM Is16 x 16 AND THE NNVM HAS 40 HDDEN NEURONS

Coding QT coded NNVM
image PSNR (dB}) PSNR gain (dB)
Lena 32.39 0.84

Littlegirl 32.42 1.01
Zelda 33.90 0.89
Boats 31.80 0.77

Cablecar 30.59 0.93

Hatgirl 36.86 0.80
Kids 31.14 0.98
Soccer 28.32 1.23

Averagetstandard deviation 0.93=0.14

TABLE VI
PSNR ALUES (dB) oF PC (GoDING BIT = 1, QUANTIZING STEP = 4) AND
POSTPROCESSING3AINS (dB). THE POSTPROCESSINABLOCK SIZE FOR THE
NNVM Is8 x 8 AND THE NNVM HAs 40 HDDEN NEURONS

Coding PC coded NNVM
image PSNR (dB) PSNR gain (dB)
Lena 24.17 2.87

Littlegirl 27.51 2.01
Zelda 29.59 1.20
Boats 23.84 3.42

Cablecar 22.38 2.88

Hatgirl 23.71 3.52
Kids 23.88 2.66
Soccer 21.88 2.97

Averagetstandard deviation 2.6940.71

TABLE VI
PSNR VALUES (dB) oF PC (GoDING BIT = 2, QUANTIZING STEP = 4) AND
POSTPROCESSINGSAINS (dB). THE POSTPROCESSINGBLOCK SIZE FOR THE
NNVM Is8 x 8 AND THE NNVM HAs 40 HDDEN NEURONS

Coding PC coded NNVM
image PSNR (dB) PSNR gain (dB)
Lena 28.42 1.43

Littlegirl 34.07 0.51
Zelda 34.79 0.38
Boats 28.39 2.32

Cablecar 25.95 2.39

Hatgirl 28.42 2.84
Kids 27.83 1.95
Soccer 26.03 2.05

Averageststandard deviation 1.734+0.83

(2]

(3]
(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

(12]

(23]

(14]
(15]

[16]

(17]

(18]
(19]

(20]

[21]

(22]

(23]

[24]

approach is that the same simple design can be employed &8I
postprocessing of different coding systems. This is in contrast
to existing postprocessing methods, which are limited to TC opzeg]
VQ. Experimental results of applying the proposed technique
to four coding systems confirm that the proposed technique
has better postprocessing gains and wider applications over

existing methods.
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