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Residue Number System Arithmetic
Assisted -ary Modulation

Lie-Liang Yang,Member, IEEE, and Lajos Hanzo,Senior Member, IEEE

Abstract—A residue number system basedM -ary modem
is proposed and its performance is evaluated over Gaussian
channels. When one or two redundant moduli are employed, a
signal-to-noise ratio gain of 1.2–2 dB was achieved for a 16-ary,
32-ary and 37-ary modem, respectively, at a bit error rate of 10�6.

I. INTRODUCTION

T HE SO-CALLED residue number system (RNS) [1]–[3]
has two inherent features that render the RNS attractive

in comparison to conventional weighted number systems,
such as for example the binary representation. These two
features are [2]: 1) the carry-free arithmetic and 2) the lack
of ordered significance amongst the residue digits. The first
property implies that the operations related to the individual
residue digits of different moduli are mutually independent
because of the absence of carry information. The second
property of the RNS arithmetic implies that some of the residue
digits can be discarded without affecting the result, provided
that a sufficiently “high dynamic range” is retained in the
“reduced” system in order to unambiguously contain the result,
as argumented below.

In this letter, a RNS-based -ary signaling scheme is
proposed and analyzed, when the RNS is designed with or
without redundant moduli and the channel is assumed to inflict
additive white Gaussian noise (AWGN). A new ratio statistic
test (RST) technique is proposed for dropping a number of the

-ary redundant outputs. Numerical results show that, when
the RNS is designed using a moderate number of redundant
moduli, we can improve the bit error rate (BER) performance
of the proposed system.

II. SYSTEM MODEL

A residue number system is defined [1] by the choice
of positive integers referred to as
moduli. If all the moduli are pairwise relative primes, any
integer , describing a nonbinary message in this letter, can
be uniquely and unambiguously represented by the so-called
residue sequence in the range ,
where represents the residue digit of
upon division by , and is the information
symbols’ dynamic range. Conversely, according to the so-
called Chinese Reminder Theorem (CRT) [3], for any given
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Fig. 1. The system block diagram.

-tuple , where , there exists
one and only one integer such that and

, which allows us to recover the message
from the received residue digits.

For incorporating error control [2], [3], the RNS has
to be designed with redundant moduli, which is referred
to as a redundant residue number system (RRNS). A
RRNS is obtained by appending an additional
number of moduli , where

is referred to as a redundant
modulus, to the previously introduced RNS, in order to form
an RRNS of positive, pairwise relative prime moduli. Now
an integer in the range is represented as a-
tuple residue sequence, with respect to the
moduli. In RRNS, the integer can be recovered by any
out of residue digits using their related moduli due to the
second inherent property of the RNS arithmetic.

The block diagram of the proposed RNS-based orthogonal
communication system is shown in Fig. 1. In the transmit-
ter, a multibit information symbol is first transformed to a
residue sequence with respect to the moduli

of the RNS. Then residue digits are
transmitted using an -ary scheme one by one serially,
where . It is worth noting at
this stage that no limitations apply to the -ary scheme
used. Hence, phase-shift keying (PSK), frequency-shift key-
ing (FSK), and quadrature amplitude modulation (QAM) are
equally applicable. In the receiver, the signal is first coherently
demodulated using the correlation receiver technique of [4, pp.
260–263] for -ary orthogonal signals over AWGN channels.
After a full residue sequence was received, the estimation
of the transmitted data symbol finally can be obtained by
transforming the residue sequence to its binary representation.
Furthermore, if the RNS-based orthogonal system is designed

1089–7798/99$10.00 1999 IEEE



YANG AND HANZO: RNS ARITHMETIC ASSISTED -ARY MODULATION 29

with redundant moduli, metrics of for in
Fig. 1 are produced in the process of the demodulation and
used for making decision of which demodulator outputs will
be dropped before the residue to binary conversion, which
will be discussed in Section III

III. PERFORMANCE ESTIMATION

In this section we evaluate the performance of the RNS-
based orthogonal signaling system, when the RNS is designed
without redundant moduli or with number of
redundant moduli, over an AWGN channel. With an-ary
orthogonal signaling scheme, the probability that a residue
digit is decided correctly by selecting the branch exhibiting
the largest correlator output is expressed as [4]:

(1)

where is defined as [4] ,
is the signal-to-noise ratio (SNR) at the demodulator

output. Furthermore, represents the variance of the noise,
is the energy of the transmitted information symbol, which

can be computed by , since
bit symbols can be represented by the residue

sequences , where represents an integer
not exceeding , and is the energy per bit.

Consequently, for an RNS-based orthogonal signaling
scheme without redundant moduli, that is for , the
estimation of the transmitted -bit symbol after residue to
binary conversion is correct, if and only if, all thenumber
of residue digits are received correctly. Hence, the average
correct symbol probability after residue-to-binary conversion
can be written as

(2)

and the average BER can be approximated by [4]

(3)

If an RNS-based -ary signaling system is designed with
number of redundant moduli, then, as

discussed previously, up tonumber of demodulator outputs
can be dropped before residue to binary conversion, while
still recovering the transmitted symbol using the retained
demodulator outputs, provided that the retained demodulator
outputs are those matched to the related residue digits, i.e.,
there were no residue digit errors. Conventionally, this kind
of dropping is referred to as “erasure.” An example of this
is known in the context of Reed–Solomon (RS) [5] codes
where the low-reliability symbols are erasured and error-and-
erasure correction decoding is employed. Since the error-
and-erasure correction decoding of RS codes should correct
random errors and also fill erasures, the decoding complexity
and energy cannot be decreased by dropping the erasured
symbols. However, for a RNS designed with redundant
moduli, up to residue digits having a low-reliability metric

can be discarded, and the discarded residue digits are
not required to be considered during the residue to binary
conversion, and consequently simplify the symbol recovery

procedure. We refer to our decision rule as the RST for
deciding which demodulator outputs will be dropped, which
we defined as

(4)

where and represent the maximum
and the second maximum of the correlator outputs, say

, respectively, for receiving residue
digit . Our RST is based on the fact that a unreliable
received signal is likely to have nearly equal energy in both
the correlation branch matched to the correct signal and the
correlation branches mismatched to the transmitted signal.
Hence, we can argue that the correlator outputs with low
absolute value of are the low-reliability outputs and can be
discarded before residue-to-binary conversion. Consequently,
if we assume that the received residue digits are independent,
the probability that a symbol is recovered correctly by the
residue to binary conversion can be expressed as

(5)

where is given by (1), while is the probability
of the event that there are demodulator outputs which are
decided erroneously, but thenumber of erroneously decided
de modulator outputs happen to be discarded by dropping those

number of the demodulator outputs, which have the lowest
value of . Accordingly, we have , but
for depends on the distribution of .

Let and represent the assumptions that a residue digit
is demodulated correctly or erroneously, respectively. Then,
for a given value of and a given residue digit the pdf’s
of under assumptions of and , i.e.,
with can be derived using the distribution density
functions of the correlator outputs matched or mismatched
to the transmitted residue digit. Examples of the exact nu-
merically evaluated pdf’s of and with

are shown in Fig. 2 at an SNR per bit of 2 and 5 dB.
As expected, under , the value of is distributed most
probably in the area of , while under , the value of
is distributed very close to . Moreover, when increasing
the SNR per bit of the transmitted signal, the distribution of

will shift to the right-hand side, while the peak
of the distribution of at becomes higher
and higher.

However, using the exact pdf’s of to compute
is an arduous task due to the quadruple integrals

involved. Hence, we invoke approximations to simplify the
computations. First, under , the pdf’s of the maximum
and the second maximum of and can
be approximated as the pdf [4] of the correlator output
matched to the transmitted residue digit and the pdf [6] of the
maximum amongst the other correlator outputs mismatched to
the transmitted residue digit. Upon using these pdf’s, we can
obtain the pdf of under assumption as

(6)
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Fig. 2. Exact probability density functions ofj�ij =
1
maxif�g=

2
maxif�g under the assumptions ofH1 andH0.

The pdf of then can be computed by

(7)

Second, we approximate the pdf of under as
, where is a delta function.

Note that, if is distributed symmetrically around ,
the result obtained using is just the average of

over the effective area of . However, since
the distribution of in Fig. 2 is not symmetrical,
the result obtained using consequently yields an
approximation. We further note that the first approximation
increases the estimated BER, while the second approximation
decreases the BER. However, when the SNR per bit of the
transmitted signal is sufficiently high, for example2 dB for
the -ary orthogonal system, the result is very close
the exact BER.

By using the above approximations, we finally obtain
in (5) as

(8)

where represents the number of redundant moduli.
Consequently, the correct symbol probability of the proposed
RRNS-based orthogonal system can be evaluated by combin-
ing (5) and (8) and the average BER can be approximated by
(3).

IV. NUMERICAL RESULTS

Fig. 3 portrays the BER performance of the RNS-based
orthogonal system using -ary, -ary or

-ary orthogonal signaling schemes for the transmission
of the residue digits. Note that, the value of obeys the
relation of but not necessary
limited to an integer power of 2 in the RNS-based system. The
parameters related to the BER computations were given in the

Fig. 3. BER performance of the RNS-based orthogonal system with or
without redundant moduli over an AWGN channel.

TABLE I
THE PARAMETERS RELATED TO THE NUMERICAL COMPUTATIONS

Table I. The results of Fig. 3 show that, for the RNS-based
system with 16-ary, 32-ary and 64-ary orthogonal signaling
schemes, up to 1.2–2 dB of bit SNR, depending on the value
of , can be conserved by using one or two redundant moduli,
respectively, at the BER of 10.

V. CONCLUSIONS

We have proposed and analyzed a novel communication
system, which combines the RNS arithmetic with the-ary
orthogonal signaling technique. Our approach is applicable to
arbitrary QAM and PSK systems.
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