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Implementation issues for digital reduced-order observer-based controllers with 
Finite Word Length (FWL) considerations is studied. A tractable FWL sta- 
bility related mesure is derived, and the optimal FWL realization problem for 
digital reduced-order obverser- based controller is to find those realizations that 
maximize this related measure. This optimization problem is formulated as an 
unconstrained nonlinear programming problem which caa be solved using the 
simplex search algorithm. A numerical example is given to illustrate the design 
procedure and the effectiveness of the proposed method. 

Introduction 
The recent advances in fixed-point implementation of digital controllers such 
as the design of dedicated fixed-point Digital Signal Processors (DSP) and new 
Digital Control Processors (DCP) architectures have made Finite Word Length 
(FWL) implementation an important issue in modern digital control engineer- 
ing design applications. Improved control performance and increased levels of 
integration are especially important in many areas. This is because hardware 
controller implementation with fixed-point arithmetic offers the advantages of 
speed, memory space, cost and simplicity over floating-point arithmetic. 

The FWL effects have been studied in digital control systems using different 
approaches: the effects of FWL implemented digital controller on the degrada- 
tion of an LQG cost function was studied [l] using a statistical point of view; 
the effects of FWL on the stability and performance of sampled data systems 
was analyzed and an FWL stability measure was presented [2], but computing 
explicitly this measure seems very hard and is still an open problem; based on 
the first order approximation, a tractable FWL stability related measures was 
developed [3]. 

*Author for correspondence (e-mail: jwu@iipc.zju. ed u. cn). 
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In all the above studies of FWL effects of digital controllers, the controllers 
are output feedback controllers. It is well known that there are another type 
of controllers, i.e. observer-based controllers. Because that state-space meth- 
ods and observer theory form a direct multivariable approach to linear control 
system synthesis and design, the design of observer-based controllers is more ap- 
parent and simpler than the design of output feedback controllers. Specifically, 
reduced-order observers are preferred as they reduce the redundancy of full- 
order observers and have the simplest construction. Hence this paper intends to 
study the FWL implementation issues for digital reduced-order observer-based 
controllers which were not discussed in the previous FWL study work. One 
contribution of this paper is to compute the FWL stability related measure for 
any realization of a reduced-order observer-based controller. Another is to de- 
velop an algorithm for searching for the optimal reduced-order observer-based 
controller realization providing the maximal FWL stability related measure. 

Notation and Problem Statement 
Consider the discrete-time plant P ( z )  represented as 

* .  . (1) t ( k  + 1) = A, t (k )  + B,e(k) { Y(k) = CP&) 
which is assumed to be strictly proper, completely state controllable, completely 
state observable, with A, E Rnxn ,  B, E Rnxp,C,  E Rqxn,  q < n and rankc, = 
q .  Given the digital (n - q)-order obverser-based controller C(z) as 

. . . (2) v(k + 1) = Fv(k)  + Gy(k) + He(lc) 
u(k) = Jv(k)  + M y ( k )  

where F E R(n-P)x("-q),  G E R(n-9 lx4 ,  J E RPX(n-91, M E R P X P  and 
H E R(n-q)xP. The realizations (F, G, J,  M, H )  of C ( z )  are not unique. In fact, 
through the reduced-order observer-based controller design procedure, a realiza- 
tion (Fo, Go, Jo, Mo, Ho) has been determined. Any realization of C(z) can be de- 
scribed as ( F  = T-'FoT, G = T-lGo, J = JOT, M = Mo, H = T"Ho), where 
T E R(n-q)X(n-q) is any (real-valued) non-singular matrix, called a similarity 
transformation. Denote SC be the set including all realizations of C(z). Denote 
U(-) be the column stacking operator. Denote 

1 . .  (3) 

where N = n2 + 2np - nq - pq. Obviously, we can call w a realization of C ( z ) .  
Since the input of P(z)  

e ( k )  = ~ ( k )  - u(k) . . . (4) 
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Both P ( z )  and C ( z )  form a discrete-time closed-loop system. Denote ( A ,  B, 6, d) 
be the state-space description of the closed-loop system, it can be shown that 

where 1, denotes the n x n identity matrix. Denote Xi(.) as the ith eigenvalue 
of matrix. It follows from the fact that the closed loop system is stable that 

I ~ i ( A ( w ) ) l  = IXi(A(w0))l < 1, Vi E {I, .  . . , 2 n  - q }  . . . ( 6 )  

which implies that all different realization w achieve exactly the same closed-loop 
poles if C ( z )  is implemented by an infinite precision DCP. In practice, however, 
C ( z )  can only be implemented by an DCP with FWL. Due to the FWL effect, 
w is perturbed into w + A w  and each element of Aw is bounded by ~ / 2 ,  i.e. 

For a fixed point processor of B, bits, 

E = ~ - ( B ~ - B x )  . . . (8) 

where Z B X  is the biggest normalization factor such that each parameter of 
2-Bxw is absolutely not bigger than 1. With the perturbation A w ,  X,(A(w))  
is moved to Xi(A(w + Aw)) which may be outside the open unit disk. Thus, 
the closed-loop system designed to be stable may be unstable with an FWL 
implementation of the controller realization w. 

Obviously, for a realization w, there is the smallest word length BF'"(w) that 
ensures stability. Define the FWL stability measure 

po(w) inf{p(Aw) : A(w + Aw) is unstable} . . . (9) 

It follows from ~ / 2  I po(w) that BFin(w) is not less than - log, po(w) - 1 + Bx.  
Hence we can define 

A 
& p ( W )  = Int(-  log, po(w)) - 1 + Bx . . . (10) 

as the estimate of B,"'"(w), where Int(z) rounds I to the nearest integer to- 
wards +m. Noting that po(w) is a function of the controller realization w, the 
interesting problem is to find out those realizations such that po(w) is maximized 

These realizations need less word length to ensure stability. It should be pointed 
out that computing explicitly the value for po(w) and solving problem (11) 
seem very hard and are still open problems. In order to overcome the difficulty 
of po(w), a tractable FWL stability related measure will be discussed as follows. 
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A Tractable FWL Stability Related Measure 
First, when the FWL error Aw is small we have V i  E (1,. . . ,2n - q } ,  

N 

j=1 
AXi = &(A(W + Aw)) - Xi(A(w)) w C e A w j  . . . (12) 

It follows that 
N N 

j=l j=1 
IAXiI I C I 2 I l A w j I  I P(Aw) C ISIi 'di . . . (13) 

Defining 

Therefore 

Pl(W) I PO(W) . . . (15) 

holds if p ~ ( w )  is small enough, and the system is stable if p(Aw) 5 pl(w) when 
(15) is true. Hence p1 (w) can be viewed as a FWL stability related measure. 

For computation of p1(w), the following theorem is important. 
Theorem 1: Let A = MO + MlXM2 E RmXm be diagonalizable with X E 

Rlxr and Mo, MI, and Ma independent of X and having a proper dimension. 
Denote {Xi} = {Xi(A)} as its eigenvalues, Let zi be a right eigenvector of A 
corresponding to the eigenvalue Xi. Denote M, = [ zl 2 2  . . . 2, ] and My = 
[ y1 ym ] = M F H ,  where yi is called the reciprocal left eigenvector 
corresponding to Xi. Then 

y2 . . . 

ax, ... & 
3x1 1 a217 

ax, ... & 
8211 a21 l. 

i%= BX [ i ... i ] =MFy,!zTMT . . . (16) 

where superscript 'H' denotes the transpose and conjugate operation, 'yi' is 
conjugate to yi. 

Proof Let cy be a element of X .  It follows from y?zi = 1 that 

+ yy% = 0 . . . (17) 

Noting Asi = Xizi, one steadily has Xi = yFAzi and hence 
H 

aa = i % i - ~ ~ ~  aa + yygzi + Y y ~ %  . , . (18) 

It follows from (17) and y,"A = X,yy that 

. . . (19) 

. . . (20) 

H az- H a5 aa = (*Xi21 + Xiyz &) + y:g2i = y,"M1$$Mpci 

2 = ( ~ y M 1  )(k) (Mzzi)(j) 

For the ( k , j ) t h  element of X ,  i.e., cy = X k j ,  one has 

44 



Digital Reduced Order Observer Based Controllers 

where (y~Ml)(k)  and ( M ~ z i ) ( j )  are the kth and j th element of y,"Ml and 
M2zj, respectively. This leads to (16). 

. . . (21) 

. . . (22) 

. . . (23) 

. . . (24) 

. . . (25) 

. . . (26) 

. . . (27) 

. . . (28) 

. . . (29) 

. . . (30) 

With %l %, $$, a and 3, pl(w) can be computed easily using (14). 
Based on pl(w), we can compute 

. . . (31) a 
= I n t ( - l o g z p l ( ~ ) )  - 1 + Bx 

as the estimate of the minimum word length B,"'"(w) that ensures stability of 
the closed-loop system. 

Optimal realization 
Let z,o = [ ~ ~ ~ [ ~ ~ ]  E Cn-q be a right eigenvector of A(wo) corresponding 

to the eigenvalue Xi0 = Xj(A(W0))  = Aj(A(W)),  3/jo = [;;[;;I E c2n-q  

be the reciprocal left eigenvector corresponding to zjo, where xio(l), yio(1) E 
Cn,zio(2),yio(2) E Cn-Q. It is easy to see from ( 5 )  that 

. . . (32) 
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is a right eigenvector and 

. . . (33) 

corresponding to 

. . . (34) 

. . . (35) 

. . . (37) 

. . . (36) 

. . . (38) 

. . . (39) 

From (34)-(38), we define the following function of the similarity matrix T :  

We can describe the optimal FWL realization problem of reduced-order observer- 
based controller as the optimization problem: 

The above problem is a nonconvex nonlinear programming problem. Denote 
Topt as the solutions to (41 ) .  We intend to search for Topt with an iterative 
optimization method, in which a sequence {TO, TI, T2, . . .} which converges to 
Topt is generated. In this iterative procedure, we can neglect the constraint 
det T # 0, i.e. we solve the problem 

There are reasons for US to do so: Q = {T I det T = 0, T E R(n-9)X(n-9)} is 
only a manifold in space R(n-q)x("-q). Hence the situation when Ti moves into 
R is rare when we search the space R(n-q)x(n-q) for Topt 4 R by an iterative 
sequence from a start point TO @ R; Even if it happens that T, moves into R 
in the iterative procedure, we can add a small perturbation 71, to Ti such that 

+ TI,., 4 R. This small perturbation would not affect the convergence of the 
iterative sequence to Topt. 

In this paper, the simplex search algorithm is applied to solve problem ( 4 2 )  
which is a unconstrained convex nonlinear programming problem. There are 
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many existing optimization software which uses the simplex search algorithm, 
for example, the fm2ns.m function in MATLAB Ver5.1 optimization toolbox. 

Illustrative Example 
In this section, we present a design example to show how the optimization ap- 
proach presented in this paper can be used efficiently for searching for an optimal 
transformation and hence the optimal controller realization. 

The discrete-time plant is given by 
T [ 2.y82 -2.5342 0.7756 0.0022 

A, = 1.0000 0 ] l B S  = [ i] lC5 = [::::::I 1 .oooo 0 

The initial realization of the controller C(z) is given by 

-1.3384 
Fo= [ 
Jo = [ -87.896 51.5371 , Mo = 4.3835, Ho = 

The corresponding transition matrix A(wo) can then be formed using (5), from 
which the poles and the corresponding eigenvectors of the ideal closed loop sys- 
tem can be computed. The closed-loop poles are: 

[ A10 A20 A30 A40 A501 = [0.9067 0.8437 0.7523 0.5761 0.62311 

Hence problem (42) can be constructed. We use the simplex search algorithm to 
solve problem (42) which is an optimization problem on T E R 2 x 2 .  Our solution 
is: [ 0.0021 0.0031] 

0.0038 0.0061 Topt  = 

and ZI = 514.66. The optimal realization corresponding to Topt is 

0.7414 -0.07851 [ -17.6891 
-0.2155 0.6785 = -35.261 ' 

Jopt = [ 0.0068 0.04131 , Mopt = 4.3835, Hopt  = 

The results for the initial realization and optimal realization are summarized in 
Table 1. Obviously, pl(wopt) is nearly 50 times of pl(wo), and wopt develops 6 
bits in l?zn comparing to W O .  

Table 1. Stability measures and stabilized word lengths. 

Realization P1 ( W )  B p  
WO 4.0612 x lo-' 21 

Wopt 1.9430 x 15 
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Conclusions 
In this paper, we have presented an approach to the implementation issues for 
digital reduced-order observer-based controller with FWL considerations. A 
tractable FWL stability related measure has been derived. Noting that this 
related measure is a function of the controller realizations, the optimal realization 
problem is to find those realizations that maximize this related measure. It 
has been shown that the optimal realization problem can be interpreted as a 
nonlinear programming problem. The computation of the relevant optimization 
problem was solved using the simplex search algorithm. The theoretical results 
were verified using a numerical example which illustrates that the optimum 
realization, based on the optimization method presented in this paper, greatly 
improves the stability robustness of the closed-loop system with minimum word- 
length characteristics compared to non-optimal realizations. 
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