The University of Southampton
University of Southampton Institutional Repository

Simulation of losses in resonant converter circuits

Wong, S.C., Brown, A.D. and Zwolinski, M. (1999) Simulation of losses in resonant converter circuits

Record type: Other


The mathematical foundation for a generic resonant converter macromodel that is capable of producing transient analyses some three orders of magnitude faster than conventional component-level simulation is described elsewhere by the authors. In this paper, the concept is extended to model and analyze dissipative losses in such a converter. For each of the three main dissipating components (the power diodes, the MOS switches and the inductors), extremely simple phenomenological loss models are developed, which are calibrated by comparison with experimental results. It is then shown, both theoretically and experimentally, that the sensitivity of the overall converter simulation results to the loss model parameters is low, indicating that the models may be used with confidence on other designs under different load conditions. Finally, the simulated and measured responses of a different load configuration (i.e. a practical circuit that was not used to calibrate the loss model) are compared, and it is noted that the results are in excellent agreement. (The simulation results obtained by this technique are also in excellent agreement with the corresponding full component level simulation, but are obtained in around 2.0% of the time.)

Full text not available from this repository.

More information

Published date: 1999
Organisations: EEE


Local EPrints ID: 251290
PURE UUID: 05e47a1e-5bab-4cae-a4e9-121f1bf8f5b4
ORCID for M. Zwolinski: ORCID iD

Catalogue record

Date deposited: 27 Oct 1999
Last modified: 18 Jul 2017 10:11

Export record


Author: S.C. Wong
Author: A.D. Brown
Author: M. Zwolinski ORCID iD

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.