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ABSTRACT 

Polar deep water environments are poorly studied. This thesis investigates fundamental questions as to 
the nature of controlling factors on megabenthic communities as well as the diversity, densities and 
distributions of organisms present. 

The deep (1000-1660m) Faroe-Shetland Channel harbours an Arctic fauna owing to cold deep-
water intrusions from the Norwegian Sea. Despite the relatively low species richness of the 
megabenthos, variation in faunal composition with depth is apparent. Two distinct communities were 
identified in the north and south of the channel. Epibenthic megafauna in the south are dominantly filter 
feeders and in the north deposit feeders. Megabenthic diversity and density decreased to the northeast of 
the channel. Lebensspuren number and area increase northwards in the Channel. The increase in 
bioturbation and deposit feeder abundance is concurrent with an increase in fine sediment quantity. 

The response of a deep, Arctic benthic community to physical disturbance was investigated in 
the Faroe-Shetland Channel. High levels of physical disturbance, characterised by smothering of the 
seabed resulted in significant but variable reductions in megafaunal abundance (up to 92.3%). 
Reductions in diversity, particularly in species richness, were apparent between disturbed (ES(500) = 
12.9) and undisturbed areas (ES(500) = 20.6). The implications of selective removal of taxa on ecosystem 
function and recovery are discussed. Low level disturbance had comparatively little effect on the 
communities. The effects varied in nature depending on motility and functional group (e.g. motile 
scavenger abundances were maximal at intermediate distances from disturbance). 

Effects of physical factors on the megabenthos of Kangerdlugssuaq Fjord mouth in Arctic 
Greenland were investigated. Large reductions in faunal density (1881 to 60,132 individuals ha-1) and 
increases in diversity (H´ = 0.93-2.54), through increases in richness (ES(220) = 7.6-18.8) and reductions 
in dominance (Berger-Parker Index = 0.77-0.38), were found from 270 to 720m depth. Distinct shallow, 
intermediate and deep communities were identified. Shallower stations had high levels of iceberg 
disturbance, directly reducing diversity and creating a complex, patchy environment. Responses to 
disturbance were taxa specific (e.g. mobile suspension feeders aggregate on disturbed areas), but the 
shallow area has higher densities of suspension feeding epifauna. Deeper areas experience small scale 
disturbance from deposition of drop stones but its relatively low frequency and magnitude allows 
increased diversity. Deposit feeding epifaunal and infaunal taxa increase with depth indicated by 
increased Lebensspuren. Density decreases result from decreased food supply with depth. 

Benthic megafauna were investigated from the NE Weddell Sea (250 to 500m depth), close to 
the Fimbul Ice Shelf. Faunal density decreased with depth; diversity was variable but not related to 
depth. Two distinct communities were found, a shallow community with dense patches of suspension 
feeders in undisturbed areas and a deep community where these were not present. Disturbance from 
icebergs was very important in controlling faunal distribution. In shallow waters direct effects of 
disturbance were observed. In deeper waters habitat changes, caused by past disturbance, controlled 
faunal distributions. Ice ploughing created a mosaic landscape of fine and coarse sediments. 
Megafaunal density was highest in coarse sediment and diversity highest in intermediate areas. 

Quantitative data on benthic megafaunal abundance and diversity obtained using the same 
method allowed valid comparisons to be made between these polar areas. Megafaunal abundance was 
comparable between the Arctic and Antarctic stations, although in both areas abundance decreased with 
increased depth. Diversity was higher in the Antarctic stations, but species richness and evenness in 
both areas changed with depth. Iceberg disturbance was found to be very important in structuring 
megabenthic communities, particularly in the Antarctic.  

The results of this study are used to assess the utility of towed camera sleds, remotely operated 
vehicles and autonomous underwater vehicles as a method for obtaining ecological information in 
remote environments. 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

HISTORY OF DEEP-SEA POLAR EXPLORATION 

A large number of expeditions have visited the polar regions (Dell 1972) and despite their 

remote nature, these areas have played an important part in the history of deep-sea biology. 

In the early days of deep-sea investigation scattered biological observations were all that 

were recorded. In the Arctic Ocean the first record of deep-sea fauna was in 1818 when the 

British explorer John Ross collected a specimen of the basket-star Astrophyton on a 

sounding line at 1600m, whilst searching for the North-West Passage (Menzies et al. 1973; 

Tyler 1980). In the Southern Ocean, Sir James Clark Ross and J. D. Hooker made the first 

collections of benthic organisms in 1839-43, with a dredge from the voyages of the 

‘Erebus’ and ‘Terror’ in depths up to 1800m (Dell 1972).  

The first structured sampling of deep Arctic water was carried out by Charles Wyville 

Thomson in the cold Norwegian Sea deep water of the Faroe-Shetland channel using HMS 

‘Lightning’ and ‘Porcupine’. Inspired by fauna collected from the deep Norwegian fjords 

by W and G. O. Sars, Thomson discovered abundant fauna in deep waters which provided 

evidence against Forbes’ previously accepted azoic zone below 300 fathoms (550m) 

(Thomson 1873). Thomson’s collections still provide some of the best information on the 

fauna of the Faroe-Shetland Channel. 
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The subsequent voyage of HMS ‘Challenger’ from 1872-1876 was carried out to 

consolidate and extend the work of the ‘Lightning’ and ‘Porcupine’. As well as laying the 

foundation for our current knowledge of life in the deep sea, this expedition provided the 

first substantial benthic samples taken in Antarctic waters (Murray and Hjort 1912).

This first discovery phase continued during the first half of the 20th century primarily for 

the purpose of completing the inventory of the world oceans fauna. The history of benthic 

research is relatively well known (Gage and Tyler 1991; Deacon 1997) and has been 

frequently summarized for the Antarctic (Dell 1972; Fogg 1992; Vinogradova 1997) 

although less so for the Arctic (Paul and Menzies 1974; Curtis 1975). 

THE DEEP OCEAN ENVIRONMENT 

Topography

The deep ocean is generally accepted to start at the edge of the continental shelf (the shelf 

break; Figure 1.1) this is typically around 200m deep although may reach depths of 500m 

in the Antarctic (Gage and Tyler 1991). Seaward of the shelf break is the continental slope, 

on which a marked increase in the downward gradient of the seabed occurs. Typically, on 

passive margins, at the base of the continental slope, slope-derived sediment forms a thick 

layer, known as the continental rise (Gage and Tyler 1991). By a depth of around 4000m 

the seabed has leveled off to give a wide expanse of relatively flat abyssal plain which 

extends gently from 4 to 6 km in depth and globally covers 278,000,000km2 (Heezen and 
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Hollister 1971). If the abyssal plain is bordered by an active margin, where oceanic crust is 

being subducted under an adjacent continent, trenches can occur which can extend to 

depths of greater than 11km. Throughout the deep sea there are highly heterogeneous 

topographical features ranging in scale from animal burrows and mounds through to 

seamounts and ridges. With such high physical diversity and wide area it is perhaps not 

surprising that the ocean floor offers more niches than all terrestrial habitats together (Rice 

et al. 1991). 

Figure 1.1: Diagrammatic cross section of the ocean showing the major physiographic features and major 

depth zones. The sublittoral zone (0-200m) is not labeled. Redrawn from Gage and Tyler (1991). 

Circulation and temperature 

As the deep-sea environment predominantly occurs below the permanent thermocline 

temperatures typically vary from –1 to 4 C (Svedrup et al. 1942) although temperatures in 
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the Antarctic reach –1.9 C. Most of the deep-sea bed is bathed in water masses formed in 

either the Antarctic or in the Greenland/Norwegian Seas of the Arctic Ocean. In these areas 

the surface water becomes dense enough to sink as a result of cooling or, to a lesser extent, 

becoming more saline from ice formation. This water then sinks to its density level where 

it spreads out. The very deepest waters are formed in the cold surface layers close to the 

coast of Antarctica, especially in the Weddell Sea where the winter-cooled surface water is 

exceptionally cold (-1.9 C) (Gage and Tyler 1991). Salinity is one of the most constant 

features of the deep-sea bed (>34.7 in the Atlantic) but is unlikely to have any ecological 

consequences for the deep-sea benthic fauna (Tyler 1995).

Sea ice is a vitally important factor in the formation of deep waters. When seawater freezes 

to form sea ice, it leaves behind cold, dense salty waters. In some areas this water flushes 

the cavity beneath ice shelves, where it undergoes further transformations (Nicholls 1997) 

and eventually contributes the formation of bottom waters, driving deep convection in the 

oceans (Foldvik et al. 1985; Zwally et al. 1985; Emery and Meincke 1986). 

The main global ecological significance of these deep water masses is that they are well 

oxygenated, the supply of oxygen in the deep waters is sufficient to maintain the surficial 

sediments of the worlds oceans in an oxidized state (Gage and Tyler 1991). For the benthic 

communities of Antarctica the advection of surface primary production entrained in 

density driven water mass sinking would seem to be a very important source of nutrition 

with varying flux driving changes in standing stock and diversity (Dayton and Oliver 1977; 

Barry 1988; Barry and Dayton 1988).
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The deep benthic environment 

The physical properties of the deep-sea environment exhibit a very narrow range below the 

permanent thermocline except for hydrostatic pressure, current velocity and in some cases 

substratum. The increase in hydrostatic pressure with depth in the world’s oceans is the 

longest continuous environmental gradient in existence (Gage and Tyler 1991). Pressure 

increases linearly by 1 atmosphere per 10m increase in depth (Thistle 2001). 

Deep-sea currents may originate from two forces: thermohaline and tidal. Thermohaline 

currents, from the global oceanic circulation driven by polar formation of deep waters, 

generally cause steady currents towards the equator and can have velocities of up to 1ms-1

(Tyler 1995). Superimposed on the flow generated by the thermohaline circulation are tidal 

currents with a typical velocity of <0.1ms-1, these currents are particularly well known in 

the deep NE Atlantic. As well as steady currents more sporadic benthic storms can occur, 

formed from eddies of major currents, their current velocities can often dramatically 

exceed mean levels causing scouring of sediment on the seabed (Tyler 1995) and changes 

in infauna (Thistle and Sherman 1985). 

The seabed of the deep ocean environment is predominantly composed of soft, fine 

sediment derived from pelagic biogenic skeletal material (Tyler 1995). Exposed hard rock 

is relatively uncommon in the deep sea, being found on the steep continental slopes, 

seamounts and along the mid-oceanic ridge. Coarser sediments of a terrigenous origin are 
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found on the continental slopes and rises, transported there by turbidity currents and 

sediment slumps (Gage and Tyler 1991; Weaver et al. 2000). Rafted sediments from 

melting icebergs also contribute to the coarse sediment fraction (Andrews et al. 1997). The 

effects of these factors on diversity and abundance of megafauna are reviewed later. 

DEEP-SEA COMMUNITY MEASURES 

Faunal density in the deep sea

Faunal density refers to the number of organisms per unit area at the moment of sampling. 

The assessment of megafaunal density requires quantitative data on faunal abundance. 

Quantitative data on megabenthic density are much more scarce than for smaller deep-sea 

fauna. Although caught in large trawls, megafaunal organisms are too rare to be collected 

in classic quantitative samplers such as box cores. Seabed photographs and manned 

submersible observations have allowed quantitative estimates to be made of the larger 

epifauna (Grassle et al. 1975; Haedrich and Rowe 1977; Ohta 1983; Lampitt et al. 1986). 

These estimates ignore the potentially important contribution to density of the motile 

scavenging megafauna and by the megafaunal burrowers, that are occasionally taken by 

box corers (Gage 1977); although attempts have been made to estimate their density from 

the large burrow and faecal traces visible in seabed photographs (Mauviel et al. 1987). 

Macrofaunal density has been shown to decrease with depth (Rowe et al. 1982; Rowe 

1983). Lampitt et al. (1986) show a similar trend for megafauna. 
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Species diversity in the deep sea 

The diversity of deep-sea benthic fauna is very high, particularly for macro and 

meiobenthic invertebrates, where a square metre of bathyal or abyssal sediment may 

contain 250 species (Smith et al. 1998; Levin et al. 2001; Stuart et al. 2003). Such species 

richness persists to larger scales, with an epibenthic sledge towed for 1-2km across the 

continental slope often capturing >300 species of mega and macrobenthos (e.g. Hessler and 

Sanders 1967). Deep-sea sediments have been estimated globally to contain between 

500,000 and 10 million macrobenthic species alone (Grassle and Maciolek 1992; May 

1992; Poore and Wilson 1993). While these estimates are very crude, they highlight the 

fact that the deep-sea floor harbours a substantial, as yet poorly studied, fraction of the 

Earth’s species pool (Smith et al. 1998).

Since the discovery of high species diversity in the deep-sea benthos (Hessler and Sanders 

1967) much has been learned about local (Grassle and Maciolek 1992) and regional 

patterns of diversity (Sanders 1968; Etter and Grassle 1992; Levin et al. 2001). The 

elucidation of large scale patterns in species diversity has been more of a challenge in 

deep-sea research (Rex et al. 1997) with most studies concentrating on changes with 

latitude (Rex et al. 1993; Rex et al. 2000) and depth (Rex 1973; Pineda and Caswell 1998). 

Typically a poleward decrease in diversity is observed in the northern hemisphere, 

however in the southern hemisphere a more complex pattern of interregional variation 

exists (Rex et al. 1993), part of this complexity is driven by high diversity in the Argentine 

Basin and Antarctica (Arntz et al. 1994). 
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The possible processes driving high deep-sea species diversity are still unknown, although 

Grassle (1991) gave four major potential factors: 1) large scale environmental stability, 2) 

patchy food resources, 3) localized autochthonous disturbances and 4) few large-scale 

barriers to dispersal.

The explanations for the mechanisms maintaining high species diversity are still the 

subject of much speculation. Potential mechanisms have been divided into equilibrium and 

non-equilibrium hypotheses (Connell 1978). Equilibrium of species composition is usually 

defined as follows: (i) if perturbed away from the existing state (equilibrium point) the 

species composition would return to it; (ii) without further perturbations, it persists in the 

existing state (Connell 1978).  In equilibrium hypotheses: the species composition of 

communities is usually in a state of equilibrium; after a disturbance it recovers to that state. 

High diversity is then maintained without continual changes in species composition. For 

example, at equilibrium, each species is competitively superior in exploiting a particular 

subdivision of the habitat (niche diversification). In the non-equilibrium hypotheses: the 

species composition of communities is seldom in equilibrium. High diversity is maintained 

only when the species composition is continually changing. Connell (1978) investigated 

several equilibrium and non-equilibrium hypotheses in coral reefs and concluded that the 

non-equilibrium “intermediate disturbance hypothesis” was most applicable, although he 

acknowledged that all hypotheses tested may act in different situations. The intermediate 

disturbance hypothesis states that intermediate levels of disturbance maximize species 

diversity. At low disturbance, species diversity is reduced because of competitive 
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exclusion between species; with a slightly increased level or frequency of disturbance 

competition is relaxed, resulting in an increased diversity, and at still higher or more 

frequent levels of disturbance species start to become eliminated by stress and local 

extinctions lead to a fall in diversity.

The intermediate disturbance hypothesis (Connell 1978) continues to be important in 

explaining the effects of ecological disturbance (Collins et al. 1995; Hiura 1995; Dial and 

Roughgarden 1998). However, the intermediate disturbance hypothesis has been criticized 

as being too simplistic to account for the structure of communities (McGuinness 1987). It 

is also dependent on a tradeoff between colonization and competitive ability that may not 

be realistic for assemblages of motile species (McCabe and Gotelli 2000), such as many 

deep-water megafaunal assemblages (Kaufmann and Smith 1997). Finally the intermediate 

disturbance hypothesis assumes disturbance affects only competing species at a single 

trophic level. In deep-water megafaunal assemblages this assumption may be more valid 

than for macrofauna. Huston’s dynamic equilibrium model (Huston 1979) offers a broader 

range of predictions than the intermediate disturbance hypothesis. The dynamic 

equilibrium model predicts that the location of the diversity peak depends on the rate of 

population growth and competitive displacement in the community. Huston’s (1979) 

dynamic-equilibrium model states that population growth rates determine the rate at which 

communities approach competitive equilibrium, where superior competitors will exclude 

inferior species and thereby decrease diversity. Disturbance, either biotic or abiotic, 

interrupts a community’s approach to competitive equilibrium, reducing exclusion and 

promoting coexistence. Both disturbance (Thistle 1988; Vale and Rex 1988; Gage 1997; 
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Thistle and Levin 1998) and competition (Rex et al. 1988) are known to affect deep-sea 

communities (Stuart et al. 2003). It is not well known how these processes vary with depth 

or other physical or biological controlling factors. 

The stability-time hypothesis (Sanders 1968) has been used to explain high deep-sea 

species diversity. This states that as the gradient of physical stress increases in a biological 

community there is a transition from predominantly biologically accommodated 

communities to predominantly physically controlled communities. In the deep sea where 

generally constant conditions exist, physical conditions are not critical in controlling the 

success or failure of a species. With time biological stress increases and interspecific 

interactions result in stable, equilibrium, complex and buffered assemblages with a large 

number of stenotopic species. In more physically-controlled environments fewer species 

can adapt to the conditions and so diversity is lower. This hypothesis was used to explain 

the increased diversity of polychaetes with depth found by Sanders (1968) and has been 

used to explain other patterns of diversity by Gage (1972). However this hypothesis has 

been criticized, on empirical and theoretical grounds (Gray 1974; Abele and Walters 

1979a; Abele and Walters 1979b) and contradicted (Thistle 1983b). 

Dayton and Hessler (1972) present the Disturbance theory, this states that the maintenance 

of high species diversity in the deep sea is more a result of continued biological 

disturbance than of highly specialized competitive niche diversification. They theorize that 

the dominance of deposit feeders prevents smaller animal populations from competitive 

exclusion and allows high overlap in the utilization of food resources. They explain the 
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high numbers of deep-sea species by accumulation over time as a result of speciation and 

immigration. This may help to explain lower diversity patters observed in the deep-sea 

benthos of younger and isolated basins such as the Arctic Ocean. 

It appears that, by themselves, none of these hypotheses are adequate to explain all deep-

sea diversity patterns, and that the observed patterns are the result of many factors 

interacting simultaneously, but with certain factors having more influence at different 

scales, in certain areas, at certain depths or at certain times (Nybakken 1993). These factors 

include microhabitat diversification owing to a heterogeneous environment, energy input, 

competition, predation and rate of disturbance. More quantitative samples from a wider 

area of the deep sea may help understand the issue of diversity and find the forces that 

structure the organization of communities.  

PHYSICAL CONTROLS ON DEEP-WATER COMMUNITIES

Benthic distribution and community features, such as composition, diversity and standing 

stock, are known to be influenced by a complex of abiotic and biotic factors (Dayton 

1984). A wide variety of parameters have been discussed in this context such as water 

depth, habitat heterogeneity, seafloor properties, bottom water hydrography, food 

availability as well as inter and intraspecific competition and disturbance caused by 

predation or burrowing activities (Gray 1981). The relative importance of these benthic 

community determinants strongly depends on the spatial scale considered (Levin 1992). 

Seabed attributes are most commonly suggested to be major control factors (Snelgrove and 
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Butman 1994), but recently the quality, quantity and temporal pattern of food supplies 

have been recognized as equally important in affecting the benthos (Dayton and Oliver 

1977; Graf 1992; Thurston et al. 1994). Changes in physical factors have long been shown 

to be integral in governing ecosystem structure (e.g. Connell 1972). 

Depth

Depth is often seen as the greatest environmental gradient on earth and its effects have 

been shown to be very important in structuring marine ecosystems (Gage and Tyler 1991). 

Organisms are broadly constrained by depth as a result of their physiological tolerance to 

pressure. Pressure is invoked as the cause of the decrease in diversity at higher taxon level 

as depth increases. Many higher taxa, such as decapod crustaceans, anemones and 

echinoids, do not occur below 6000m, whereas other taxa, especially holothurians and 

polychaetes, appear to show an increased abundance below this level (Tyler 1995). While 

depth sets lethal limits, the bathymetric zone in which species are abundant may be 

narrowed by other local factors (Rowe 1983; Billett 1991; Howell et al. 2002). 

Qualitative (Rex 1981) and quantitative (Etter and Grassle 1992) sampling studies 

indicated that diversity-depth patterns in the deep sea are unimodal with a peak at 

intermediate depths and depressed diversity at the upper bathyal and abyssal depths (Levin 

et al. 2001). These studies are predominantly pertaining to the North Atlantic, these 

unimodal patterns do not appear to be universal (Rex et al. 1997; Stuart et al. 2003), and 

where they do occur in other basins have been attributed to varied environmental gradients 
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(Paterson and Lambshead 1995; Cosson-Sarradin et al. 1998). A variety of oceanographic 

conditions at specific depths interrupt and modify bathymetric diversity trends (Gage 1997; 

Levin and Gage 1998; Vetter and Dayton 1998). 

Habitat

Habitat is highly significant in governing distribution of fauna in the deep sea (Levin et al. 

2001) with changes in habitat type directly influencing fauna. Numerous studies have 

shown that the structure and composition of soft-sediment communities are related to 

sediment characteristics (Sanders 1968; Rhoads 1974; Gray 1981), but the explanations for 

these relationships are varied and remain controversial (Snelgrove and Butman 1994).  

On the northwest Atlantic slope, spatiotemporal variation in species diversity is correlated 

with the heterogeneity of sediment grain size across a wide variety of spatial scales (Etter 

and Grassle 1992). Where sediment grain size is more varied, more species coexist (Levin 

et al. 2001). It seems likely that species partition sediment with respect to size. There is 

abundant evidence that deposit feeders selectively ingest sediments of particular size 

classes (Wheatcroft and Jumars 1987; Self and Jumars 1988) 

Reductions in habitat heterogeneity has been shown to be strongly correlated with reduced 

diversity in the deep sea (Levin et al. 2001), although this does not imply causality as the 

activities of more diverse communities may increase sediment heterogeneity. 
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Food supply 

The deep sea lacks in situ primary production (Levin et al. 2001), apart from relatively 

small areas of chemosynthetic production at vents and seeps (Van Dover 2000). Most 

material sinks from surface production in the euphotic zone as particles. The availability of 

food to the benthos is generally negatively correlated with depth of water through which 

the food sinks (Suess 1980; Berger et al. 1988; Herguera 1992). Energy availability in 

deep-sea benthic habitats is positively correlated with: sediment community respiration 

(Berelson et al. 1997), rate of organic carbon burial within the sediment (Jahnke 1996), 

benthic biomass and abundance (Cosson et al. 1997) and overlying primary productivity 

(Lampitt and Antia 1997). 

Food supply or particulate organic matter (POM) flux is important in regulating the 

number of species (Levin et al. 2001). Diversity will be low at low food levels because 

there are insufficient resources to support viable populations of many species conversely 

diversity will increase with food supply as more species can maintain viable populations. 

Diversity has been found to decline at high food levels, although this process is not well 

understood but may reflect a decrease in habitat heterogeneity, differential population 

responses leading to increased dominance by a few species (Rosenzweig and Abramsky 

1993; Waide et al. 1999) and increased physiological stress owing to oxygen limitation or 

sulphide toxicity (Levin et al. 2001). As these increases in food supply are often seasonal, 

diversity decline may also reflect increased extinction rates of more specialized forms as a 

result of competitive exclusion (Rex 1976). At upper bathyal depths, diversity might be 
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depressed by seasonality of nutrient input causing fluctuations in prey populations, and 

limiting the ability of predators to diversify by specialization in diet (Stuart et al. 2003). 

Spatial gradients in productivity are widely believed to influence species diversity (Waide 

et al. 1999). Diversity within a functional group increases with productivity as increased 

availability of resources allows more species to coexist within the group, particularly as 

increased resources allow species to reduce their niche breadth (Rosenzweig and 

Abramsky 1993). 

Currents

Deep-sea currents have been shown to have an effect on the benthic fauna (Rowe and 

Menzies 1969; Lampitt et al. 1983). The effects of currents are among the agents of 

disturbance that can modify the structure and composition of benthic faunas (Hall 1994). 

Currents can modify diversity both locally and regionally, although the mechanisms are 

not well understood (Levin et al. 2001). The effects can be either positive or negative, and 

may be linked to faunal size with greater effects on larger fauna (Thistle 1983a; Thistle and 

Levin 1998). Impacts result from direct impacts (e.g. carrying away of fauna) and 

predominantly indirect impacts, such as: enhanced food supply, entrainment of propagules 

and changing sediment heterogeneity (Thistle and Levin 1998). Given the large areas of 

seafloor swept by erosive currents (e.g. Faroe-Shetland Channel) the impacts of 
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hydrodynamics on regional scale deep-sea diversity and biogeography may be considerable 

(Levin et al. 2001) 

Disturbance

The effects of physical disturbance in soft sediment environments, such as the deep sea, 

have been typically manifested as the partial or complete defaunation of disturbed patches 

through physical smothering, overturning and direct mortality. In addition numerous 

additional effects of disturbance on sediment properties have been found, such as its 

stability and bed roughness (Hall et al. 1994). Changes to sediment topography as a result 

of disturbances can alter near bed hydrodynamics (Thrush et al. 1992) and may therefore 

affect the deposition of particles, such as organic matter and benthic invertebrate larvae 

(Dernie et al. 2003). The increase in suspended particulate loading as a result of 

disturbance may lead to clogging of filter feeding apparatus of some organisms (Sharma et 

al. 2001). On the positive side, redistribution of nutrient-rich subsurface layers could have 

lead to an increase in population size over time (Raghukumar et al. 2001; Sharma et al. 

2001).

In addition to physical disturbance, biological disturbances have been found to be 

important in the deep sea, often as a result of foraging by predators (Thrush et al. 1991), 

bioturbation (Turnewitsch et al. 2000; Lohrer et al. 2004), deposit feeding (Ginger et al. 

2001) and other biotic interactions that have caused changes to habitat properties such as 
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sediment stability, permeability and biological communities (Jones and Jago 1993; Thrush 

et al. 1996).

Habitat type may have an important effect on the impact of disturbance on marine 

communities. In studies of disturbance by trawling in shallow water, recovery was quickest 

in areas of coarse sediment (Thrush et al. 1995) but more stable areas recovered slowly 

(Tuck et al. 1998). Measured rates of recovery for mobile species from fishing disturbance 

were largely as a result of immigration, since what is known of life histories of benthic 

species (Brey 1999) suggested that population regeneration would not occur on this time 

scale.

Natural disturbance is widely recognised as an important determinant of the occurrence 

and abundance of species (Dayton 1971; Pickett and White 1985; Huston 1994; Paine et al. 

1998; Sousa 2001). The effects of disturbance on diversity have been an important area of 

research since the formulation of the intermediate disturbance hypothesis (Connell 1978). 

Increasing levels of environmental stress, particularly through disturbance, have 

historically been considered to decrease diversity through decreasing species richness and 

decreasing evenness (i.e. increasing dominance). This interpretation may, however, be an 

over-simplification of the situation. Subsequent theories on the influence of disturbance or 

stress on diversity have suggested that it is at immediate levels of disturbance that diversity 

is highest (Connell 1978; Huston 1979). Therefore, depending on the starting point of the 

community in relation to existing stress levels, increasing levels of stress (or disturbance) 
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may either result in an increase or decrease in diversity. It is difficult to say at what point 

on this continuum the community under investigation exists, or what value of diversity one 

might expect at a site without any stress. Concurrent with theory, empirical observation 

(e.g. Widdicombe and Austen 1998) suggests that diversity may be either increased or 

decreased with increasing disturbance. Changes in diversity are best assessed by 

comparisons between stations along a spatial stress gradient or with historical data (Clarke 

and Warwick 2001). In reality it is often found that diversity does not behave consistently 

or predictably in response to environmental stress. Diversity is commonly thought of as an 

indicator of ecosystem health or wellbeing, however the exact relationship of diversity to 

ecosystem functioning is as yet unknown and is the subject of much recent research 

(Loreau et al. 2001; Loreau et al. 2002; Naeem 2002). 

Figure 1.2: Patterns of diversity change along environmental gradients in the deep sea shown with biotic 

interactions hypothesized to be responsible for generating diversity patterns. Productivity, Flow, Sediment 

heterogeneity and biotic disturbance. Redrawn from Levin et al (2001). 
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MEASURING DIVERSITY 

Species diversity 

Species diversity is a critical concept in ecology. From the early days of biology the study 

of spatial and temporal variations in diversity has remained a central theme in ecology. 

Much debate surrounds the measurement of diversity (Magurran 1991) and while it may 

appear to be a simple concept, diversity is difficult to define. This is because diversity 

consists of two components, the variety (species richness) and the relative abundance 

(evenness) of species.

Species Richness 

Species richness is the simplest way to describe community and regional diversity 

(Magurran 2003), it is defined as the number of species in a community (McIntosh 1967). 

The presence of more species may increase functional diversity of the community, 

allowing a more complete exploitation of available niche space, and thus increasing 

resource use and biomass production (Loreau et al. 2002). Quantifying species richness is 

important, not only for comparison amongst sites, but also for addressing the saturation of 

local communities colonised from regional source pools (Cornell 1999). In the marine 

environment particularly, with limited barriers to dispersal, the saturation of communities 

is likely driven by small-scale changes in physical and biological factors amongst 

communities. 
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Evenness

Evenness is a measure of the relative contribution of each species to the total biomass or 

number of individuals (Wilsey and Potvin 2000). As evenness of species in a community 

increases diversity becomes greater. The degree to which abundances are evenly divided 

among the species of a given community is a basic property of any biological community 

(Ricotta 2004). A greater evenness may be biologically equivalent to having more species, 

since a species that is present in small numbers or has small individuals is unlikely to 

contribute much to ecosystem function either directly or through species interactions 

(Grime 1998; Mulder et al. 2004). 

Measuring species richness 

In spite of the importance of species richness, ecologists have not always appreciated the 

effects of abundance and sampling effort on richness measures and comparisons (Gotelli 

and Colwell 2001). Although species richness is a natural measure of biodiversity, it is 

difficult to measure properly; this is because as more individuals are sampled, more species 

will be recorded (Bunge and Fitzpatrick 1993). This sampling curve rises rapidly at first, 

then much more slowly in subsequent samples as increasingly rare taxa are added (Gotelli 

and Colwell 2001). It is rarely possible to sample every species in a community and hence 

elucidate true measures of species richness, for this reason richness has to be approximated 
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from sampling. There is dichotomy in both the protocols for species assessment and the 

methods for determining species richness from these. 

There are two approaches to species assessment used to gather information on species 

richness: individual-based and sample-based assessment (Gotelli and Colwell 2001).  

In individual-based assessment a random sample of some number of individuals is 

taken from a study site, with the species identity recorded sequentially of one 

individual after another. Unreplicated mass samples such as deep-sea dredge 

samples are an example of individual-based assessment commonly used in deep-

water ecology.

In sample-based assessment, the number and identity of all individuals in a known 

sub-area (quadrat) is assessed. Total number of species is accumulated as additional 

quadrats are censused. Quantitative underwater photographic studies can use 

sample-based assessments of species richness. 

If sample-based data are available either individual- or sample-based approaches could be 

used, but it is generally preferable to use the sample-based approach, to account for natural 

levels of sample heterogeneity (patchiness in the data). For patchy distributions, 

individual-based rarefaction inevitably overestimates the number of taxa that would have 

been found in an area (Colwell and Coddlington 1994). 

In addition to the differences in species assessment there is a further dichotomy in species 

richness measures. This distinguishes accumulation from rarefaction-based species 

abundance curves (Colwell et al. 2004). Both of which can be either individual-based or 
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sample-based, although in the case of sample-based curves, the x axis should be rescaled to 

individuals as datasets may differ systematically in the number of individuals per sample 

(Gotelli and Colwell 2001). 

Accumulation curves record the total number of taxa revealed, during the process 

of data collection, as individuals or sample units are added to the pool of all 

previously collected individuals or samples. 

Rarefaction curves are produced by repeatedly re-sampling a pool of N individuals 

(or samples), at random without replacement, plotting the average number of 

species represented by 1, 2,…N individuals or samples. Thus rarefaction generates 

the expected number of species (ES(n)) in a small collection of n individuals drawn 

at random from the large pool of N individuals. 

Rarefaction and accumulation curves are often confused owing to shared variables. 

Accumulation curves, in effect, move from left to right, as they are further extended by 

additional sampling. In contrast rarefaction curves move from right to left, as the complete 

community is increasingly sampled. Because the entire rarefaction curve depends upon 

every individual or sample in the pool at the accumulation curve’s right hand end, each 

individual or sample is equally likely to be included in the mean richness value for any 

level of re-sampling along the rarefaction curve (Gotelli and Colwell 2001). Rarefaction 

curves have been used for a long time in deep-water biology (Sanders 1968) although the 

original expression was incorrect (Hurlbert 1971) the principle was sound. Accumulation 

curves are becoming increasingly widespread (Colwell et al. 2004) and avoid some of the 

shortcomings of rarefaction. 
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Species density (e.g. the number of species per m2) is a commonly used measure of species 

richness, especially favoured by botanists (Kershaw and Looney 1985). However, it gets 

little attention in marine ecology. Species density depends on both species richness and on 

the mean density of individuals (disregarding species), consequently the ordering of 

communities may differ when ranked by species richness vs. species density (McCabe and 

Gotelli 2000; Gotelli and Colwell 2001). Although it sounds paradoxical, the ratio of 

richness to area is not a valid measure of species density, because the number of species 

increases non-linearly with area. Instead, species density is valid only when compared with 

the appropriate taxon sampling curves. 

In some well-sampled communities species abundance curves may approach asymptotical 

values; in these cases species richness curves can be extrapolated, only with extreme 

caution, to give asymptotical values and hence measures of true species richness (Colwell 

et al. 2004). In deep-water studies this is generally inappropriate (Rex et al. 2000) as deep 

water communities are often characterised by large numbers of species at very low 

abundances. This coupled with the difficulties of sampling in deep-waters means that in 

very few cases species abundance curves will be sufficient for meaningful extrapolation. If 

accumulation curves fail to reach an asymptote, with appropriate scaling the curves 

themselves can often be compared. It is important to note, however, that if sample sizes are 

not sufficient, rarefaction will not distinguish between different richness patterns, because 

all rarefaction curves tend to converge at low abundances (Tipper 1979). 
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Disentangling metrics of species diversity in gradients of abundance 

Testing hypotheses in community ecology, even with experimental data, can be difficult as 

a result of subtle ambiguities in the definition of richness as well as the interrelated effects 

of abundance on metrics. It is important to decide if assemblages should be compared on 

the basis of area sampled (species density) or number of individuals sampled (species 

richness). Species density is a natural choice as it follows the practice of using 

standardized samples of equivalent area or sampling effort. However, more abundant 

samples tend to have more species, so differences in species density among samples of 

differing abundance must be viewed as potential sampling artifacts unless a rarefaction 

technique provides evidence to the contrary (McCabe and Gotelli 2000).  

It is particularly important, therefore in studies of physical disturbance, where disturbance 

gradients have been shown to reduce abundance directly (Connell 1979; Sousa 1985; 

McCabe and Gotelli 2000), to ensure that the effects of these abundance gradients are not 

driving changes in diversity measures. In community studies, number of individuals 

sampled and the number of species in a sample are positively related (Gotelli and Graves 

1996). Because disturbance lowers total abundance, it is expected that there will be fewer 

species per unit area in disturbed areas. Many studies, particularly in freshwater 

ecosystems use only species density to quantify diversity (McCabe and Gotelli 2000). In 

addition it is important to investigate species richness (using a rarefaction technique or 

similar), as expected species richness is free from this bias. The diversity measure used 

must be free of influence from total abundance. In a study of disturbance of stream 
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macroinvertebrates to disturbance McCabe and Gotelli (2000) found decreasing species 

density with disturbance but increasing species richness.  

Measuring evenness 

Evenness can be measured in a number of ways. Perhaps the most common method uses 

the ratio of observed diversity to maximal diversity; as the maximum diversity that could 

possibly occur is found in a situation where all species are equally abundant (Pielou 1969). 

The evenness component of diversity is expressed as the rate at which the species 

abundance curve approaches the asymptote. Curves generated from samples numerically 

dominated by few species show a less steep rate of climb than those in which abundances 

are move evenly spread amongst the species (Gage and Tyler 1991). 

Combined diversity measures 

Indices based on the proportional abundances of species provide an alternative and 

commonly used approach to the measurement of diversity. These univariate indices are 

often termed heterogeneity indices as they take into account both evenness and species 

richness (Magurran 1991). As no assumptions are made about the shape of the underlying 

species abundance distribution these indices have been referred to as non-parametric 

(Southward 1978). The non-parametric indices fall into two categories, those derived from 

information theory and the dominance indices. 
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Information theory indices are among the most widely used, the most common being the 

Shannon-Wiener index. These indices are based on the rationale that diversity, or 

information, in a natural system can be measured in a similar way to the information 

contained in a code or message (Magurran 1991). It has a number of important 

assumptions: all individuals are randomly sampled, the population is infinitely large and all 

species in the community are represented. Of these the last one is perhaps the most 

important source of error in ecological studies. It is important that care is taken in the use 

or interpretation of information theory indices (Magurran 1991). 

The second group of non-parametric measures are referred to as species dominance 

measures since they are weighted towards the abundances of the commonest species rather 

than providing a measure of species richness (Magurran 1991). The Simpson’s index is one 

of the best know of these indices (Simpson 1949). 

There are a wide variety of univariate diversity indices in use, of these, there are two main 

groups of index, type I and II. Type I indices place most weight on the rarer species in a 

sample, the most extreme example of which is S, the number of species found. Type II 

indices place most weight on the common species in a sample, the proportional dominance 

of the most abundant species (Berger-Parker Index) is the extreme type but Simpson’s 

index also falls into this category. Diversity indices should be selected that cover the 

spectrum between Type I and II indices so that patterns in both rare and common taxa can 

be elucidated. 
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Measurement of diversity between habitats 

Species diversity is commonly regarded as being synonymous with ecological diversity. 

However, species diversity is not the only variety of ecological diversity. Species diversity, 

commonly referred to as alpha diversity, refers to the number and proportion of species in 

a given sampling unit. Another type of diversity is also important,  diversity or 

differentiation diversity. The term  diversity was coined by Whittaker (1960; 1977) and it 

is essentially the same as MacArthur’s (1965) between habitat diversity.  diversity is a 

measure of how different (or similar) a range of habitats or samples are in terms of the 

variety (and sometimes the abundances) of species found in them (Magurran 1991). 

diversity is often said to be the degree to which the species composition of samples, 

habitats or communities differ (Southward 1978). This is commonly approached by 

investigating how species diversity changes along a gradient (Wilson and Mohler 1983). 

diversity can be measured with univariate indices (e.g. Whittakers w), the more commonly 

used approach is to investigate the degree of similarity or association of sites or samples 

using standard ecological techniques of classification and ordination (Southward 1978; 

Pielou 1984; Magurran 1991). 

In looking at whole community patterns, it is important to look at patterns in all species 

abundance and compare these across sites. Community data are usually highly multivariate 

(large numbers of species, each subject to high statistical noise) and need to be analysed 

together in order to elicit the important biological signal and its relation to the 

environment. Multivariate methods are characterised by the fact that they base their 
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comparisons of two or more samples on the extent to which these samples share particular 

species, at comparable levels of abundance. Either explicitly or implicitly, all multivariate 

techniques are founded on such similarity coefficients, calculated between every pair of 

samples. These then facilitate a classification or clustering of samples into groups that are 

mutually similar, or an ordination plot in which, for example, samples are mapped (usually 

in two or three dimensions) in such a way that the distances between pairs of samples 

reflect the relative dissimilarity of species composition (Clarke and Warwick 2001). These 

techniques are widely used throughout marine ecology, with a proven track record in 

interpretation of a wide range of marine community data (Clarke 1993; Piepenburg et al. 

1997b; Underwood and Chapman 1998). Multivariate techniques for community analysis 

evaluate species-dependent attributes of community structure. Univariate methods tend to 

be species independent (Clarke and Warwick 2001). 

In an evaluation of both univariate and multivariate methods of data analysis from a broad 

range of studies on various components of the marine biota from a variety of localities 

Clarke and Warwick (2001) came to a number of conclusions. The similarity in community 

structure between sites or times based on their univariate attributes is different from their 

clustering in multivariate analysis, furthermore the species-dependent multivariate method 

is much more sensitive than the species-independent methods in discriminating between 

sites or times. In examples where more than one component of the fauna has been studied, 

univariate methods may give different results for different components, whereas 

multivariate methods tend to give the same results (Clarke and Warwick 2001). The 

sensitive multivariate methods are most suitable for detecting change in communities 
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between sites and although these changes can be correlated with environmental variables, 

only univariate methods explicitly indicate whether changes are deleterious. There is some 

evidence that the variability of community composition among samples is increased with 

disturbance (Warwick and Clarke 1993), this is best assessed by multivariate community 

analyses such as Multi Dimensional Scaling (MDS). 

MEGAFAUNA

The benthic community is typically separated into different size classes, micro- meio- and 

macrobenthos, these empirically separated size classes seem to correspond to distinct peaks 

in size-class spectra (Warwick 1984) and biomass (Schwinghamer 1981) for the total 

benthic community. Furthermore, these peaks seem to correspond to functionally disparate 

groupings (Gage and Tyler 1991). 

The megafauna, defined as organisms large enough (typically >1cm) to be identified in 

photographs (Grassle et al. 1975), are an important constituent of many deep-sea benthic 

communities despite being often less numerous and diverse that their meio- and 

macrofaunal counterparts (Lauerman et al. 1996). There is evidence that megafaunal 

organisms form a functional component distinct from the macro- and meiofauna (Lampitt 

et al. 1986). Megafauna can contribute significantly to deep-sea benthic biomass (Sibuet 

and Lawrence 1981; Christiansen and Thiel 1992), energy reserves (Walker et al. 1987) 

and organic matter recycling (Smith 1992; Smith et al. 1993). They are more important in 

benthic habitats than their comparatively low abundances imply, especially in food limited 
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systems such as the polar seas and the deep sea (Haedrich and Rowe 1977; Lampitt et al. 

1986; Romero-Wetzel and Gerlach 1991; Smith et al. 1993; Thurston et al. 1994; 

Piepenburg et al. 1995; Piepenburg and Schmid 1997).  Motile species of epibenthic 

megafauna have caused the dispersal of large food falls and significant vertical and 

horizontal sediment mixing (Smith 1985; Smith et al. 1993). Megafaunal species may be 

important components in the overall energy budget of the deep sea (Lauerman et al. 1996), 

a quantitative understanding of their abundances and spatial patterns is necessary in order 

to assess their contribution to energy flow through these systems (Smith 1992; Lauerman 

et al. 1996). 

Benthic megafaunal diversity in the deep sea is high, however three main groups are 

typical representatives of this size class; these are the arthropods, echinoderms and fish. 

Crustaceans are common in the deep sea contributing 30-50% of the fauna in the abyssal 

Atlantic area (Nybakken 1993). Also particularly common in abyssal areas are 

echinoderms, especially holothurians and ophiuroids. Asteroids, crinoids and echinoids are 

also present but generally not in abundance. Fish presence is probably high although not 

well know, the estimation of scavenging fish abundance from the deployment of baited 

cameras to the sea floor (Rowe et al. 1986; Priede and Merrett 1998; Witte 1999) will help 

in determining abundance. Other representative fauna of the deep sea include sponges, 

particularly hexactinellids (glass sponges) that are rarely found in shallow water and 

Cnidaria, almost entirely represented by anthozoans, pennatulids and gorgonians. 

Polychaetes are very common in the deep sea but are typically not well represented in 

photographic studies.
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The reasons why certain habitats harbour a high number or organisms while others support 

a very limited number is the subject of much discussion (Sanders 1968). Various theories 

have been proposed for the differences in abundance and distribution of benthic organisms 

but the most commonly are physical habitat preference (Grassle et al. 1975; Genin et al. 

1992; Sharma and Rao 1992; Pogrebov et al. 1994; Piepenburg et al. 1997a; Gutt and 

Starmans 1998; Gutt et al. 1999; Starmans et al. 1999; Piepenburg et al. 2001), especially 

depth and substratum, food (Tyler and Zibrowius 1992; Thurston et al. 1994; Bett et al. 

2001; Billett et al. 2001) or a combination of these factors (Lauerman et al. 1996) are cited 

as the main factors driving megabenthic distribution. 

Megafaunal organisms are important in the biological mixing of sediments with foraging 

and feeding by deposit feeders being the dominant mode of benthic sediment particle 

displacement (Turnewitsch et al. 2000). The term Lebensspuren (German, life traces) 

describes the physical manifestations of benthic animals in sediments, these are also called 

traces (Gage and Tyler 1991). Throughout the history of deep-sea photography the 

prevalence of Lebensspuren, rather than the benthic animals themselves has been noted 

(Ewing et al. 1967; Heezen and Hollister 1971; Bett et al. 1995). It has been estimated 

from seabed photographs that roughly 7% of the sediment surface on the continental slope 

is visibly disturbed by traces and about half this value in the abyss (Laughton 1963). This 

estimate is based on photographs covering a square metre or more. Gage and Tyler (1991) 

show that at the microscale an even more dynamic landscape exists, indicating almost 

continuous disturbance.
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DEEP-SEA SAMPLING 

Traditional methods 

Qualitative ecological information has been obtained for megabenthos in the polar seas, as 

elsewhere, by the traditional use of trawling and dredging techniques (e.g. Galeron et al. 

1992). However, as a result of the relative inaccessibility of these environments there are 

few quantitative data with sufficient spatial and temporal coverage to yield a meaningful 

description of community structure (Lauerman et al. 1996). In particular the quantification 

of megabenthos has proven difficult as, depending on the species, they may be sparsely 

distributed, fragile or highly mobile. 

Barthel and Gutt (1992) state that although dredge hauls in deeper water normally provide 

the material necessary for species identification, organic substance determination and 

coarse dominance and abundance information much valuable biological information is lost 

that could be obtained from underwater photographs such as habitat preference, association 

with other (especially motile) fauna and small and medium scale patchiness. Hedgpeth 

(1971) shows that a combination of the two approaches results in a better appreciation of 

the true situation. 

A number of previous, mostly deep-sea studies have shown that biomass and abundance 

calculations for macro- and megafauna based on phototransects yield much higher values 

than those based on trawls and dredges (McIntyre 1956; Aldred et al. 1979; Ohta 1983). 
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Photography

History of use

The first photographs taken of the benthic environment were of the sunlit Mediterranean 

seabed in 1893 (Boutan 1893), after which followed an explosion in the use of underwater 

photography in shallow seas, opening up this environment to a wider public (e.g. Cousteau 

and Dugan 1963). Deep-sea photography started in the 1940s at the Woods Hole 

Oceanographic Institution by a group led by Maurice Ewing (Ewing et al. 1946; Ewing et 

al. 1967). The cameras developed by this group photographed the sea floor when triggered 

by contact with the bottom (Thorndike 1959). Schenck and Kendall (1954) discuss 

underwater photography in these early days and provide a bibliography of the older 

literature.

Whilst there were many good deep-sea photographs available between the 1950s and early 

1970s few biologists studied them, often as no corresponding samples of animals were 

taken, making identification difficult (Fell 1967). However, there were a few notable 

exceptions who carried out detailed investigations using seabed photography during this 

period (Vevers 1951; Fell 1962; Clark 1963; Marshall and Bourne 1964; Hersey 1967; 

Heezen and Hollister 1971). After this, photography became established as an important 

tool for the study of the deep-sea environment (Grassle et al. 1975; Rowe et al. 1986; 

Smith et al. 1993; Thurston et al. 1994; Lampitt et al. 2001).  
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Photographic techniques 

The development of photographic techniques has enabled quantitative data to be obtained 

on the spatial and temporal abundances and distribution of megabenthic fauna. On a 

smaller scale from surveys taken by free-fall cameras ‘bounced’ along the seabed (Gage 

and Tyler 1991) or deployed on the seabed for long periods, taking photographs at regular 

intervals e.g. ‘Bathysnap’ (Lampitt and Burnham 1983). On a larger scale photographic 

surveys have been made by towed camera sleds which may be towed over the sediment 

(e.g. Rice et al. 1982; Cailliet et al. 1999) or using acoustic telemetry, fly at a set altitude 

e.g. Wide Angle Survey Photography (WASP) system (Bett 2001); manned submersibles 

(Grassle et al. 1975); Remotely Operated Vehicles (ROV) (Starmans et al. 1999) and with 

the development of Autonomous Underwater Vehicles (AUV) e.g. Autosub (Babb 1993) 

previously inaccessible environments can be sampled. 

Photographic techniques as tools for ecological assessment 

Freefall cameras 

Freefall camera systems were the first photographic tools for deep-water ecological 

assessment (Hersey 1967; Heezen and Hollister 1971). They have been used extensively in 

the deep sea (Menzies et al. 1973; Rowe and Sibuet 1983; George et al. 1985) with the 
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more recent models typically depicting a small area of seabed and allowing identification 

of organisms down to 1mm (e.g. Piepenburg and Schmid 1997). They provide a 

quantitative quadrat type sample although the area covered, even by systems bounced 

along the seabed is typically very small. These camera systems have been important in the 

study of all deep-sea environments (Hersey 1967; Heezen and Hollister 1971; Menzies et 

al. 1973; Langton and Uzmann 1989; Gutt and Starmans 1998; Gutt et al. 1999). Freefall 

cameras have also been used to get the first impressions of life under ice shelves (Lipps et 

al. 1979; Dayton and Kooyman 1985) although these studies are based on very few often 

unclear photographs. These systems, equipped with high resolution 70mm cameras have 

been used extensively in the polar regions to increase the information available on these 

important megafaunal communities (Piepenburg and Schmid 1996b; Piepenburg and 

Schmid 1997; Gutt and Starmans 1998; Gutt and Starmans 2001; Piepenburg et al. 2001). 

Time-lapse cameras 

Time-lapse cameras, typically deployed on benthic landers provide a quantitative 

photographic sample of a small area of benthos over a typically long time period (Bett 

2003). Previously unknown important temporal variations in megabenthic abundance have 

been discovered using this method, for example using the SOC ‘Bathysnap’ time-lapse 

camera Bett et al. (2001) reported a radical change in the abundance and activity of 

megabenthos on the Porcupine Abyssal Plain, northeast Atlantic. 
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Towed cameras 

Towed camera systems provide a quantitative picture of a relatively large area of the 

benthic environment and can be used for transect type biological studies (Rice et al. 1982; 

Holme and McIntyre 1984; Wakefield and Smithey 1989; Hecker 1990; Christiansen and 

Thiel 1992). They typically lack the resolution of the freefall cameras although good 

results have been obtained from sledge type cameras. Towed camera platforms are used 

particularly for geological studies (Kleinrock et al. 1992) and were instrumental in the 

location of hydrothermal vents (Lonsdale 1977b; Lonsdale 1977a), biological studies are 

less common.  Most studies concentrate on the distribution and abundance of megafaunal 

organisms for example in the abyssal northeast Pacific (Lauerman et al. 1996), towed 

camera platforms have also been used to investigate Lebensspuren on the sea floor (Bett et 

al. 1995). 

Submersibles

Manned submersibles have been used extensively for the study of deep-sea benthic fauna. 

Many of these studies have included some photographic sampling of the benthos along the 

submersible track. Grassle et al (1975), in one of the most comprehensive submersible 

photographic studies, investigated the pattern of distribution of benthic megafauna along 

the well-studied Gay Head-Bermuda transect and provides detailed descriptions of the 

highly variable megafauna and their distribution patterns. 
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ROVs

Remotely Operated Vehicles are becoming increasingly used in deep-sea research and 

industry. All are equipped with video systems and often still cameras that can be used in 

ecological studies of the seafloor. Real time control of the vehicle allows different survey 

strategies to be employed (Barry and Baxter 1992), verification of species and observations 

of behaviour (e.g. Hudson and Wigham 2003) to occur. Several polar studies have used 

ROVs in a similar way to a towed camera platform to investigate megabenthic diversity 

(Starmans et al. 1999; Gutt and Starmans 2003). An increasing number of biological 

studies are using ROVs to undertake structured megabenthic survey (Barry and Baxter 

1992; Starmans et al. 1999; Gutt and Starmans 2003; Jonsson et al. 2004) and 

investigations into polar megabenthos (Hamada et al. 1986; Barthel et al. 1991; Stein et al. 

2005).

AUVs

Several Autonomous Underwater Vehicles have been fitted with camera systems although 

the technology is not fully developed for imaging, the potential of AUVs for biological 

survey is great. AUVs will be able to cover large distances and conduct detailed biological 

surveys in the open ocean as well as in habitats that were previously inaccessible such as 

the benthic environment under ice. 
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Video

Video has been used as an important tool for the study of deep-sea megabenthos (George 

et al. 1985; Christiansen 1993; Starmans et al. 1999; Starmans and Gutt 2002; Gutt and 

Starmans 2003). It is used more widely in shallow water, particularly in the study of 

benthic communities on coral reefs (Leonard and Clark 1993; Carleton and Done 1995; 

Aronson and Swanson 1997) as it allows a wide swathe of benthos to be recorded quickly 

and by operators with limited identification skills (Ninio et al. 2003). Despite the 

continuous coverage of video it has an inherently lower resolution than photographs 

(Carleton and Done 1995). It is often combined with photography in the deep sea to 

provide a combination of detail and areal coverage (Bett 2001) or to direct the camera to 

the most suitable location. 

Limitations of photography 

Although photography can be a very important tool for the study of megabenthos in the 

deep sea it is worth bearing in mind that it has inherent problems. Photographs only show 

the epibenthic megafauna, burrowing forms are not seen or at least undersampled. 

Estimates of burrowing megafaunal abundance from Lebensspuren (e.g. Ewing and Davis 

1967) makes many unfulfilled assumptions and may be misleading (Owen et al. 1967; 

Holme and McIntyre 1984). Photographic samples of motile fauna are also likely to be 

poor estimates as many will undertake behavioural responses to the camera system and 

may be repelled from or attracted to it (Herring et al. 1999). Species identification is also a 
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problem especially in photographs of poor resolution. The solution adopted by many 

workers is to take concurrent trawl samples (e.g. Piepenburg and Schmid 1997). 

Work in the Polar Regions using deep-sea photography 

Photographs of the Antarctic sea floor were first published by Bullivant (1959) showing 

massive sponge formations on the Ross Sea floor. At a similar time Hunkins et al. (1960) 

published biological observations based on the first photographs of the deep Arctic Ocean 

floor. Early deep-water polar photographic megafaunal studies have been reviewed by 

Menzies (1962). Since then there have been several megafauna community studies in polar 

shelf areas using underwater photography (Simmons and Landrum 1973; Brunchhausen et 

al. 1984; Christiansen 1993; Pogrebov et al. 1994; Piepenburg and Schmid 1997; Gutt and 

Starmans 1998; Starmans et al. 1999; Sejr et al. 2000; Starmans and Gutt 2002; Barry et al. 

2003). Elements of the ecology of several specific groups of polar megafauna have been 

investigated using photography, including Antarctic octocorals (Orejas et al. 2002), 

Antarctic shrimps (Gutt et al. 1991), Antarctic notothenioid fish (Ekau and Gutt 1991; Gutt 

and Ekau 1996; Gutt 2002), Arctic fish (Stein et al. 2005), Antarctic holothurians (Gutt 

1988), Antarctic sponge associations (Barthel et al. 1991; Barthel 1992; Barthel and Gutt 

1992) as well as the traces (Lebensspuren) that animals create on the seafloor (Hunkins et 

al. 1960; Kitchell et al. 1978; Kitchell and Clark 1979). Photography has also been used to 

investigate the effects of physical and biological factors on the polar benthos, for example, 

Antarctic epibiotic relationships (Gutt and Schickan 1998) and the impact of iceberg 
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scouring on polar benthos (Gutt et al. 1996; Gutt and Piepenburg 2003; Teixido et al. 

2004).

SITES OF INTEREST 

The polar environment 

The Antarctic and Arctic regions are both sited over the geographical poles, hence are 

subject to extreme seasonal variation in solar radiation; both are cold, receive relatively 

little precipitation and are dominated by ice. Despite this the differences between the 

regions are considerable, the Arctic is predominantly a landlocked basin allowing only a 

limited exchange of water with adjacent oceans and receiving an enormous amount of 

freshwater and sediment. The Antarctic is a single landmass isolated on all sides by deep 

oceans. The two areas are also very different in their tectonic and evolutionary history 

(Clarke 1996). 

ARCTIC

Arctic bathymetry 

The Arctic Ocean (Figure 1.3) surrounds the North Pole and is bordered by Europe, 

Siberia, Alaska, Canada and Greenland. It is essentially a landlocked ocean, with limited 

exchange with the Atlantic and Pacific through shallow sills. The Arctic basin is divided 
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by the Lomonosov Ridge (with a crest depth of between 850 and 1200m) into two major 

basins, the Amerasian and Eurasian Basin. The Amerasian Basin is bounded by the East 

Siberian, Chukchi and Beaufort Seas and the Canadian Arctic Islands, and is subdivided by 

the Alpha Cordillera (crest depth around 1000m) into two basins, the large Canada Basin 

and the smaller but deeper Makarov Basin (Paul and Menzies 1974). The Eurasian Basin is 

divided by the Nansen-Gakkel Ridge which separates the very deep Fram (or Amundsen) 

Basin from the Nansen Basin (Clarke 2003).  

Arctic benthic environment 

The study of Arctic deep-sea sediments has been limited as a result of sampling 

difficulties. The limited data available are predominantly from samples taken beneath 

drifting ice stations almost exclusively west of the Lomonosov Ridge (Clarke 2003). From 

the presence of larger grain sediments in photos (Clarke 2003) and geophysical 

investigation (Dowdeswell et al. 1997) of the Arctic deep sea, ice rafting of material would 

appear to be important. The importance of ice rafting is currently unquantified, but the 

content of ice rafted material in sediments of the Arctic abyssal plain has been put at 60-

70% (Darby et al. 1989). Unlike the Antarctic, there is a significant contribution to the 

sediments of the Arctic from riverine sediments. These are carried into the Arctic Ocean 

predominantly during the summer continental melting period. There is evidence that 

turbidity currents are important in transporting sediments from the continental shelves on 

to the deep basins (Clarke 2003). 
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Figure 1.3: Map showing the bathymetry of the Arctic and adjacent oceans (45  N - 90 N).



Chapter 1 

43

Arctic primary production 

The perennial ice-cover of the Arctic Basin, and the freshwater lens at the surface together 

reduce primary productivity in the water column and also make it difficult to measure 

(Clarke 2003). In a thorough survey of primary production in the Arctic Ocean, Andersen 

(1989) gave estimates of annual water column productivity varying from <5 g C m-2 y-1

beneath ice to 15 g C m-2 y-1 in the central Arctic Basin. Longhurst (1998) gives monthly 

estimates of surface productivity from satellite data ranging from 3 to 80 gC m-2 month-1.

Arctic seawater characteristics 

Analysis of temperature, salinity and stability of the water column are used to separate the 

water in the central Arctic Ocean into three basic water masses (Sater 1969). The bottom 

water from about 900m to the bottom is characterised by almost constant salinity (34.93 to 

34.99), nearly uniform temperature (-0.3 to –0.4 C) and dissolved oxygen values between 

6.0 to 6.5 ml/l (Paul and Menzies 1974). Circulation of the bottom water is virtually 

unknown although it is thought that significant but slow currents exist to the bottom 

(Coachman and Aagaard 1974). 

Arctic ice 

In contrast to the Antarctic, where variation in sea ice cover is around 75-80%, in the 

Arctic the variation is substantially less at about 20-25%. Thus while Antarctic multiyear 
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ice is relatively rare and thin (1-2m thick), in the Arctic most of the ice remains for several 

seasons and becomes quite thick (2-4m) (Foster 1984). Multi year ice covers much of the 

Arctic basin, of the 6.2 x 10 6 km2 of permanent ice cover, most is multi-year ice (Gloersen 

et al. 1992). Around the margins the ice grows and melts seasonally, with significant 

quantities carried into the North Atlantic on the East Greenland Current. Passive 

microwave data from satellites indicate that the area of seasonal ice in the Arctic Basin 

averages 0.88 x 106 km2 (Clarke 2003). Icebergs are common (Dowdeswell and Forsberg 

1992; Dowdeswell et al. 1992), formed from the numerous glaciers that feed into the basin 

and as a result are generally smaller than the Antarctic icebergs which typically break off 

the ice sheet. Icebergs are produced at a rate of approximately 280 cubic km per year in the 

Arctic and 1,800 cubic km in the Antarctic (Orheim 1985).

ANTARCTIC 

Antarctic bathymetry 

The bathymetry of the Southern Ocean (figure 1.4) reveals three deep basins that surround 

Antarctica: the Atlantic-Indian Basin, the Southern Indian Basin and the South-east Pacific 

Basin. These basins are partially bounded on the north by the Scotia Ridge and the 

Atlantic-Indian ridge, the South-east Indian Ridge and the Pacific-Antarctic Ridge 

respectively. These ridges and the Kerguelen Plateau tend to prevent the free flow of 

bottom waters and may also deflect the surface currents. The Drake Passage between South 

America and the Antarctic peninsula is the major constriction to the circulation around 
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Antarctica and has an important influence on the oceanic circulation (Foster 1984). The 

continental shelves around Antarctica are unusual, compared to other continents, in being 

deep, typically as much as 800m in places. This is primarily the result of the isostatic 

depression of the continent as a whole resulting from the mass of the polar ice cap (Clarke 

1996). Although the continental shelf around Antarctica is generally narrow (Dell 1972), in 

the Weddell and Ross Seas there are very broad shelves with depths ranging from 400-

500m. These deep shelves may have resulted from isostatic adjustment of Antarctica to its 

massive icecap and from scouring by the Filchner Ice Shelf in the Weddell Sea and the 

Ross Ice Shelf in the Ross Sea, where their extent was much further north in the past. This 

results in a near shore circulation that can be expected to be quite different from that at 

lower latitudes (Foster 1984). 
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Figure 1.4: Map showing the bathymetry around Antarctica (45  N - 90 N).
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Antarctic benthic environment 

The sediments found close to the Antarctic continent contain an abundant silt fraction 

comprised of rock flour with coarse, poorly sorted debris, and containing little calcite or 

biogenic material. These glacial marine sediments form a wide circumpolar band around 

Antarctica, which can be divided, into four roughly concentric zones, distinguished on 

textural grounds, with a decrease in the amount of coarse material with increasing distance 

from the continent. The northernmost limit of these glacial marine sediments is related to 

the surface 0 C isotherm, which influences the rate of iceberg melting (Clarke 1996). 

Icebergs are the major route for ice-rafted sediment transport in Antarctica, transporting 

0.5 x 109 tons per year (Knox 1994). This is unlike the Arctic where sea ice is more 

important for moving terrigenous material. This is not the case in Antarctica, as the 

extensive development of ice-shelves essentially precludes the capture of sediments by sea 

ice. Ice shelves also greatly reduce the importance of riverine and aeolian (wind-driven) 

input into the marine system of the Antarctic compared to the Arctic (Clarke 1996).

Most of the Southern Ocean overlies the abyssal plain (Clarke 1996). The abyssal plains 

around Antarctica, like those of elsewhere, are composed primarily of soft sediments. 

However, they differ from those of elsewhere in two ways: the surface waters are of low 

temperature resulting in siliceous rather than more typical carbonate sediments, and there 

is a strong influence of glacial processes (Clarke 1996). Large ice rafted boulders (drop 

stones) are important in providing isolated patches of hard substratum on the otherwise soft 

abyssal plain of the Southern Ocean. The concentration of these drop stones is thought to 
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decline with distance from the ice front and their distribution will influence the 

colonisation dynamics of some encrusting taxa in the Southern Ocean. Little is known on 

either the distribution or fauna of these drop stones (Arntz et al. 1994; Clarke 1996). 

Primary production is highly seasonal, with a major input in spring and a smaller one in the 

autumn (Picken 1985) This is in line with most biological activity in the water column 

where most activity is restricted to a short period in spring and summer which starts with 

the melting of the pack ice. Related sedimentation of organic matter to the seafloor reflects 

this situation, with available data suggesting a strong vertical flux after the primary 

production phase (Arntz et al. 1992). The vertical flux of organic matter from surface 

waters links benthic habitats to processes in the overlying water column. Local 

hydrography is critical to this benthic-pelagic coupling. There have been few studies of the 

hydrography of direct relevance to benthic habitats in Antarctica (Clarke 1996).

In the Antarctic benthic environment there are low but stable temperatures, both the mean 

annual temperature and the extent of annual variation are supposed to increase from the 

Antarctic continent out towards the Antarctic Convergence (Clarke 1988). In McMurdo 

Sound, as an extreme example (Arntz et al. 1994), the annual temperature range, at 585m 

depth, is 0.07 C around an average of 1.89 C (Picken 1985). Although water 

temperatures on the shelf do not show pronounced seasonal variations, at greater depths 

oscillations are common in the bottom water, for example in the Weddell Sea temperatures 

oscillate between –1.8 C and +0.4 C. This is owing to deep, warm water regularly 

advancing into the shelf areas (Arntz et al. 1992). 
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In the Antarctic deep sea there are low fluctuations in salinity (Arntz et al. 1994). The 

normal range in the benthic realm is 34.6-34.9 (Lipps and Hickman 1982). There are 

exceptions in shallow water owing to melt water inflow, tides and currents, which can 

cause substantial variations in salinity (Arntz et al. 1994).

Antarctic primary production 

Longhurst (1998) gives monthly estimates of surface productivity from satellite data as 

ranging from 1 – 60 gC m-2 month-1 for the Austral Polar Province located within the 

Antarctic Divergence (~65 S) although for several months this region is ice covered.

Antarctic ice 

Although the general distribution of the sea ice in the Southern Ocean has been known for 

some time (Foster 1984), modern satellite imagery has provided continuous year round 

observation of the detailed changes that take place on the pack ice (e.g. Murphy et al. 

1995). Antarctic ice does not grow and decay in a simple north-south progression and 

regression (figure 1.2). It proceeds irregularly especially in the areas of the Ross and 

Weddell Sea regions. In the Weddell Sea the pattern of growth and decay is strongly 

influenced by both oceanic and atmospheric circulation. In the north, the extension of the 

ice edge is a result of ice from the western Weddell Sea being carried around to the east. 

The rapid decay of ice in the south-east is caused by warmer water entering the region 
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(Foster 1984). The Antarctic sea ice shows a rapid growth in the austral spring and more 

rapid decay in early austral summer. There is a 75-80% variation in the area of sea ice 

cover from a maximum in August-October to a minimum in February-March although it is 

thought that the variation in sea ice mass will be larger (Foster 1984). In the Ross and 

Weddell sea the ice sheets which extrude from the continent float on the ocean forming the 

extensive Ross, Filchner and Ronne Ice Shelves (Foster 1984). 

The movement of icebergs is one of the most important factors influencing the ecology of 

many shallow water polar benthic communities (Gutt et al. 1996; Conlan et al. 1998; Peck 

et al. 1999; Gutt and Starmans 2001). Although the majority of effects are in shallow 

waters Antarctic tabular icebergs can impact on the seabed at depths  600m (Gutt and 

Starmans 2001). 

The importance of sea ice which is obvious for life in the water column and for seasonal 

changes in phytoplankton (Spindler 1990) is generally hypothesized for the benthos 

underneath (e.g. Picken 1985) but has rarely been measured quantitatively (Dayton 1990). 

Arnaud and Hain (1992) found highest values of benthic species richness in the Weddell 

Sea near the ice-shell edge and from the rise of the shelf to some 800 m on the slope 

although the opposite trend was observed for biomass. 
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FAROE SHETLAND CHANNEL (FSC) 

FSC bathymetry 

The Faroe-Shetland Channel is a deep basin separating the Faroese plateau from the 

Scottish continental shelf (Figure 1.5); it narrows southward from about 190 km wide at 

62° 30' N to 90 km wide at 60° N. It is bounded to the south by the complex of the Wyville 

Thomson Ridge (approx. 450m deep) and the Faroe Bank. At its northern entrance (1500-

2000m deep), it is connected to the Norwegian Sea (Turrell et al. 1999). In the southwest 

the Faroe-Shetland Channel along with the Faroe Bank Channel connect the deep 

Norwegian Basin to the Icelandic Basin. These channels and others allow the cold, subzero 

temperature, Norwegian Sea Deep Water to enter the Atlantic (Bett 2001). 
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Figure 1.5: Bathymetry of the Faroe-Shetland Channel.

FSC hydrographic regime 

The hydrographic regime of the Faroe-Shetland Channel is complex with warm North 

Atlantic waters overlying the cold water flows from the Norwegian Sea (Turrell et al. 

1999; Bett 2001). The surface waters (0-400m), are warm (>8 C) North Atlantic Water, 

these overlay cold (-2 to 5.5 C) Arctic Intermediate Water (400-600m), Norwegian Sea 
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Arctic Intermediate Water (-0.5 to 0.5 C in 600-800m) and Faroe Shetland Channel 

Bottom Water (approx. -1 C and below 800m). It has recently been shown that contrary to 

previous beliefs, there is a marked decadal variation in the properties of these water masses 

(Turrell et al. 1999). The temperature regime of the eastern Faroe-Shetland channel shows 

a very distinctive drop in temperature with depth (figure 1.4).

Short scale fluctuations in the depths of isotherms occur in the Faroe-Shetland Channel, 

these internal tides are wave-like oscillations of isotherms within the channel. The deep 

water thermocline (between water of 6 and <0 C) at 550m depth in the southeastern part of 

the channel can vary in depth by more than 40m during a tidal cycle (Sherwin 1995). The 

internal wave propagates northeastwards along the channel at speeds of 0.6ms-1 and can 

cause strong currents to the benthic environment which have been observed by submarine 

(Sherwin 1995) and very rapid large changes in temperature. These internal tides cause the 

transition zone of the benthos between the cold arctic bottom water and the more normal 

temperature water to become extended. 

Currents in the upper water mass of the Faroe Shetland Channel are typically 30 to 60 cm 

s-1 towards the northeast, and in the lower water mass 10 to 20 cm s-1 towards the 

southwest (Saunders 1990). Sediment bedforms observed on the upper slope allow 

estimates of currents in the range 40 to >75 cm s –1 (Kenyon 1986).

Longhurst (1998) gives monthly estimates of surface productivity from satellite data as 

ranging from 1 – 65 gC m-2 month-1 for the Atlantic Subarctic Province. Ship-board 
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measurements of primary production revealed rates of 1.2 - 3.8 gC m-2 day-1  although 

these were associated with spring bloom conditions (Riegman and Kraay 2001). 

FSC benthic environment 

Using deep towed (TOBI) and sidescan sonar Masson et al. (2000) investigated the seabed 

of the Faroe Shetland Channel. Bett (2001) divided their findings into five main sediment 

type bands:

Outer continental shelf (120-200m), having a variable cover of sand overlying a gravel 

substratum. 

Iceberg ploughmark zone (<200-500m), ploughmarks dominate this zone although few 

now have any topographic relief 

‘Sediment wave’ zone (approx. 500-850m), a relatively featureless zone with long 

wavelength sediment waves. 

Ultra-low backscatter zone (approx. 500-850m), an unusual zone of extremely low 

backscatter that appears to correspond to a sandy contourite sheet. 

Faroe-Shetland Channel floor (>1000m), a relatively featureless mud, muddy sand and 

gravel zone with a general decrease in grain size to the northwest.

In general the sediment type varies with depth, grading from coarse sands on the shelf edge 

to finer sediments on the floor of the Faroe-Shetland Channel (Bett 2001).
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POLAR MEGABENTHOS 

Arctic megabenthos 

Photographic analyses of the deeper water Arctic megabenthos are relatively sparse 

although there have been some studies in the deep Norwegian fjords (Christiansen 1993), 

the waters off northeast Greenland (Starmans 1997; Starmans et al. 1999; Starmans and 

Gutt 2002), the waters around Svalbard (Piepenburg et al. 1996) as well as the Arctic north 

Atlantic (Piepenburg et al. 2001) and some shallower water studies in the Barents Sea shelf 

and the high Arctic Laptev Sea (Piepenburg et al. 1995; Piepenburg and Schmid 1996a; 

Piepenburg and Schmid 1997). 

Species richness and biodiversity 

Curtis (1975) shows a higher relative importance of deposit feeding organisms in the 

Arctic shelf seas than in other marine areas at comparable depths and sediment type. This 

is illustrated by the higher proportions of deposit-feeding taxa within the polychaetes and 

bivalves typically found at higher latitudes (Rasmussen 1973). On the other hand the most 

abundant species found by Paul and Menzies (1974) in the high Arctic deep sea were 

sessile suspension feeders which was expected in oligotrophic regions characterized by 

low sedimentation rates and small quantities of deposited organic material. The distribution 

of shelf megafauna off northeast Greenland could be explained by water depth alone, but 
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also similarly with a combination of water depth and latitude (Starmans et al. 1999). This 

megabenthic gradient from suspension feeder dominated assemblages to those with higher 

numbers of detritus feeders has also been shown in the Antarctic although there is a less 

pronounced depth zonation on the high Antarctic shelf compared to the Arctic (Gutt and 

Starmans 1998; Starmans et al. 1999).  

Species diversity for the high Arctic was found to be low (H´ = 0.44 - 1.66) by Paul and 

Menzies (1974) suggesting that the Arctic ecosystem is young (Margalef 1968). A 

particular reduction in Arctic epifaunal species diversity was found by Thorson (1957) 

compared to warmer seas. Using evidence from a number of sources, Curtis (1975) shows 

the largest number of species are found in areas of mixing between cold polar and non-

polar waters, such as occurs around the Faroe Shetland Channel (Bett 2001; 

Narayanaswamy et al. 2005). 

Distribution and zonation 

Many of the benthic invertebrates occurring in the northern seas are not limited to Arctic or 

sub-Arctic habitats, but may also be found in adjacent parts of the North Atlantic and 

North Pacific. While some species are circumpolar in distribution, others are global. There 

are several exclusively Arctic or sub-Arctic species, but these do not form the majority of 

any taxonomic category (Curtis 1975).   
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Analysis of the benthic species distribution by Starmans et al. (1999) revealed a 

conspicuous depth zonation in the fauna off northeast Greenland. Similar bathymetric 

zonation patterns in the same area have been reported for the megafauna, epifauna and 

selected species by a number of authors (Piepenburg and Schmid 1996b; Piepenburg et al. 

1997b; Starmans et al. 1999). The results of these studies show that deeper stations tend to 

have high numbers of taxa but low abundances while the shallower stations showed the 

opposite trend.

Faunal densities and biomass 

Using trawls and cores to study the benthic ecology of the high Arctic deep sea, Paul and 

Menzies (1974) found extremely low biomass values of 0.04gm-2 in the Amerasian Basin 

at depths of 1000-2000m which is comparable to the oligotrophic mid-Pacific at depths of 

5000-6000m. In a review, Curtis (1975) shows a sharp decline of biomass with depth in 

Arctic areas, with deeper areas (>100m) having a biomass of a few tens of grams per m2.

Higher biomass values than this are most frequently encountered on coarser, more rocky 

substrata in areas of relatively strong current flow, where larger epifaunal organisms 

dominate the benthos. The relative abundance of various taxonomic groups in different 

habitats also offers a useful perspective on trophic relationships in the Arctic benthos. Over 

most of the northern continental shelves ophiuroid echinoderms, polychaetes and 

occasionally bivalves dominate the offshore benthic biomass (Curtis 1975) although 

sponges have also been shown to be important in the Norwegian-Greenland sea as well as 

other parts of the Arctic basin (Barthel and Tendal 1993). The dominance of echinoderms, 
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particularly ophiuroids, in stations off northeast Greenland has been reported in a recent 

study by Starmans et al. (1999) and agrees with previous studies in Arctic regions (Carey 

1991; Piepenburg and von Juterzenka 1994; Piepenburg et al. 1996; Piepenburg and 

Schmid 1996a; Bluhm et al. 1998). 

Antarctic megabenthos 

In the Antarctic deeper water photographic studies of megabenthos have concentrated in 

the Weddell Sea (Starmans 1997; Gutt and Starmans 1998; Starmans et al. 1999; Starmans 

and Gutt 2002) with several additional studies concentrating on specific megafaunal 

groups e.g. fish (Ekau and Gutt 1991; Gutt et al. 1994) and sponges (Barthel and Gutt 

1992). The benthos under the Ross Ice Shelf has also had some preliminary photographic 

studies (Lipps et al. 1979; Dayton and Kooyman 1985). The megabenthos of the Antarctic 

have been studied in more depth using trawls, again most deeper studies are concentrated 

in the Weddell Sea (Voss 1988; Hain 1990; Arnaud and Hain 1992; Galeron et al. 1992; 

Piepenburg et al. 1997b). 

It would seem that caution should be exercised in the generalisation of the Antarctic 

zoobenthos (Clarke and Crame 1989; Gutt 1991; Arntz and Gallardo 1994). Some groups, 

such as sessile suspension feeders (sponges, bryozoans), motile epibenthos (amphipods) 

and taxa which cover a wide range in terms of mobility and trophic function (polychaetes) 

are rich in species; others seem to occupy an intermediate level (bivalves, gastropods, 

isopods) and some are missing altogether (stomatopods) or restricted to a few 
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representatives (cirripedes and decapods where reptants are totally absent from the high 

Antarctic) (Arntz and Gallardo 1994). For the species that live in Antarctic waters, Arntz et 

al. (1997) confirm a high level of endemism in most groups.  

Species richness and biodiversity 

Using the best estimates for the biodiversity of the Southern Ocean from Arntz et al. 

(1997) and comparing these with the estimated marine species numbers in the worlds 

oceans from Winston (1992, table 10.1), reveals that most of the Antarctic higher taxa 

provide between 3 and 7% of the worldwide marine species number of their respective 

group. Only pycnogonids and priapulids have much higher values. Three to seven percent 

is less than the share of the Southern Ocean in the world ocean; the area covered by pack 

ice in winter alone exceeds 10% of the world ocean surface (Laws 1989). However the 

data presented by Winston (1992) have been derived from actual knowledge of shelf 

species, whereas shelf areas of the same depths are relatively scarce in Antarctica under 

present geological conditions (Arntz et al. 1997). These figures are likely to change in the 

future with more research into species diversity in the Antarctic. 

For the species that live in Antarctic waters, Arntz et al. (1997) confirm a high level of 

endemism in most groups. Endemicity values of taxa may reflect environmental changes in 

the past and both duration and degree of isolation from other biogeographic zones. If 

marked environmental changes such as the advance and retreat of ice shelves coincide with 

isolation, as is suggested for the Antarctic, allopatric speciation may be favoured, leading 
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to adaptive radiation into groups with many endemic species. Levels of endemism are thus 

helpful in explaining the great differences in species richness found among Antarctic taxa 

(Arntz et al. 1997). The ice shelf processes that favour species formation must also have 

caused extinctions of many species as well. This may be the reason why taxonomic 

diversity is not higher in most cases (Arntz et al. 1997). 

The epifaunal suspension feeder communities found on the Antarctic shelf have been 

considered rich in species and diverse (Dearborn 1968; Dell 1972) and can be compared, in 

terms of total species numbers within assemblages, with tropical or subtropical seagrasses 

(Gambi et al. 1992; Mazella et al. 1993) or even with coral communities (see Gutt 1991), 

both of which are also three dimensional.  

The Antarctic marine system as a whole seems to have a lower percentage of species 

known to date in most higher taxa than would be expected from its share of the area of the 

worlds oceans. However, comparison with other marine ecosystems is difficult because of 

differences in area, environment, sampling and processing and taxonomic knowledge. 

Comparison with the Arctic Ocean indicates that species numbers of most groups are much 

higher in Antarctic waters, but many more comparable data are needed to judge whether 

this also holds generally true for diversity, and whether large-scale latitudinal gradients 

exist for more than a few groups (Arntz et al. 1997). 



Chapter 1 

61

Distributions and zonation patterns 

The South Polar Sea, like other marine ecosystems, reveals distinct differences between its 

various subsystems: in shallow water, on the deeper shelf and slope and in the deep sea. 

These systems do, however, show a surprising number of eurybathic species. The intertidal 

and upper sublittoral levels are highly impacted by ice. The richest communities, mostly 

dominated by sessile suspension feeders, are found on the deeper shelf and the upper slope. 

The deep sea does not appear to be very different from other deep-sea areas of the worlds 

ocean, although, sampling in that area has been very limited and further sampling may 

provide new evidence (Arntz et al. 1997).

Faunal densities, biomass and productivity 

Densities in most Antarctic benthic communities, excluding those of shallow water, are the 

same order of magnitude as in similar marine communities in other areas, and are usually 

much below the numbers that are reached in temperate soft bottoms (Arntz et al. 1997). 

Only a single infaunal community in McMurdo Sound has been found to have 

exceptionally high density where densities of between 118712 and 155572 individuals m-2

have been reported (Dayton and Oliver 1977). Most other faunal abundances have been 

found to be 1 to 2 orders of magnitude lower (Muhlenhardt-Siegel 1988; Gerdes et al. 

1992).
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Densities and biomasses of macrobenthos are traditionally thought to be high in the 

Antarctic both on hard and soft substrata (White 1984; Clarke and Crame 1989) especially 

in comparison with the Arctic (Dayton 1990). Antarctic biomass can appear high, such as, 

in the epifaunal suspension-feeding communities (with an important share of silici- and 

calcimass) (Arntz et al. 1997), although not reaching the peak values found elsewhere such 

as in temperate mussel beds (Munch-Petersen and Kristensen 2001) or intertidal clam beds 

of upwelling regions (Arntz et al. 1987). Biomass seems comparatively low in most high 

Antarctic infaunal communities (Gerdes et al. 1992). However, Brey and Clarke (1993) 

state that average Antarctic benthic biomass is higher than that of temperate and sub-

tropical communities. The distribution of both biomass and abundance values is highly 

patchy (Arntz et al. 1997). Biomass (wet wt.) values ranged between 0.12g and 1644.20g 

m-2 in the Weddell Sea (Gerdes et al. 1992) and between 9.06g and 57.13g m-2 in the 

Antarctic Peninsular/Scotia Arc area (Muhlenhardt-Siegel 1988). Antarctic biomass values 

are higher than those of the Arctic macrobenthos at similar depth (Brey and Clarke 1993).

For individual taxa or species, numbers and biomasses may differ greatly in the Antarctic 

benthos. Many species occur in particularly low numbers (Arntz and Gallardo 1994). 

Relatively high densities and biomasses have been reported for amphipods (Jazdzewski et 

al. 1991), limpets (Picken 1980) and scallops (Berkman 1990). Low mean values, but 

locally dense patches were seen in caridean shrimps (Gutt et al. 1991), holothurians (Gutt 

and Piepenburg 1991) and sponges (Barthel and Gutt 1992). Low values have been found 

for shelled molluscs in the Weddell Sea (Hain 1990), echinoderm predators in McMurdo 

Sound (Dayton et al. 1974) and the sea urchin Sterechinus sp. (Brey and Gutt 1991). 
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THE FAUNA UNDER ICE 

As a result of the temporary extension and calving of icebergs, ice shelves have been 

shown to suppress the benthic fauna underneath and create unpredictable conditions (Arntz 

et al. 1994). There was no local primary productivity from algae under the Ross Ice Shelf, 

but bacterial densities and organic carbon were equivalent to deep-sea values. No benthic 

infauna was collected, although a motile faunal element, mostly crustaceans and several 

fish, under the ice shelf was found as much as 430km away from the ice edge, under 420m 

of ice and in a water depth of about 600m (Lipps et al. 1979; Brunchhausen et al. 1984; 

Dayton 1990; Arntz et al. 1994). The fish beneath the ice shelf may have fed on the 

abundant Orchomene amphipods (Brunchhausen et al. 1984) whereas a food source for the 

amphipods was less obvious. Their stomachs contained sediment, bacteria and small 

crustaceans. It is likely that as scavengers, they are dependent on occasional carcasses that 

get caught under the ice. This was investigated using baited traps, which have attracted 

several hundred of them (Stockton 1982). 

Benthic life in the vicinity of the Ross ice shelf edge was found to be rich and varied, with 

species that were common even in areas with annual sea ice (Oliver et al. 1976). Samples 

taken in the southern Weddell Sea shortly after the calving of three large ice isles in 1988 

by Gerdes and Gutt (unpublished) in an area formerly covered by the Filchner ice shelf 

revealed the existence of motile (amphipods, ophiuroids) and low numbers of sessile 

elements (tunicates, hydrozoans) (Arntz et al. 1994). 
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AIMS

The main objective of this study is to investigate the physical controls on polar 

megabenthic communities. This will be investigated by using deep-water imaging 

techniques to investigate community structure along physical gradients primarily in depth. 

In the high polar environments the extent and effects of disturbance effects from ice 

grounding on the megabenthic communities will be quantified. The effects of disturbance 

on cold water communities will be explored in more detail by investigating experimentally 

the outcomes of wide scale smothering of the seabed, as may occur in relation to ice 

disturbance. The results from this experimental approach will be used to facilitate 

understanding of processes that may explain observed patterns in the other studies. The 

effects of other factors will also be investigated where appropriate. 

The major topics covered in this study are: 

Ecology of the deep Faroe-Shetland Channel: Arctic communities in a temperate 

setting.

Experimental investigation of disturbance in the deep Faroe-Shetland Channel 

Arctic community ecology: patterns in the true Arctic, East Greenland 

Antarctic community ecology: patterns in the Antarctic 

Through using a range of imaging techniques it will be possible to draw some conclusions 

as to the use of various photographic techniques in deep waters. 
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CHAPTER 2: MATERIALS AND METHODS 

DATA COLLECTION 

Photographic data were collected using the NOC WASP (Wide Angle Seadbed 

Photography) system, a Remotely Operated Vehicle (ROV) and the Autosub 

Autonomous Underwater Vehicle (AUV). Specimens, if obtained, were collected using 

ROV suction sampling (at Laggan; Chapter 4), Agassiz trawl (Greenland only; Chapter 

5) and rock dredge (Greenland and Antarctic; Chapters 5 and 6). 

WASP

The National Oceanography Centre (NOC) WASP (Wide-Angle Seabed Photography) 

system was used throughout this study in its standard configuration. Briefly, WASP 

(Figure 2.1) is a self-contained, off-bottom, towed camera vehicle that provides still and 

video footage of the seabed, and is capable of operation to 6,000m water depth on a 

simple mechanical cable (i.e. conducting or fibre-optic cable not required). As deployed, 

WASP was fitted with: OSIL Mk7 (stills) camera, OSIL 1200J flash gun, NOC 

OceanCam6000V (digital video) camera, 2 x 250W DSPL video lamps, 3 x DSPL 24V 

batteries, Simrad Mesotech 200kHz altimeter, and a NOC acoustic telemetry system 

(10kHz). Data from the altimeter are telemetered to a shipborne display enabling the 

operator to make fine adjustments of the amount of cable deployed with the aim of 

keeping the vehicle at c. 3m above the seabed. The still and video cameras are both 

automatically activated by the altimeter when the range to the seabed is <10m. For all 
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deployments made during the cruises, the still camera was loaded with 30m of Kodak 

Vision 250D and the video camera loaded with a 63 minute MiniDV tape. 

Figure 2.1: The National Oceanography Centre WASP vehicle, showing locations of A-altimeter, C-still 

camera, L-video lamps, B-batteries, V-video camera, M-monitor (acoustic telemetry) and F-flashgun. 

The acoustic telemetry from WASP was received through the ship’s hull mounted 

transducers and monitored with the BAS PES system. It was usually possible to operate 

WASP at a roughly constant altitude (2.5m 1m). 

REMOTELY OPERATED VEHICLE 

Data were collected using an industry-operated work-class Clansman ROV. The 

Clansman (now re-named Warrior) ROV is 2m long x 1.7m wide x 1.6m high (Figure 

2.2), it is powered by 6 thrusters with 90kW of power. It is equipped with 2 manipulator 

arms, a 5 and 7 function arm. The ROV was equipped with a colour video camera 

(Remote Ocean Systems) and digital still camera (Kongsberg OE14-208), flash 

(Kongsberg OE11-242) and Sonar (Tritech). Cameras were mounted on a pan and tilt unit 

at the front of the ROV (Figure 2.3), which enabled oblique video to be taken. The 
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camera system could be controlled from the surface via a laptop running the Kongsberg 

Graphic User Interface, this enabled zoom settings, flash output, focus, aperture and 

exposure to be controlled. Before each transect the video was zoomed out to maximum 

extent and the camera was set to its most vertical angle (47  below the horizontal). The 

vehicle had 4 x 500W variable intensity lights positioned for optimal lighting. 

Figure 2.2: Clansman ROV returning to Jack Bates Rig. ROV is contained within yellow ‘garage’ used for 

transport to and from the surface. Note the Tether Management System (TMS) above the ROV. The entire 

inner yellow cage is lowered to around 50m from the seabed and the ROV launched from the garage using 

the 250m long yellow tether (coiled on the TMS) to move around.
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Figure 2.3: Camera package on Clansman 2. (Top Left) SIT system (Top Right) OE14-208 Stills, (Bottom 

Left) Still Flash Unit, (Bottom Right) Pan – Tilt Colour Video.

AUTOSUB VEHICLE 

The Autosub2 AUV is 6.7 m long, 0.9m maximum diameter and has a 3.6 m3 form 

displacement. The vehicle (Figure 2.4) splits into three sections: rear, central  and front: 

The central section comprises seven, 3 m long carbon fibre reinforced plastic (CFRP) 

pressure vessels, with interstitial spaces filled with syntactic foam. Four of the tubes 

housed the battery system, (3900 “D type” primary Manganese Alkaline cells, total 

weight = 540 kg) which provided up to 60 kW hr of energy (depending upon usage rate 

and temperature). The three other tubes house control and sensor electronics. The CFRP 

pressure vessels limited the safe operating depth of Autosub2 to 1600m.  



Chapter 2 

69

The rear section is mainly free-flooding with some extra buoyancy (syntactic foam). It 

houses essential sub-systems, (eg navigation, control actuation and propulsion systems) 

and scientific sensors (eg digital camera, upward looking 300kHz RDI Acoustic Doppler 

Current Profiler (ADCP) and multibeam receiver).  

The navigation housing consists of a 150kHz RDI ADCP and Ixsea PHINS fibre optic 

gyro based inertial navigation system (INS).  For best accuracy, the navigation system 

needs bottom locked velocity data aiding from the ADCP, requiring a range to the seabed 

of less than 500m. With bottom tracked aiding, operational results with Autosub2 

demonstrated accuracy of better than 0.1% of distance travelled, even at high latitudes (as 

high as 80 degrees north), where INS systems are generally less accurate. This is of vital 

importance in under-ice operations, where Autosub may need to return to a small area of 

clear water after a long run under sea-ice or ice shelf. A single brushless direct drive (no 

gearbox) d.c. motor and five bladed propeller propels the vehicle with a speed range of 1 

to 2 m/s. A rear mounted rudder and sternplane  provides control in yaw, pitch and depth.  

The front section of Autosub2 is free-flooding and houses other essential sub-systems (eg 

forward looking collision sensor and emergency abort system) and science sensors (eg 

the Conductivity Temperature Depth (CTD) system and the multibeam transmitter).  The 

control system for Autosub was based upon a distributed, networked control architecture. 

One of the major advantages of such a modular approach is that new sensors can be 

integrated into the system with relative ease.  
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Three small hydrophones on the base of the nose section, act as receivers for the homing 

system which guides the Autosub back to the mother ship. This facility is particularly 

useful when the Autosub is operated under mobile sea-ice and it is not possible to predict 

in advance where there might be an opening in the ice cover suitable for Autosub 

recovery. The homing system was used to effect safe recovery of Autosub in several of 

the missions during the AUI campaign in August 2004. 

The Autosub camera system was a Starlight SXV-H9, a black and white CCD imager. 

The imager used a Sony ICX285AL Exview HAD CCD with square pixels size of 

6.45x6.45µm and an imaging area of 1392 x 1040 pixels. The camera was fitted with a 25 

mm focal length cine lens, which with the water/air interface magnification factor of 

1.33, gave a field size of 2.7 m by  2.0 m with Autosub flying at 10 m altitude (pixel 

resolution on the seafloor of  2 mm square). The camera was installed pointing vertically 

downwards in the tail section of Autosub within a 150 mm diameter, 400 mm long 

aluminium housing, with a plane glass window. 

A Minolta 3600HS zoom flash was selected, modified with a fixed zoom setting of 85 

mm (for a 35 mm camera). The flash was mounted in a 100mm diameter enclosure, with 

a glass window and installed in the nose section of Autosub, angled back at 27 degrees to 

match the 10m flying altitude. 
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1m

Figure 2.4: Autosub2 schematic. The camera is mounted vertically in the tail section and the flash gun is 

mounted in the nose section, angled back at 27 degrees to the vertical (optimum for a flying altitude of 

10m). Diagram from Autosub Operation Team.

COLLECTION DEVICES 

ROV SUCTION SAMPLER 

Samples from the ROV were collected by ROV suction sampler (Figure 2.5). This used a 

Venturi driven Zip pump with mesh bag (mesh size 0.5mm) connected to the back of a 

10cm diameter hose with the collecting end controlled by 5 function manipulator. The 

device could be switched to pump water in or out from the surface. 
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Figure 2.5: ROV suction sampling undertaken at 600m in the Faroe-Shetland Channel. Venturi pump 

provides the suction, samples collected in 5mm mesh bag via 10cm diameter hose. 

AGASSIZ TRAWL 

An Agassiz trawl (Figure 2.6) was supplied from the UK National Marine Equipment 

Pool (NOC). The trawl was rigged and fished in a conventional manner.  
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Figure 2.6: The UK National Marine Equipment Pool (NOC) Agassiz trawl. 

ROCK DREDGE 

A rock dredge was supplied from the UK National Marine Equipment Pool (NOC). It 

was conventionally rigged (i.e. with dredge bucket; Figure 2.7a). For some deployments 

(stn 56510#1 and 11#1) the dredge bucket was removed and six un-stranded hemp rope 

“tangles” added to the bucket chains (see Figure 2.7b). 
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Figure 2.7: The UK National Marine Equipment Pool (NOC) rock dredge: (a) conventionally rigged with 

dredge bucket, (b) dredge bucket replaced with hemp tangles. 
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IMAGE ANALYSIS 

The methods for image analysis are outlined in the methods section of each chapter. 

Although the general technique is the same for analysis of photographs, specific 

environmental conditions required the use of different approaches to successfully 

characterise the ecology of each area. 
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CHAPTER 3: ECOLOGY OF THE DEEP FAROE-SHETLAND CHANNEL 

INTRODUCTION 

The Faroe-Shetland Channel is a deep basin separating the Faroe Plateau from the 

Scottish continental shelf (Figure 3.1), it narrows southward from about 190 km wide at 

62° 30' N to 90 km wide at 60° N. It is bounded to the south by the complex of the 

Wyville Thomson Ridge (approx. 450m deep) and the Faroe Bank. At its northern 

entrance (1500-2000m deep), it is connected to the Norwegian Sea (Turrell et al. 1999). 

In the southwest the Faroe-Shetland Channel, via the Faroe Bank Channel, connects the 

deep Norwegian Basin to the Icelandic Basin. These channels, and others, allow 

subzero temperature Norwegian Sea Deep Water to enter the Atlantic Ocean (Ellett and 

Roberts 1973; Bett 2001). 

Figure 3.1: Study sites and bathymetry of the Faroe-Shetland Channel 
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The hydrographic regime of the Faroe-Shetland Channel is complex with warm North 

Atlantic waters overlying cold water flows from the Norwegian Sea (Turrell et al. 

1999). The surface waters (0-400m) are warm (>8 C) North Atlantic Water, these 

overlie cold (2 to 5.5 C) Arctic Intermediate Water (400-600m), Norwegian Sea Arctic 

Intermediate Water (-0.5 to 0.5 C in 600-800m) and Faroe-Shetland Channel Bottom 

Water (c. -1 C and below 800m). The boundary between the warm and cold waters is 

dynamic and may occur variously between 400 and 600m depth (Bett 2001). It has 

recently been shown that there is a marked decadal variation in the distribution, extent 

and salinities of these water masses (Turrell et al. 1999).  

Using deep towed side scan sonar (TOBI) supported with seabed observations and 

samples, Masson (2001) investigated the seabed of the deep Faroe-Shetland Channel 

floor (>1000m) and found it to be a relatively featureless mud, muddy sand and gravel 

zone with a general decrease in grain size to the northwest. 

Photography is increasingly used to investigate the fauna of deep-sea environments 

(Smith et al. 1993; Priede and Merrett 1998; Lampitt et al. 2001; Solan et al. 2002), 

however, in the Faroe-Shetland Channel, only preliminary descriptions of the 

megafauna have been carried out using this technique (Bett 2001). Towed camera 

platforms allow the megabenthos of large areas of seabed to be studied quantitatively 

without disturbing the environment under study. Along with the geology of an area 

(Masson 2001), megafaunal species richness and standing stock are commonly assessed 

from photographs (Fell 1967; Bohnsack 1979; Gutt and Starmans 1998; Gutt et al. 

1999). In addition, analysis of Lebensspuren (Ewing and Davis 1967; Kitchell et al. 

1978; Gage and Tyler 1991; Bett et al. 1995), faunal size and associated biomass 
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inferences (Christiansen and Thiel 1992; Piepenburg and Schmid 1997) can also 

provide valuable ecological information. Photographs can provide an undisturbed view 

of the benthos over a wide area allowing the description of large-scale faunal spatial 

pattern in the deep sea (Solan et al. 2002). 

The fauna of the deep Faroe-Shetland Channel was first sampled in 1868 by Charles 

Wyville Thomson onboard HMS ‘Lightning’ and ‘Porcupine’ (Thomson 1873).  Since 

these pioneering cruises this area has been largely ignored, but recent expansion of oil 

and gas exploration has prompted a large scale environmental survey in this area (Bett 

2001). The benthic megafauna of the channel axis is largely unknown except from the 

early studies, most previous studies have concentrated on the shallower flanks of the 

channel. The western flank has been subject to extensive biological investigation 

through the Internordic BIOFAR programme (Nørrevang et al. 1994; Fautin et al. 2005; 

Tyler et al. 2005) with particular attention being directed towards bank forming corals 

(Frederiksen et al. 1992; Jensen and Frederiksen 1992) and mass occurrences of large 

demosponges (Klitgaard 1995; Klitgaard et al. 1997). The biota of the West Shetland 

Shelf has been sampled using a trawl with a headline camera by Dyer et al. (1982). 

In this study megafaunal species richness, standing stock, size and traces 

(Lebensspuren) along with the composition of the seabed will be assessed. The primary 

objectives are to classify the megabenthic assemblages of this area, and their traces, and 

relate these to environmental factors along the Faroe-Shetland Channel axis.  
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MATERIALS AND METHODS 

Field sampling 

Sampling was conducted as part of the UK Department of Trade and Industry (DTI) 

Strategic Environmental Assessment (SEA) process. The work was carried out from the 

Royal Research Ship Charles Darwin during cruises 119 (August 1999) and 123 

(August 2000). Seabed sampling was carried out according to protocols developed in 

the AFEN region (Bett 2001). Ten photographic transects were undertaken, arranged 

along the length of the Faroe-Shetland Channel axis at depths of 1006-1660m (Table 

3.1). Seabed survey photography was undertaken using the NOC WASP, wide-angle 

seabed photography, vehicle (Chapter 2). This vehicle was typically operated for one 

hour at the seabed, yielding some 250 still photographs (35mm Kodak Vision 250D 

colour negative) and continuous video footage (mini digital video cassette).  

Table 3.1: Station data for WASP deployments in the Faroe-Shetland Channel axis. Seabed start and end 

position and depth are given together with the number and area of resultant photographs analysed.

Site Station 
number 

Date Latitude Longitude Depth 
(m) 

No. photos 
analysed 

Seabed area analysed 
(m2)

FSC1 55276 03/08/00 
04/08/00 

60 28.98´N 
60 28.45´N 

4 37.02´W 
4 36.60´W 

1017
1007 207 1042 

FSC2 55310 10/08/00 
10/08/00 

60 40.15´N 
60 40.34´N 

4 23.88´W 
4 24.06´W 

1068
1069 172 1008 

FSC3 55311 23/08/99 
23/08/99 

60 49.81´N 
60 49.64´N 

4 10.47´W 
4 10.80´W 

1085
1084 63 322 

FSC4 55312 23/08/99 
23/08/99 

60 59.92´N 
60 59.81´N 

4 00.80´W 
4 01.70´W 

1119
1119 64 307 

FSC5 55313 11/08/00 
11/08/00 

61 11.66´N 
61 10.77´N 

3 52.92´W 
3 52.28´W 

1090
1105 68 326 

FSC6 55314 12/08/00 
12/08/00 

61 23.07´N 
61 22.59´N 

3 39.96´W 
3 38.46´W 

1154
1142 119 488 

FSC7 55315 12/08/00 
12/08/00 

61 32.97´N 
61 32.59´N 

3 23.34´W 
3 22.49´W 

1384
1370 141 663 

FSC8 55316 12/08/00 
12/08/00 

61 42.74´N 
61 42.16´N 

3 03.47´W 
3 02.52´W 

1487
1490 130 640 

FSC9 55317 13/08/00 
13/08/00 

61 54.76´N 
61 54.19´N 

2 47.82´W 
2 47.82´W 

1602
1609 297 1129 

FSC10 55392 26/08/00 
26/08/00 

62 04.91´N 
62 04.99´N 

2 36.18´W 
2 34.86´W 

1653
1660 224 885 
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Photo analysis 

The megabenthic fauna in each photograph were recorded. Given the physical scale of 

the photographs we determined that only animals with a maximum dimension >5cm 

could be consistently identified. Altitude data (i.e. the height of the camera above the 

seabed) were printed directly onto each photograph allowing the scale of the image to 

be calculated. Megafaunal organisms were identified, counted and measured on each 

frame; their abundance converted to numbers per hectare and measured sizes converted 

to actual size using the altitude data. Recent Lebensspuren (i.e. life traces, tracks, 

burrows etc.) were classified, counted and their area measured. Seabed sediment type / 

grain size was assessed using the Wentworth index (Wentworth 1922) by examining 

100 randomly chosen points overlaid onto selected photographs. A subsample of 30 

photographs spaced approximately evenly along each transect were used to make the 

sediment assessment. Unsuitable photographs (high altitude or out of focus etc.) were 

discarded from all analyses. 

Data analysis 

Sediment 

The finest sediment fraction distinguishable in photographs (sediment fraction <22mm) 

was divided further into smaller size classes, this was based on the proportion of 

sediments in each size class observed in DTI SEA sediment samples (Hughes et al. 

2003). The combination of the photographic data with those from the analysis of 

physical samples allowed the full size range of sediment to be assessed for each site, 
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from fine clays (2 m) to boulders (>256mm). Sediment parameters were calculated 

following the methods of Krumbein and Pettijohn (1938). 

Diversity and composition 

Species counts from individual photographs were pooled into ‘samples’ that covered 

100m2  1m2, although these ‘samples’ were essentially contiguous the course of the 

WASP vehicle was not pre-defined or constant. For these reasons each sample was 

considered a replicate. In some analyses we have treated these samples as replicates, in 

others we have used site totals. 

Rarefaction (Hurlbert 1971) was used to compare species richness between sites along 

the Faroe-Shetland Channel. A range of other diversity indices (see e.g. Magurran 

2003) were selected to cover patterns in both ‘rare’ and ‘common’ taxa: Berger-Parker 

Index, Simpsons ´ (Simpson 1949), Shannon Diversity Index, H´ (Margalef 1968), 

Rarefaction, ES(39) (Hurlbert 1971) and S, the total species present. Univariate diversity 

indices were calculated using PRIMER (Clarke and Warwick 1994) and Biodiversity 

Pro (Version 2, Natural History Museum, London and Scottish Association for Marine 

Sciences, Oban). Species density (ES400m2) was calculated from sample-based species 

accumulation curves using EstimateS software (Colwell 2005). 

Initial multivariate analyses (hierarchical clustering and non-metric multidimensional 

scaling) were carried out using the PRIMER software package (Clarke and Warwick 

1994). Following the general recommendations of Clarke and Warwick (1994) a fourth 

root transformation was applied to the faunal abundance data and the Bray-Curtis 
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similarity measure employed. The BIO-ENV routine of PRIMER was used to assess 

potential environmental causes of the observed megafaunal distribution patterns (Clarke 

and Warwick 1994). A range of environmental variables (depth, sediment grain size, 

latitude, total organic carbon and total organic nitrogen), available from the DTI SEA 

survey (see Hughes et al. 2003) were examined in this way. 

In addition canonical correspondence analysis (CCA) was undertaken using the PC-

ORD programme (McCune and Mefford 1999) and was used to further assess the 

relationship between the environmental data and the structure of the megabenthic 

community. A Monte Carlo permutation test was undertaken to determine the 

significance of the relationship between the environmental variables and megabenthic 

community composition (Manly 1998). The ordinations presented here employed the 

linear combinations (LC) of variable scores as recommended by Palmer (1993). 

Size and relative biomass 

Relative biomass was estimated using approximate faunal bio-volume. Length to 

volume conversions were estimated based on the approximate shape of individual taxa 

and applied to body length measurements derived from the photographs.  
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RESULTS

Environment and physical setting 

Photographic sediment analysis revealed the presence of high proportions of large size 

class sediments (i.e. boulders to gravel) at the southerly stations. At stations 1,3,4,5 and 

6 a significant proportion of the seabed comprised coarse-grained sediments (>2mm); at 

stations 2 and 6-10, no coarse-grained sediments were recorded. 

Sediment grain size data from core samples collected at the same study sites (see 

Hughes et al. 2003) show a highly significant negative correlation between mean grain 

size and latitude (r´ = -0.879, p < 0.001). Very low sediment homogeneity was 

observed at all stations, with the large standard deviations indicating very poor sorting. 

There was a significant positive correlation between skewness and latitude (r´ = 0.636, 

p = 0.048) indicating coarse skewed sediment sizes at the southerly stations. 

A trend of reducing grain size with latitude was also observed (r´ = 0.915, p < 0.001) 

when the size class data from photographic and conventional sediment analyses were 

combined to cover the entire spectrum of sediment size (table 3.2). Low sediment 

homogeneity was again apparent. A positive relationship with skewness (r´ = 0.855, p < 

0.01) and latitude was observed, again indicating coarser skewed sediments to the 

south.
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Table 3.2: Summary of sediment particle size analysis from pooled DTI (see text) and photographically 

observed sediment size at each phototransect station in the Faroe-Shetland Channel axis. 

Site Median Median Mean Mean Standard  
Number diameter diameter diameter diameter deviation Skewness 

 (µm) (ø) (µm) (ø) (ø) (ø) 
FSC1 36833 -5.20 5444 -2.61 3.90 0.76 

FSC2 143 2.81 107 3.22 1.44 1.92 

FSC3 235 2.09 903 0.08 4.40 -0.22 

FSC4 2323 -4.54 2397 -1.31 4.63 0.41 

FSC5 235 2.09 450 1.09 4.33 -0.41 

FSC6 119 3.07 91 3.47 2.45 0.09 

FSC7 38 4.70 35 4.85 1.91 0.06 

FSC8 24 5.39 26 5.28 2.15 -0.46 

FSC9 18 5.82 22 5.52 2.18 -0.64 

FSC10 13 6.23 18 5.83 2.17 -0.76 

Hard substrata available for megafaunal colonization (grain size > 64mm) was high in 

all southern stations (except station 2) reflecting the abundance of exposed ice-rafted 

drop stones. No hard substrata were observed from station 7 northwards. 

Total Organic Carbon (TOC) was found to increase significantly northwards (r´ = 

0.867, p < 0.001; Figure 3.2) along the Faroe-Shetland Channel axis. This increase was 

concurrent with a significant northward increase (r´ = 0.846, p < 0.01) in Total Organic 

Nitrogen (TON), with a notable large step increase in TON between stations 5 and 6 

(Figure 3.2). 
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Figure 3.2: Total Organic Carbon (TOC), Total Organic Nitrogen (TON) and percentage area hard 

substrata (grain size > 64mm) at each study site on the Faroe-Shetland Channel axis. 

Megafaunal density 

Analysis of 1485 photographs revealed a total of 3826 megabenthic organisms from 57 

nominal taxa in a total area of 6810 m2. The density of megafauna ranges from 542 to 

30,482 ha-1 with maximal densities towards the mid-section of the channel (Table 3.3). 

Tube dwelling polychaetes were very abundant, but, as it is not known if they were 

alive, megafaunal abundances are illustrated without them (Figure 3.3); the trend in 

abundance remains the same.  
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Size and biomass  

Relative biomass (Figure 3.3) was found to be maximal in the mid channel stations with 

generally low relative biomass in the southern stations. At the northern stations biomass 

was consistently low. The observed megafauna of the Faroe-Shetland Channel were 

highly variable in size from the lower limit of consistent observation (5cm) to over 1 

metre for the larger fish.  

Figure 3.3: Abundance (numbers ha-1 excluding tube-dwelling polychaetes) and relative biomass (faunal 

volume m3 ha-1) of megafauna found at each phototransect site on the Faroe-Shetland Channel axis. 
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Table 3.3: Taxa found along Faroe-Shetland Channel Axis. Densities of each taxa recorded for each 
channel axis station (Numbers ha-1). 

 FSC1 FSC2 FSC3 FSC4 FSC5 FSC6 FSC7 FSC8 FSC9 FSC10 
Chondrocladia gigantea 120 48 56 77 49 0 0 0 0 0 
Indet. Sponge type 1 0 10 0 25 26 20 0 0 0 0 
Indet. Sponge type 2 33 0 0 0 0 0 0 0 0 0 
Indet. Sponge type 3 90 11 824 303 118 306 0 0 0 0 
Indet. Sponge type 4 79 10 78 0 0 0 0 0 0 0 
Indet. Sponge type 5 16 0 0 0 0 80 0 0 0 0 
Stylocordyla borealis 15 958 0 0 0 0 45 0 0 0 
Indet. Sponge type 6 12 0 0 0 0 0 0 0 0 0 
Indet. Sponge type 7 0 22 0 0 0 0 0 0 0 0 
Indet. Sponge type 8 0 0 140 91 263 0 0 0 0 0 
Indet. Sponge type 9 0 0 0 0 0 24 0 0 0 0 
Indet. Sea whip 0 0 0 0 0 16 18 0 9 0 
Tubularia sp. 7 6 0 0 0 0 0 286 143 24 
Cerianthus votgi? 0 123 2841 1951 2135 1662 0 0 0 0 
Indet. Anemone type 2 119 37 157 42 0 0 0 0 0 0 
Indet. Anemone type 3 0 0 0 23 0 0 22 0 0 0 
Indet. Anemone type 4 1887 8 874 659 1696 249 0 0 0 0 
Indet. Anemone type 5 20 0 0 0 0 0 0 0 0 0 
Indet. Soft Coral type 1 1520 50 5624 220 4727 0 0 0 0 0 
Indet. Soft Coral type 2 165 55 535 133 321 96 0 8 0 0 
Indet. Soft Coral type 3 0 92 157 0 288 0 0 0 0 0 
Indet. Soft Coral type 4 0 0 0 0 37 0 0 0 0 0 
Umbellula encrinus 0 0 0 0 0 0 46 0 0 0 
Indet. Sabellid 33 24 760 959 281 467 1003 325 450 448 
Indet. Polynoid 0 0 0 0 0 16 10 0 41 17 
Indet. Tube dwelling polychaete 0 0 25596 2696 4474 17524 0 0 0 0 
Indet. Nemertine 9 195 0 0 0 23 12 0 0 0 
Colus jeffreysianus 213 50 30 80 23 69 14 0 0 0 
Indet. Gastropod 0 7 0 25 0 0 19 0 8 30 
Indet. Octopus 32 0 0 0 0 0 0 0 0 0 
Indet. Decapod 0 0 63 0 0 0 0 0 0 0 
Colossendeis proboscidea 206 66 0 35 131 31 23 0 0 9 
Indet. Pycnogonid type 1 246 552 1198 827 161 1161 15 0 0 0 
Indet. Pycnogonid type 2 0 340 101 69 28 36 0 0 0 0 
Indet. Pycnogonid type 3 0 105 0 0 0 0 0 0 0 0 
Indet. Pycnogonid type 4 0 176 0 0 0 0 0 0 0 0 
Indet. Pycnogonid type 5 0 8 0 129 50 16 0 0 0 0 
Intet. Asteroid type 1 5 0 0 0 0 0 0 0 0 0 
Intet. Asteroid type 2 4 0 0 31 0 0 0 0 0 0 
Zoroaster fulgens 8 0 0 97 26 0 57 0 14 61 
Stichastrella sp. 0 19 41 0 0 0 15 21 92 42 
Poranid 0 14 0 0 0 0 0 0 0 0 
Crossaster squamatus 30 0 240 43 292 36 0 0 0 0 
Pteraster sp. 0 0 0 0 0 0 0 0 0 0 
Hymenaster pellucidus 5 0 0 62 82 0 92 0 45 21 
Plutonaster bifrons 0 0 0 0 0 27 13 33 0 0 
Brisinga endecacnemos? 140 0 0 35 0 0 0 0 0 0 
Indet. Brisingid 0 13 0 0 0 0 0 0 0 0 
Ophiopleura borealis 0 0 0 217 156 795 34 13 0 0 
aff. Ophiophrixus spinosus 0 0 0 21 0 137 0 0 0 0 
Indet. Spatangoid 0 0 0 0 0 114 662 0 0 0 
Indet. Comatulid Crinoid 60 0 0 0 0 18 0 0 0 0 
Rhizocrinus lofotensis 0 0 0 0 0 17 11 0 0 0 
Indet. Hemichordate 58 16 299 25 23 130 0 0 0 0 
Gaidropsarus argentatus 105 47 0 42 59 178 14 0 19 0 
Lycodes spp. 74 29 110 51 137 111 0 11 0 0 
Raja hyperborea 13 11 0 0 0 0 23 22 5 0 
Indet. Scorpionfish 8 13 0 31 0 0 0 0 0 0 
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Diversity

The number of ‘species’ present per site varied considerably from 33 (FSC1) to 8 (FSC 

8 and 10) with a general decline with increasing latitude. The number of species found 

in an average m2 had a range of 1.02 (FSC4) to 0.06 (FSC10) with maximal numbers 

found in the central channel sites. 

Alpha diversity indices were compared (Figure 3.4) revealing a general decline in 

diversity from south to north. There are strong negative correlations between latitude 

and most diversity measures (S: r´ = -0.892, p < 0.001; ´: r´ = 0.612, p = 0.06; H´: r´ = 

-0.697, p < 0.05; ES(39): r´ = -0.720, p < 0.05; Berger-Parker: r´ = 0.559, p = 0.093). 

Highest species richness (Figure 3.4) was found at the shallower stations to the 

southwest of the channel, with a general trend of reducing richness to the northeast. 

Station 3 had a particularly low richness, as a result of the large numbers of tube 

dwelling polychaetes (i.e. high dominance) recorded at this site. Species density and H´ 

were generally high for the southern stations (1-6), reduced at station 7 and were very 

low for the northern stations (8-10). Species density and H´ followed the same pattern 

among stations as revealed by multivariate analysis (Figure 3.4; see further below). 
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Figure 3.4: Megabenthos species diversity and composition along the Faroe-Shetland Channel axis: 

species richness (Rarefied ES(n=39)), species density (Mao Tao S obs (400m2)), Shannon-Wiener H´ (log e) 

and dendrogram (see text for details). 

Community analysis 

There was considerable variation in the dominant taxa at sites along the Faroe-Shetland 

Channel. The dominant megafaunal phylum at stations 3,4,6,7,8,9 and 10 was 

Annelida, (almost entirely tube dwelling forms). Maximal abundance reached 26,356 

annelids ha-1 at station 3 where large dense patches of free-living tube dwelling forms 
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were observed, these were also noted at stations 3 to 6. Sessile tube-dwelling sabellids 

were recorded at all stations reaching densities of 959 ha-1.

Cnidaria, particularly anthozoans (actiniarians and cerianthids), made up a large 

proportion of the megafaunal community especially at the southern stations, being the 

dominant phylum at stations 1 and 5. Although their proportional dominance was 

highest at station 1 (69.6% megafauna), numerical abundance was highest at station 3 

and station 5 (10,188 and 9,238 ha-1 respectively). Type 4 anemones were the most 

common in the southern stations being progressively replaced by cerianthids (type 1 

aff. Cerianthus votgi). Very few anemones were recorded at station 7 and none at 

stations 8-10. 

Arthropods, almost entirely represented by pycnogonids, were frequently encountered 

at southern stations, reaching densities of 1,362 ha-1 (station 3), but were absent or very 

rare at stations 7-10. The large, conspicuous Colossendeis proboscidea was present in 

low densities (up to 206 ha-1 but typically lower) at most stations. Smaller pycnogonids 

were more common at stations 2,3,4 and 6 with a maximal density of 1,299 ha-1 (station 

3), they were rare at station 7 and not recorded at stations 8-10. 

Echinoderms were present at all stations, becoming proportionally more abundant at the 

northern stations, representing 0.7-5.5% of the megafauna at stations 1-6 and 9.3-40.3% 

of the megafauna at stations 7-10. Numerical abundance of echinoderms broadly 

increased with latitude reaching a maximum of 1,144 ha-1 at station 6. Overall, 

asteroids made up the greatest proportion of the echinoderms (43.2%), ophiuroids were 

also important (34.6%) with echinoids (19.5%) and crinoids (2.7%) making up the 
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remainder, no holothurians were observed. Asteroid numbers were low at stations 2,6 

and 8 (46-63 ha-1), intermediate at stations 1,7,9 and 10 (124-184 ha-1) and high at 

stations 3-5 (237-400 ha-1). Sunstars (Crossaster squamatus) were the numerically 

dominant asteroid. Almost equal total numbers of Zoroaster fulgens, Stichastrella sp., 

Hymenaster pellucidus and brisingids (aff. Brisinga endecacnemos) were observed. 

Ophiuroids (particularly aff. Ophiopleura borealis) were most common at stations in 

the mid section of the channel axis with densities of up to 933 ha-1. Towards the south, 

megafaunal ophiuroid densities decreased, although large numbers (up to 54m-2) of 

smaller ophiuroids (Ophiactis abyssicola) were observed in some photographs. 

Ophiuroids were rare at stations 7 and 8 and absent at stations 9 and 10. Echinoids were 

only recorded at two stations, however they were common at station 7 (662 ha-1)

although lower numbers were observed at station 6 (114 ha-1). Regular echinoids were 

not observed at any station and only shallow ploughing spatangoids (aff. Spatangus 

raschi) were observed from seabed photographs. Crinoids were the least abundant 

echinoderm class (2.7% echinoderms). Comatulid crinoids were only observed at 

station 1 (60 ha-1). Small numbers of stalked crinoids (aff. Rhizocrinus lofotensis) were 

observed at stations 6 and 7 (up to 35 ha-1).

Porifera (sponges) were present at stations 1-7 and represented a small proportion of the 

megafaunal communities at most of these sites. Their numbers were relatively high 

(reaching 1,097 ha-1) although reduced northwards. Fish were present in low numbers 

(up to 288 ha-1) at most sites although numbers were lower for stations 7-10. Mollusca 

were present in low numbers (up to 300 ha-1) reducing towards the north. Other major 

taxa e.g. Hemichordata and Nemertea were recorded only rarely. 
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Multivariate community analysis including hierarchical clustering (Figure 3.4) and 

MDS analysis (Figure 3.5), revealed a clear grouping of stations into northern (stations 

7-10) and southern (stations 1-6) areas. Within these two major groups there was 

further additional separation of station 2 from the other southern stations.  

Figure 3.5: Multidimensional scaling ordination (see text for details) of megafauna composition along 

the Faroe-Shetland Channel axis (each point represents the data from a group of photographs covering 

100m2 of seabed). 

BIOENV analysis revealed that the single environmental variable which best groups the 

sites, in a manner consistent with the faunal patterns, was depth ( w = 0.909). The best 

2-variable combinations are for depth and latitude ( w = 0.849) and for depth and total 

organic nitrogen ( w = 0.829). The x coordinates of the MDS plot were found to be 

highly correlated to depth (r´ = 0.879, p < 0.001). This suggests that depth related 

factors are the most important physical drivers of the zonation of megafaunal 

communities in the Faroe-Shetland Channel. 
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Spearman rank correlations were preformed between all factors measured (Table 3.4). 

This highlights the correlations between many of the environmental factors 

(particularly depth, latitude, TOC, TON and grain size) and further reflects the 

difficulty in extracting the environmental causes for faunal variation. 

Table 3.4: Spearman rank correlations between biological and environmental parameters for 10 Faroe-

Shetland Channel axis study sites. Abundance (A; indiv. m-2), relative biomass (B; m-3 ha-1), number of 

species (S), Pielou evenness (J), Rarefied species richness (ES39), Species density (ES400m2), Shannon-

Wiener Index (log e) (H´), Simpson’s Index ( ´), Berger-Parker Index (B-P), x coordinates of MDS plot 

(xMDS), Lebensspuren density (Ln; traces m-2), Lebensspuren area (La; trace area m-2), depth (m), 

latitude (lat), width of the channel at 1000m depth (width), mean phi grain size (mp), standard deviation 

of phi grain size (std), skewness of phi grain size (skew), Total Organic Carbon (TOC) and Total Organic 

Nitrogen (TON). Values are r´ and its associated probability, * p<0.05, ** p<0.01, ns = not significant. 

 Lat A B S J ES39 ES400m2 H' ´ B-P mdsx Ln La
Lat 1.00** -0.65* ns -0.89** ns ns -0.79** -0.70* ns ns 0.84** 0.70* 0.66* 

depth 0.99** -0.66* ns -0.87** ns ns -0.92** -0.69* ns ns 0.88** 0.66* 0.65* 
width 0.96** ns ns -0.87** ns ns -0.72* -0.65* ns ns 0.81** 0.69* 0.70* 

mp 0.92** -0.73* -0.64* -0.83** ns ns -0.80** ns ns ns 0.84** 0.70* 0.72* 
std ns 0.67* ns ns ns ns ns ns ns ns ns ns ns 

skew -0.86** ns ns 0.92** ns 0.66* ns 0.66* -0.64* ns ns ns ns 
TOC 0.87** -0.71* ns -0.70* -0.66* ns -0.79** ns ns ns 0.82** 0.84** 0.82** 
TON 0.87** -0.75** ns -0.72* -0.64* ns -0.82** ns ns ns 0.80** 0.78** 0.78** 

On the CCA plot (Figure 3.6), axis 1 separates the northern from the southern group of 

stations, while axis 2 further separates stations based on habitat. Axis 1 on the 

canonical ordination plots was the most important (eigenvalue 0.61, species 

environment correlation 0.98) as eigenvalues > 0.5 are proposed by ter Braak (1986) to 

have a relatively good dispersal of species along the axes and account for a high 

percentage of variance in species composition. Axis 2 (eigenvalue 0.46, species 

environment correlation 0.97) separates the environmental variables based on sediment 

heterogeneity. The Monte Carlo analysis showed the CCA Eigenvalues to be extremely 
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robust (p < 0.01 for all axes) as well as the species–environment correlations (p < 0.01 

for all axes). This suggests that one of the environmental factors co-correlated with site 

(depth, latitude, TON and TOC) was most significant in defining the variability within 

the species data. Sediment parameters were also important particularly size range 

(sediment standard deviation), station 2, unusual for being shallow with fine sediment, 

was defined by sediment skewness. 

Figure 3.6: Canonical correspondence analysis of megabenthic species in the Faroe-Shetland Channel 

axis. Latitude (Latitude), Total Organic Nitrogen (TON), Site depth, m (Depth), mean phi sediment size 

(sed mean), sediment skewness (sed skew) and standard deviation of sediment size (sed std). 
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Lebensspuren

Lebensspuren were observed throughout the Faroe-Shetland Channel in all areas where 

the sediment was sufficiently soft to allow preservation of faunal traces. Twelve distinct 

Lebensspuren types were identified during the study (Figure 3.7). In some cases it was 

possible to identify the animal responsible for the trace (from trace form or by direct 

observation of trace formation). Unfortunately for many traces it was not possible to 

identify definitively the taxa responsible for their formation. 

Figure 3.7: Faroe-Shetland Channel Lebensspuren. 1) Large circular holes, 2) small circular holes, 3) 

Slit shaped hole, 4) Ophiuroid inhabited burrow, 5) Spoke trace, 6) Asteroid trace, 7) Spike trace, 8) 

Ophiuroid trace, 9) Narrow plough, 10) Wide plough, 11) String plough, 12) Spatangoid trace. 

Lebensspuren 1-4 are caused by dwellings, 5 by feeding, 6-8 by resting and 9-12 by crawling. It is 

thought that trace 5 is produced by an Echiuran / sipunculid, 7 by a ray caudal fin and 9-11 by 

gastropods. 
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The occurrence of Lebensspuren (Figure 3.8) generally increased with latitude (r´ = 

0.648, p < 0.05) although station 7 had a particularly high density of Lebensspuren. The 

area of seabed bioturbated by the presence of faunal traces (table 3.5) was not found to 

follow the same trend. Very little bioturbation was evident at stations 1 to 5 but at 

stations 6-10 there was a large step increase in bioturbation which remained high but 

decreased northwards. 

Figure 3.8: Mean number of Lebensspuren per photograph (number m-2) and average percentage of 

seabed with surface disturbed by Lebensspuren per photograph at each site on the Faroe-Shetland 

Channel axis. Error bars represent 95% confidence intervals.
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At the southern stations, Lebensspuren were dominated by crawling traces and although 

there was some evidence of burrowing in the finer sediments, there was no evidence of 

deposit feeders. At the northerly stations there appeared to be appreciable bioturbation 

by the action of deposit feeding echinoderms as well as crawling traces and burrows. 

Small circular holes and narrow ploughs were the dominant trace forms throughout the 

Faroe-Shetland Channel particularly in terms of number (they both occupied only a 

small area). At the northerly stations asteroid traces became dominant in terms of 

number and particularly area. At stations 7 and 8 spatangoid ploughing traces were 

dominant in terms of area although there were high numbers of small circular holes at 

theses stations. Ophiuroid traces were also important at the latter stations.  

Trace area and number were found to be significantly correlated with many physical 

parameters in the Faroe-Shetland Channel (Table 3.5). There was a particularly notable 

trends in bioturbation with Total Organic Nitrogen, with large step changes occurring in 

both these measures at station 6. 
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Table 3.5: The occurrence of Lebensspuren on the Faroe-Shetland Channel axis floor (see also Figure 

3.6) No. represents number of Lebensspuren per hectare, area represents % seabed occupied by 

Lebensspuren.

 Trace 1 2 3 4 5 6 7 8 9 10 11 12  Total 

FSC1 no.  5466       1599 79 211   7356 

 area.  0.009       0.006 0.019 0.005   0.039

FSC2 no.  1300    86   8024     9410 

 area.  0.011    0.005   0.348     0.364

FSC3 no.  2585       2879     5463 

 area.  0.006       0.029     0.035

FSC4 no.  4371 2895     112 1308     8685 

 area.  0.011 0.018     0.005 0.02     0.054

FSC5 no.  4160 10385      160     14705

 area.  0.009 0.003      0.003     0.015

FSC6 no.  1696    747  1300 13224 90    17057

 area.  0.029    0.609  0.819 0.691 0.049    2.197

FSC7 no.  38474   518 804 22 76 3187  23 1684  44787

 area.  0.161   0.022 0.313  0.002 0.336  0.01 1.145  1.989

FSC8 no.  1660   262 10031 130  278   73  12434

 area.  0.004   0.009 1.677 0.003  0.024   0.033  1.750

FSC9 no. 584 1000   190 18695 115  71     20655

 area. 0.007 0.002   0.003 1.3 0.002  0.003     1.317

FSC10 no. 3769 3769  39  7853        15429

 area. 0.103 0.017  0.008  0.717        0.845
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DISCUSSION 

Abundance and Biomass 

Total megafaunal abundance was found to decrease with latitude, this appeared to be 

related to changes in seafloor habitat within the channel and was also found in 

macrofaunal studies in the same area (Bett 2001). Although changes in habitat have 

been shown to be important in determining deep-water abundances (Hecker 1994) it is 

difficult to separate the effects of this from other physical factors important in driving 

abundance patterns, particularly depth. This has been found throughout the Arctic 

(Piepenburg et al. 2001) and is thought to be related to reductions in organic matter 

supply to the benthos with depth (Gage and Tyler 1991). In studies of the macrofauna 

of the Faroe-Shetland Channel the opposite was observed in shallower water, with 

increasing abundance and biomass with depth to around 1000m (Bett 2001; 

Narayanaswamy et al. 2005). However at these depths large scale hydrographic patterns 

appear to play an important role. Hydrographic properties are relatively constant below 

this depth and in comparable depth waters abundance trends in macrofauna followed a 

very similar pattern to that found here (Bett 2001). Megafaunal abundance in the Faroe-

Shetland Channel, although variable (1.02 - 0.06 individuals m-2), is generally similar 

to other Arctic megafaunal studies (Figure 3.9). The peak in biomass in the central 

channel stations, observed from the relative biomass estimates, was similar to maximal 

faunal abundance and may have resulted from the occurrence of conditions suitable for 

both deposit and filter feeding megafauna. Similar patterns were observed in 

macrofaunal biomass in the Faroe-Shetland Channel (Bett 2001).  
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Diversity

A reduction in species richness, evenness and diversity was observed with depth in this 

study, this is contrary to the general pattern in the Atlantic (Rex et al. 1997) and Arctic 

(Piepenburg et al. 1997; Starmans and Gutt 2002), but this trend seems to be typical for 

the Faroe-Shetland Channel (Bett 2001; Axelsson 2003). The decrease in diversity in 

the Faroe-Shetland Channel megafauna with depth parallels a corresponding decline in 

macrobenthic diversity (Bett 2001; Narayanaswamy et al. 2005). It is likely that the 

faunal change observed in the deep Faroe-Shetland Channel axis is the result of a 

combination of change in a number of physical parameters. It would seem probable that 

a combination of principally depth and sediment type and heterogeneity was 

responsible for changes in the megafaunal communities investigated here. 

Despite showing an opposite trend with depth, species richness in the Faroe-Shetland 

Channel stations appears consistent with other studies in Arctic areas. Starmans and 

Gutt (2002) found very similar numbers of taxa (mean 13.5) in stations off northeast 

Greenland at 180-375m depth. Piepenburg et al. (2001) found lower numbers of taxa in 

a wider area (10 in 2358 x 1m2 photos) in northeast Greenland; however, at lower 

latitudes off east Greenland (75 N), 91 taxa were found in 297m2 of seafloor at 190-

2800m depth. Species diversity measures are given in several Arctic studies and are 

broadly comparable to those found in this study (Figure 3.9). The distinct reduction of 

taxa with site (i.e. latitude) observed in the Faroe-Shetland Channel is consistent with 

the reduction in species richness with latitude observed by Rex et al. (1993). However, 

the small change in latitude over stations in the present study suggest an alternative 

explanation. The changes in the fauna of the Faroe-Shetland Channel axis may have 
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been driven by the influence of different biogeographic regions, e.g. the Atlantic 

Rockall Trough and the Norwegian Sea. From multidimensional community analysis, 

the megafauna of the northern group of stations was found to be distinctly different 

from that of the southern group. This may reflect patterns of colonization in the Faroe-

Shetland Channel linked to invasion of the channel by deeper water species from the 

Norwegian Sea after isolation of deep-waters following the Quaternary glaciation (Dahl 

et al. 1976). Low diversities in the deep Faroe-Shetland Channel, as in the Norwegian 

Sea, reflect a young ecosystem (e.g. Paul and Menzies 1974). There are significant 

thermal and physical barriers between the deep Faroe-Shetland Channel and the 

Rockall Trough which prevented the invasion of many Atlantic deep-sea species that 

occurred in the northern Atlantic and the shallow waters of the Channel (Bett 2001; 

Narayanaswamy et al. 2005). 

Figure 3.9: Variations in megafaunal abundance and Shannon-Wiener diversity in Arctic water studies 

(open circle: present study; solid circle: Dahl et al. 1976; Christiansen and Thiel 1992; Mayer and 

Piepenburg 1996; Starmans et al. 1999; Piepenburg et al. 2001; Axelsson 2003). 
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The faunal boundary observed at the Faroe-Shetland Channel is consistent with a global 

boundary believed to occur at around 1000-1400m depth (Day and Pearcy 1968; Rowe 

and Menzies 1969; Sanders and Hessler 1969; Dayton and Hessler 1972; Rex 1977; 

Hecker 1990). The depth at which faunal boundaries occur varies with the taxon 

studied and geographical location (Gage and Tyler 1991). In this study a faunal 

boundary for asteroids and ophiuroids was found to occur between 1100 and 1200m, 

this is similar to the faunal boundary for asteroids found by Howell et al. (2002) at 

1100m in the Porcupine Seabight, northeast Atlantic and a faunal boundary for 

echinoderms found in the Rockall Trough (Gage 1986) at 800-1000m. This study 

revealed a major faunal boundary in the megafauna of the Faroe-Shetland Channel at 

around 1200m. Our results appear to correspond approximately with macrofauna in 

other north Atlantic studies, in the Hebridean Margin a highly depth-related 

differentiation in species composition was found (Gage et al. 1998; Bett 2001), with an 

overlying major environmental change occurring between 1,200 and 1,400 m. 

The issue of how species diversity changes with depth is prevalent through the deep-sea 

literature (Sanders and Hessler 1969; Rex 1973; Poore and Wilson 1993; Smith et al. 

1998). Most deep-sea species diversity literature focuses on macro- or meio-benthic 

fauna, reflecting the availability of gear for quantitative sampling of these fractions. 

Megabenthic organisms, those large enough to be identified in photographs (Grassle et 

al. 1975), are classically sampled using trawls that can only provide a semi-quantitative 

estimate of megabenthic diversity. Advances in deep-sea camera technology (Ewing et 

al. 1967) and in particular the use of towed camera platforms (Huggett 1987) has 

allowed large-scale quantitative assessment of megabenthic species diversity and 
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standing stock, permitting comparison of deep-sea megabenthic diversity with that of 

other faunal groups. 

Species distribution patterns 

The dominant phyla found in this study are similar in proportion to those found in the 

Norwegian Sea, Hebridean Margin and the Rockall Trough (Dahl et al. 1976; Gage et 

al. 1985; Gage 1986; Christiansen and Thiel 1992; Gray 1994; Thurston et al. 1998). 

Compared to the Atlantic, however, there were notable differences, particularly in the 

absence of holothurians in the FSC, typically the dominant taxon in the bathyal Atlantic 

(Thurston et al. 1994) the apparent absence of reptant decapods and regular urchins 

from the deep FSC is also notable. Megafaunal comparisons between the FSC and the 

Barents Sea around Svalbard (Piepenburg et al. 1996) reveal a similar overall suite of 

taxa, however the faunal compositions of distinct communities identified by Piepenburg 

et al. did not correspond to faunal groups found in the FSC. The Norwegian Sea, in 

common with other basins populated comparatively recently (after the quaternary 

glaciation) has relatively few species compared with the much older fauna of the 

Atlantic basin (Dahl et al. 1976). Compared with the Faroe-Shetland Channel, the fauna 

of the deep Norwegian Sea has a number of clear differences, there are very low 

numbers of ophiuroids and high numbers of holothurians (particularly Elpidia glacialis)

in the Norwegian Sea, although the numbers of actiniarians, gastropods, pycnogonids 

and sponges are broadly similar (Dahl et al. 1976). Many of the megabenthic species of 

the Faroe-Shetland Channel are very poorly known, with the pioneering works by 

Wyville Thomson (Thomson 1872a; Thomson 1872b; Thomson 1873) remaining some 

of the most informative studies on many of these organisms. As many of the physical 
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parameters measured were inter-correlated it is difficult to assess causes for the 

observed faunal pattern. The apparent north-south zonation observed is likely the result 

of several direct and indirect processes operating on various spatial and temporal scales 

(Carney et al. 1983). 

There are differences in sedimentary regime between the northern and the southern 

stations which appear to be an important factor governing faunal distribution in the FSC 

(Fautin et al. 2005; Tyler et al. 2005); this has often been cited elsewhere as the cause 

for faunal change, especially on the upper slope (Carey 1965; Haedrich et al. 1975; 

Starmans et al. 1999). The availability of hard substrata, such as ice-rafted stones and 

boulders, may also have restricted the distributions of sessile species such as sponges 

and soft corals (Gage and Tyler 1991). In this study a separation of the fauna in station 

2 (with no hard substrata) in multivariate community analysis was likely driven by 

changes in habitat between this and neighbouring stations. Seabed properties have been 

shown to influence the abundance of Arctic megafauna (Mayer and Piepenburg 1996; 

Ambrose et al. 2001). The photographs of the seafloor offered little else in the way of 

explanation, e.g. no significant strong current indicators were observed. However, if the 

width of the Faroe-Shetland Channel is used as a proxy for the current regime, with 

constant volume flow and reduction in width of the channel (at 1000m depth) 

southwards (from 119km to 25km) this implies higher current speeds to the south. 

Current speed has been repeatedly shown to influence deep-sea faunal community 

composition with higher current speeds selecting filter feeding fauna and low speeds 

favouring deposit feeders (Christiansen and Thiel 1992; Rosenberg 1995; Starmans et 

al. 1999; Gage et al. 2000). 
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Lebensspuren 

Lebensspuren were found to be common in the more northerly areas of the Faroe-

Shetland Channel, this reflected the nature of the seabed, the fauna present and their 

feeding strategy. At the southern sites there was a predominance of hard substrata, and 

few megafaunal deposit feeders were observed, these deposit feeders are typically 

responsible for bulk of Lebensspuren production (Heezen and Hollister 1971). At the 

northern sites, with no hard substrata, megafaunal deposit feeders were more common; 

TOC and TON levels were also found to be higher in the sediments perhaps indicating 

that this lifestyle was more profitable. The concurrent large step increases in TON 

(which can indicate sediment nutritional quality) and area bioturbated would suggest a 

possible link between food quality and the abundance of megafaunal deposit feeders in 

the deep Faroe-Shetland Channel, as has been observed elsewhere (Billett et al. 2001; 

Ginger et al. 2001). Large megafaunal deposit feeders typically produce large 

Lebensspuren from their foraging and feeding activities, the most notable in the present 

case being asteroids (Stichastrella sp. and Zoroaster fulgens), these are important 

bioturbators (Heezen and Hollister 1971). In the FSC the ratio of megafaunal 

suspension to deposit feeders changed from higher abundance of suspension feeders at 

the southern sites to higher abundance of deposit feeders at the northern sites, this was 

also found on the Hebridean Margin (Gage et al. 1998). The abundance of several 

faunal groups in certain stations, particularly spatangoids that form large Lebensspuren,

is also responsible for the variation in traces observed. It is not (always) possible to tell 

the age of Lebensspuren, although they are typically less than a few years old (Heezen 

and Hollister 1971); hence the rate of removal of Lebensspuren is very important in 

interpreting the abundance and area estimates of megafaunal bioturbation (Wheatcroft 
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et al. 1989). When the traces found in the Faroe-Shetland Channel are compared to 

those found in the high Arctic by Kitchell et al. (1978) and Kitchell and Clark (1979) 

the highest affinities are found with their ‘Biofaces 2’ which were characteristic traces 

for the continental rise stations. They found low trace diversity, compared with that of 

the Faroe-Shetland Channel with two trace types dominating the entire Canadian 

Abyssal Plain (CAP). Trace coverage on the CAP was much higher than in the Faroe-

Shetland Channel, with 49% of stations having 70-100% areal coverage of traces and a 

further 43% being characterized by 35-75% coverage. Many of the traces identified in 

the Faroe-Shetland Channel have been recorded by Ewing and Davis (1967) in their 

comprehensive analysis of megafaunal traces, these included the spike trace (their 

group IIIA9), the narrow plough (group IIIA13), the asteroid trace (group IIIB1), the 

ophiuroid trace (group IIIB2), the spoke trace (group IIIB3) and the wide plough (group 

VA1). 
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CHAPTER 4 – EFFECTS OF DISTURBANCE ON COLD-WATER FAROE-

SHETLAND CHANNEL COMMUNITIES 

INTRODUCTION 

The link between diversity and ecosystem function in marine systems is complex and 

while specific relationships are difficult to define, it is generally agreed that there is a 

positive relationship between diversity and ecosystem function (Emmerson et al. 2001, 

Hughes & Petchey 2001, Loreau et al. 2002, Raffaelli et al. 2002, Covich et al. 2004). 

Ecosystem function has been measured as a considerable number of variables and 

investigated using a large array of experimental approaches (Covich et al. 2004). Direct 

experimentation, as used in terrestrial and shallow-water systems, is practically very 

difficult in the deep sea, but the nature of megafaunal communities allows remote 

quantification of community parameters such as diversity and abundance, with 

accuracy, over relatively wide areas, through the use of imaging technology e.g. 

Remotely Operated Vehicles (ROV) (Starmans & Gutt 2002). Community parameters, 

such as abundance and diversity, are frequently measured as indicators of ecosystem 

wellbeing (Magurran 2003) and can be used as a proxy for ecosystem function in 

studies of the effects of disturbance on biological systems. The rate of local extinction 

of species with disturbance may be greater in organisms of larger size (Solan et al. 

2004) emphasising the importance of monitoring the diversity of megafauna. 

Megafauna play an important role in benthic systems (Smith & Hamilton 1983), 

particularly in arctic waters (Piepenburg et al. 1996), contributing significantly to 

benthic biomass (Schwinghamer 1981, Sibuet & Lawrence 1981, Christiansen & Thiel 

1992), organic matter recycling (Smith 1992, Smith et al. 1993) and total benthic 
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energy turnover (Walker et al. 1987, Piepenburg et al. 1995). Megafauna have an 

important role in ecosystem function particularly in dispersing and redistributing 

organic matter as well as significant vertical and horizontal sediment redistribution 

(Smith 1985, Smith et al. 1993) important in the recovery of benthic systems from 

disturbance (Romero-Wetzel & Gerlach 1991). Quantitative understanding of 

megafaunal abundances and spatial pattern is important in assessing ecosystem effects 

and resilience to / recovery from physical anthropogenic disturbance, an impact that is 

becoming more widespread in the deep sea (Bluhm 2001). Seabed imaging highlights 

ecological pattern and structure in deep-water benthic systems, allowing a detailed 

assessment of the ecosystem that is not possible with traditional trawl or grab studies 

(Solan et al. 2002). Video allows focus on patterns within megafaunal species 

assemblages at scales relevant to community pattern and the areal extent of disturbance 

(Hewitt et al. 1998) without introducing additional disturbance through the act of 

physical sampling. The real time observation and manipulation capability of ROVs is 

important for detailed study and collection of voucher specimens permitting 

identification of species that may not be possible, and is often limiting, in other 

photographic studies (Thurston et al. 1994). 

The benthic communities of the Faroe-Shetland Channel experience anthropogenic 

disturbance primarily from trawl fishing (Bullough et al. 1998) and increasingly from 

the activities of the oil and gas industry (Davies & Kingston 1992, Olsgard & Gray 

1995). Disturbance is important in natural benthic communities as a source of temporal 

and spatial heterogeneity (Sousa 1984) that may act to maintain species diversity 

(Dayton & Hessler 1972). Diversity is maintained by preventing competitive exclusion 

by dominant species in an assemblage (Connell 1978) and, particularly in the deep-sea, 
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by providing increased habitat diversity and niche availability (Gage 1996). As the 

magnitude of disturbance further increases, diversity may be reduced as physical 

stresses reach levels that exclude many species. Anthropogenic disturbance is often 

sufficient to cause some loss of diversity in marine systems, particularly in the deep sea 

(Bluhm et al. 1995, Borowski & Thiel 1998). As the oil industry expands to deeper 

waters in the Faroe-Shetland Channel, it is important to characterise and understand the 

natural communities and detect reliably the effects anthropogenic disturbance is having 

on community ecology (Underwood 1994). There is also a need for ecological research 

to become more concerned with problems of anthropogenic influence on natural 

systems at spatial and temporal scales of relevance to the organisms and habitats 

affected (e.g. Peters 1991). 

The main objectives of this study are to determine: (1) the effects of physical 

anthropogenic disturbance on megafaunal ecosystem functioning in a deep-water area, 

and (2) aspects of the ecology of megafaunal communities in the cold waters of the 

Faroe-Shetland Channel that aid understanding of the effects of present and future 

disturbance. 

MATERIALS AND METHODS 

Study area

The West of Shetland hydrocarbon fields are located on the southern flank of the Faroe-

Shetland channel (Figure 4.1). This area supports a high diversity of deep-water 

habitats and fauna which have been reviewed for the majority of the Faroe-Shetland 
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Channel in the U.K. Atlantic Margin Environmental Survey (Bett 2001). The Faroe-

Shetland Channel harbours a wide variety of megafaunal species, but, despite the long 

duration of study in this area (Thomson 1873) there have been relatively few detailed 

studies on the megafauna. This is especially true for the megafaunal communities living 

in the cold, arctic water in the deeper areas (>600m) of the channel (Bett 2001). From 

what is known, the abundance of hard substratum (iceberg rafted drop stones) leads to a 

well developed encrusting epifauna with crustaceans and echinoderms being important 

faunal components on softer substrata (Bett 2001). 

Figure 4.1: Chart showing the location of the Laggan study site in the Faroe-Shetland Channel.

The Faroe-Shetland Channel is an important area for exchange of water between the 

Arctic and Atlantic oceans with warm Atlantic water (>8 C) overlaying cold, subzero 

temperature, Norwegian Sea Deep Water (2 to -1 C) (Turrell et al. 1999). The 

boundary between the warm and cold waters is dynamic and may occur variously 

between 400 and 600m depth (Bett 2001). The benthic ecology of the Faroe-Shetland 

Channel is dominated by changes in hydrography as well as depth and sedimentary 
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properties. Macrofaunal diversity is shown to be strongly linked with hydrography, 

with a diversity maximum at the boundary between warm and cold waters and 

declining diversity with greater depth (Bett 2001; Narayanaswamy et al. 2005). 

At the Laggan study site (Figure 4.1), the benthic fauna experience low water 

temperatures (measured by ROV temperature probe as -1 to 2 C over the seven days 

prior to this study), moderate currents (circa 0.25m s-1, estimated from ROV footage) 

predominantly to the north east and strong enough to form mobile bedforms (sand 

ripples, 150mm wavelength, indicating currents up to 0.6 m s-1) in the newly deposited 

drill spoil (Stride 1982). ADCP current meter data (Figure 4.2) from a depth of 494m 

revealed a complex pattern. Tidal cycles (semi-diurnal and spring/neap) are evident as 

is the near-consistent flow to the northeast, this is likely to be Norwegian Sea Arctic 

Intermediate water, with temperatures of 2 - 0 C (Turrell et al. 1999). There is also a 

short period (centred 10/04/2004) of southwesterly flow which, with temperature 

observations of -1 C, indicate the presence of Faroe-Shetland Channel Bottom Water 

(Turrell et al. 1999). The residual current observed (38 day record) had a flow direction 

of 040  and an average speed of 0.16 cm s-1.
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Figure 4.2: ADCP current meter progressive vector plot, 494m water depth at Laggan site. Data courtesy 

of Fugro.

The present investigations were carried out onboard the semi-submersible drilling 

platform “Jack Bates” (600m water depth, 60°56.72´N 02°53.48´W) between 14 and 23 

April 2004 at the Laggan field. During drilling of the well investigated (drilling 

commenced 25 March 2004) 2700 tonnes of drill cuttings (1080m3) and 3000 tonnes of 

water based mud (2528m3) were discharged. 

For the purposes of this study, the seabed around the source of disturbance was divided 

into 50m zones radiating from the blow out preventer (BOP), a structure on top of the 

well, put in place after the initial drilling disturbance was caused. The distance of the 

ROV from the BOP was measured using sonar fixes on a clear sonar target. The extent 

of drill cuttings was characterised as follows: ‘complete cuttings’ (>95% cuttings 

coverage), ‘visible cuttings’ (where patches of cuttings were visible on ROV video) and 

‘no cuttings’ (where no cuttings could be seen on the ROV video). Graduated poles 
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were placed on the seabed before drilling to assess spoil depth. The seabed drilling 

activity provided the indicator for physical disturbance examined in this study. 

Data collection 

Data were collected using an industry-operated work-class Clansman ROV equipped 

with a colour video camera (Remote Ocean Systems) and digital still camera 

(Kongsberg OE14-208), flash (Kongsberg OE11-242) and Sonar (Tritech). Cameras 

were mounted on a pan and tilt unit at the front of the ROV, which enabled oblique 

video to be taken. Before each transect the video was zoomed out to maximum extent 

and the camera was set to its most vertical angle (47  below the horizontal). Video 

transects were conducted radiating from the BOP, the ROV was run in a straight line on 

a set bearing at a constant speed (0.3ms-1) and altitude (0.2m). Transects were typically 

250m in length, the maximum extension of the ROV’s tether. Transect width (0.91m) 

was calculated from the camera acceptance angles (  = horizontal angle,  = vertical 

angle), the angle of the camera from vertical ( ) and vehicle altitude (a): 

)))5.090sin(.().5.0sin(.2 22 aawidth

Transect width was also verified by passing over objects of known size on the seafloor. 

The optical resolution of the cameras permitted all organisms larger than 5 cm to be 

reliably identified. In addition to transects, ROV suction sampling, detailed inspection 

and still photography of selected individual organisms were used to aid species 

identification. 
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Pre-drilling qualitative video surveys of the immediate area around the drill site had 

previously been undertaken to ascertain the general nature of the seabed and 

megafaunal community prior to disturbance by drilling. 

Data analysis 

Video transects were replayed at half speed and all visible organisms were counted 

along the entire transect. Colonial organisms were counted as single individuals. 

Infaunal species, when seen, were counted if enough of their body was visible for 

identification. Only benthic fish were counted, i.e. those fish that dwell on and feed at 

the seabed. Abundances were then standardised to numbers per hectare.  

Two separate classification schemes were adopted, distance from point source of 

disturbance and visible seabed disturbance. (1) Distance was used as a proxy for 

intensity of initial disturbance, which is assumed to occur approximately symmetrically 

around the source of disturbance. Initial disturbance is thought to result in very high 

sediment deposition rates and turbidity. (2) Visible seabed disturbance reflects the 

actual situation present at Laggan, it is different from the initial impact as a result of 

longer term redeposition of material in predominant currents; visible seabed 

disturbance represents the more sustained effects of disturbance through smothering. 

For analysis by distance from disturbance, each transect was partitioned into 50m 

lengths. For analysis by visible disturbance categories, each transect was partitioned 

into 3 visible disturbance categories (complete, visible and no cuttings), numbers were 

standardised to densities as partitions were not of equal length. For both analyses, 

within each partition, counts from three randomly chosen transects were pooled to form 
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each sampling unit (resulting in 27 sampling units for distance and 18 for visible 

disturbance).

Megafauna were divided with respect to motility into mobile and sessile taxa. Fauna 

were also divided by predominant feeding mode into sestonivores (filter and suspension 

feeders), deposit feeders and predators/scavengers. 

A range of univariate diversity indices were calculated to assess both the dominance 

and species richness aspects of diversity (Magurran 2003, Gotelli & Colwell 2001). 

These measures were principally calculated using PRIMER (see below), the Berger-

Parker index calculated by spreadsheet, and sample based species density rarefaction 

implemented using “EstimateS” software (Colwell et al. 2004).  

Community analysis is based on densities of all taxa, a square root transformation was 

applied to buffer the influence of domianant taxa (Field et al. 1982). Similarities were 

calculated using Bray-Curtis coefficients (Bray & Curtis 1957). The similarity values 

were subjected to both classification (hierarchical group-average clustering) and 

ordination (non-metric multi-dimensional scaling) using the software PRIMER (Clarke 

& Warwick 2001). Other PRIMER routines (e.g. ANOSIM and MVDISP) were also 

used to further examine the results of the community analyses (Clarke & Warwick 

2001).
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RESULTS

Analysis of ROV video footage revealed a total of 2135 megabenthic organisms from 

27 nominal taxa (Table 4.1) in a total area surveyed of 3767m2. Arthropods (39% 

megafauna, up to 4786 ha-1) were predominantly Pandalus borealis although included 

hermit crabs, tube dwelling amphipods and Colossendeis sp. pycnogonids. Porifera 

(34% total megafauna, up to 3797 ha-1) were grouped morphologically into taxa but 

could not be identified further. Echinoderms (23% total megafauna, up to 2418 ha-1)

were dominated by the urchin Echinus elegans, asteroids (Ceramaster granularis 

granularis and Henricia pertusa) although other asteroids, ophiuroids and comatulid 

crinoids were also present. The ophiuroid Ophiactis abyssicola was very common (~ 

100 m-2), as seen in high resolution still photographs and suction samples although it 

was too small to be identified from the transect survey video footage. The remainder of 

the megabenthos (4%) comprised of molluscs, cnidarians (actiniarians and 

alcyonarians) and benthic fish.  



Chapter 4 

117

Table 4.1: Abundance and composition of megafaunal communities around the Laggan site, tabulated by 

distance from disturbance source, and by level of disturbance (full, total seabed smothering; partial, 

disturbance visible on seabed; none, no visible disturbance to seabed).

  Density (no. ha-1)

 Functional group 0-50m 50-
100m 

100-
150m 

150-
200m 

200-
250m  Full Partial none

Sponges           

Indet. encrusting sponge Sestonivore 0 293 1600 1439 952  88 728 1526

Indet. Sponge Sestonivore 0 183 1868 1622 842  135 896 1549

Indet. Sponge 2 Sestonivore 0 12 122 131 18  13 75 92 

Indet. Sponge 3 Sestonivore 0 0 12 0 0  0 0 6 

Indet. Sponge 4 Sestonivore 0 0 122 118 18  0 19 109

Indet. Sponge 5 Sestonivore 0 24 12 52 37  0 37 40 

Indet. Hexactinellid Sestonivore 0 24 73 131 0  0 112 69 

Cnidaria           

Indet. Actinarian Sestonivore 0 49 147 170 37  13 75 144

Indet. Alcyonacean Sestonivore 0 0 37 52 18  0 0 46 

Mollusca           

Colus icelandicus Predator/scavenger 0 0 24 39 0  0 0 29 

Sepiola atlantica Predator 0 0 12 0 0  0 0 6 

Arthropoda           

Pandalus borealis Predator/scavenger 12 415 4664 3872 1538  249 2558 3600

Pagurus sp. Predator/scavenger 0 24 122 131 110  7 131 115
Indet. Tube dwelling 

amphipods Sestonivore 0 0 0 39 0  0 0 17 

Colossendeis sp. Predator 0 12 0 13 0  0 19 6 

Echinodermata           

Henricia pertusa Predator 12 110 635 484 275  34 411 513
Indet. Long armed 

Asteroid Predator 0 0 24 0 0  0 0 12 

Ceramaster granularis Predator 61 171 598 432 476  40 429 564

Indet. White asteroid Predator 0 0 0 0 18  0 0 6 

Pteraster  militaris Predator 0 12 134 131 92  27 93 104

Echinus elegans Deposit feeder 85 232 928 968 403  101 654 852

Heliometra glacialis Sestonivore 37 24 98 92 55  13 112 98 

Fish           

Indet. Juvenile fish Predator 12 37 85 13 18  13 75 40 

Lycodes esmarkii Predator 24 12 171 39 0  7 112 81 

Gaidropsarus argentatus Predator 0 0 0 0 18  0 0 6 

Raja hyperborea Predator 0 0 0 13 0  0 0 6 

Cottunculus microps Predator 0 0 24 0 0  0 0 12 

           

Additional species           

Epimeria loricata (Amphipod)         

Pardalisca abyssi (Amphipod)         

Atylus smitti (Amphipod)         

Nymphon sp. (Pycnogonid)         

Ophiactis abyssicola (Ophiuroid)         

Myxine glutinosa (Hagfish)         

Sebastes sp. (Redfish)         

Brosme brosme (Tuskfish)         
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Pre-disturbance and beyond the disturbed area there was a highly heterogeneous 

distribution of benthic megafauna. The distribution of megafauna in these ‘natural’ 

seabed areas was primarily driven by substratum type and the availability of suitable 

microhabitats. The stochastic arrangement of ice rafted cobbles and boulders is 

important in determining the small-scale distribution of the megabenthos. Most sessile 

filter feeders were attached to hard substrata; many of the echinoderms preferred softer 

sediments, being more common in gravel and sand areas. 

Physical disturbance from drilling resulted in local scale (<100m) smothering of the 

benthos, particularly in the direction of the residual current (Figure 4.3). The disturbed 

area, with complete smothering (~ 28400m2) was larger than typical as a result of 

repeat drilling. The seabed was smothered to a maximum depth of 1m, although 

typically a lesser thickness. Disturbance was visible over a wider area (>66800m2 )

where disturbed sediment had collected in depressions and in the lee of ice-rafted 

boulders. Outside this area the seabed appeared to be unaltered when compared to pre-

disturbance ROV footage from the study site; it consisted of a heterogeneous mix of 

sand, gravel and occasionally cobbles and boulders.  
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Figure 4.3: ROV transects (1-18) conducted around the Laggan site, showing the extent of complete 

(central white area) and partial (hatched area) physical disturbance of the seabed, and 50m zones 

radiating from the disturbance source. The filled circles represent drilling locations.

Complete seabed disturbance resulted in low total megafaunal abundance with typically 

only small numbers of errant benthic megafauna. Larger boulders occasionally 

protruded above the level of smothering, acting as islands of megafaunal abundance; 

these boulders account for almost all observed benthic megafauna in the complete spoil 

areas. The seabed drilling structure did not appear to attract large numbers of fish as 

seen in other West of Shetland locations (authors’ personal observations), although 

eelpouts (Lycodes esmarkii) were observed sheltering beneath it. Total megafauna 

abundance was significantly different between disturbance regimes (Kruskal Wallis, H 

= 25.31, df = 3, 17 p < 0.001), being higher in partially disturbed areas than those with 
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full disturbance (Moods median test Chi-Sq = 5.33, p < 0.05) although there were no 

significant differences in abundance between partially disturbed areas and those with no 

disturbance (Moods median Chi-Sq = 1.33, p = 0.25). Total abundance was very low 

near the source of disturbance (0-50m zone; Table 4.2), it was highest at intermediate 

distances from the source of disturbance (11,514 individuals ha-1 at 100-150m) and 

reduced somewhat with further increasing distance (Figure 4.4). 

Figure 4.4: Variations in faunal density and diversity (H´, Shannon-Wiener Index; ES(area), Mao Tao 

estimate of species density) around the Laggan site with distance from source of disturbance. 

Univariate diversity indices (Table 4.2) indicated depressed megafaunal diversity in 

both the 50m zone and the complete disturbance zone (Figure 4.3), with further 

reaching effects noted for rarer species (type I indices). Shannon-Wiener diversity was 

elevated in the 50-100m zone (Table 4.2; Figure 4.4), dropping slightly beyond 100m. 

Estimated species density (Figure 4.4) increased from very low values near the source 
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of disturbance to maximal levels at intermediate distances, slightly declining with 

increased distance. The fauna in both the completely disturbed and 0-50m zone formed 

a distinct grouping on the Multi-Dimensional Scaling (MDS) ordination, with low 

similarities with the less disturbed areas (26.0% for 0-50m; 48.6% for complete 

disturbance; Figure 4.5 A). Analysis of similarities (ANOSIM) indicated statistically 

significant (p < 0.05) differences between the 0-50m zone, the completely disturbed 

area and all other zones (Table 4.3). 

Table 4.2: Variations in megafaunal species diversity measures around the Laggan site, tabulated by (A) 

distance from disturbance source, and (B) level of disturbance (mean density (no. ha-1); B-P, Berger-

Parker index; SI, Simpson’s index [1- ´]; H´, Shannon-Wiener index [loge]; ES(n), rarefied species 

richness; ES(area), Mau Tao estimate of species density). 

A
Zone Density (no. ha-1) B-P SI H' ES(240) S ES(410m2)

       
0- 50m 244 0.35 0.78 1.68 7.00 7 5.06

50-100m 1636 0.25 0.85 2.18 15.32 16 11.92 
100-150m 11514 0.41 0.78 1.95 16.54 22 18.94 
150-200m 9982 0.39 0.79 1.99 16.77 21 18.73 
200-250m 4927 0.31 0.82 1.98 14.15 17 16.94 

B
Level of disturbance Density (no. ha-1) B-P SI H' ES(500) S ES(545m2)

        
Complete disturbance 740 0.34 0.78 1.85 12.91 13 21.73 

Partial disturbance 6536 0.39 0.82 2.12 16.75 17 17.13 
No disturbance 9647 0.37 0.81 2.06 20.61 27 5.83 
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Table 4.3: Tabulation of PRIMER ANOSIM R-statistics from tests of variation in megafaunal 

community composition around the Laggan site, by (A) distance from disturbance source, and (B) level 

of disturbance (ns, p > 0.05.*, p < 0.05; **, p < 0.001). 

A
 50-100m 100-150m 150-200m 200-250m 
     

0-50m 0.342 * 0.987 ** 0.985 ** 0.932 * 
50-100m - 0.544 ** 0.483 ** ns 
100-150m - - ns ns 
150-200m - - - ns 

B
 Partial disturbance No disturbance 
   

Complete disturbance 0.328 * 0.391 * 
Partial disturbance - ns 

The megafaunal communities in partially disturbed areas were not distinct from those 

with no disturbance (Table 4.3). The benthic community in the area with no visible 

disturbance was quite homogeneous in composition, i.e. the undisturbed sample units 

formed a very tight group in the MDS plot (Figure 4.5A: MVDISP = 0.41), whereas 

more scatter is evident in those from disturbed areas (Fig. 5 A; MVDISP: partial 

disturbance = 0.99, full disturbance = 1.59). Megafaunal community composition 

becomes more consistent with distance from the disturbance source (Figure 4.5 B). 

ANOSIM reveals a distinct fauna in the areas >100m away from the disturbance source 

with significant differences from closer, more disturbed areas (Table 4.3). This trend is 

clear from the MDS plot (Figure 4.5 B) with a distinct grouping of comparatively 

“undisturbed” sites (65.0% similarity; mean MVDISP = 0.66), as distinct from the 

diffuse spread of the “disturbed” sites (mean MVDISP = 1.45). 
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Figure 4.5: Non-metric multi-dimensional scaling ordination of the megafaunal communities around the 

Laggan site. (A) Assessed by level of disturbance, and (B) by distance from disturbance source.

Mobile megafaunal density was higher than sessile in all disturbance regimes. The total 

abundance of sessile fauna increased with reduced disturbance, motile fauna had 

highest abundance at intermediate disturbance. The proportion of motile to sessile 

forms is broadly similar except in the partial disturbance zone where there is a higher 

proportion of mobile fauna (Figure 4.6 A). The total abundance of sessile and motile 

forms increased with distance from the source of disturbance, peaking at intermediate 

values, but the proportional abundance remained broadly similar except close to the 

source of disturbance where motile fauna were proportionally much more abundant 

than sessile (Figure 4.6 B).  
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Predator / scavengers were consistently the most abundant feeding group and deposit 

feeders the least abundant group in all disturbance regimes. The abundance of all 

feeding groups increased with reduced disturbance (Figure 4.6 C) and are all highest in 

the 100-150m zone (Figure 4.6 D). The proportional abundance of each group did not 

change significantly with distance from disturbance except close to the source of 

disturbance where there was a reduced proportional abundance of sestonivores and 

increased proportional abundance of deposit feeders.  

Figure 4.6: Variations in the median abundance and composition of megafaunal functional groups 

around the Laggan site. Illustrating faunal motility (A and B) and feeding mode (C and D) in relation to 

disturbance level (A and C) and distance from disturbance source (B and D). Error bars represent 95% 

confidence intervals calculated using a 1-sample sign test; pie charts show corresponding proportional 

abundance of functional groups.
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In the above, we have analysed disturbance in terms of both observed seabed 

disturbance and distance from disturbance source. The asymmetric distribution of drill 

cuttings (see Figure 4.3) results in an ‘imperfect’ match between distance and apparent 

disturbance. We have therefore also examined community parameters for trends with 

disturbance within distance zones (Figure 4.7). Total megafaunal abundance (Figure 

4.7A) in disturbed areas increased with distance from disturbance source; in the less 

disturbed areas, total abundance peaked at intermediate distances. The proportional 

abundance of motile fauna (Figure 4.7B) was generally higher than sessile in disturbed 

areas, with highest proportional abundance of motile fauna at intermediate distances 

from disturbance. In undisturbed areas motile to sessile faunal proportional abundances 

reduced with distance from disturbance, to approximately equal abundances at 150-

200m from disturbance. Species richness (Figure 4.7C) was consistently high in less 

disturbed areas; in more disturbed areas richness increased with distance. Species 

diversity measures have revealed significantly reduced diversity with proximity to 

disturbance source but, in the intermediate zones depicted (Figure 4.7D) there is no 

significant change in H´ with distance within the disturbed (H = 5.46, p = 0.07) or less 

disturbed areas (H = 6.98, p = 0.07). 
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Figure 4.7: Comparisons of megafaunal abundance and diversity in more (black bars) and less disturbed 

(white bars) areas within three distance zones around the Laggan site (H´, Shannon-Wiener index; ES(n),

rarefied species richness).
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DISCUSSION 

Megafaunal abundance at Laggan was significantly reduced by disturbance. 

Megafaunal numbers were very low in disturbed areas and close to the disturbance 

source. As this study was completed within a month of the initial disturbance, this 

reflected the initial disturbance of the communities by physical smothering and burial 

of organisms also observed in other studies (Stronkhorst et al. 2003). Highly motile 

organisms responded by moving away from the disturbance, as has been noted in many 

previous studies (e.g. Bluhm 2001), but for less motile taxa, motility was inversely 

proportional with mortality. Outside the area of complete disturbance megafaunal taxa 

responded differently to disturbance, likely a result of a complex interaction of factors 

including feeding mode, motility, particle removal rate and rate of sedimentation. 

Predator / scavenger abundances increased dramatically in the disturbed zones at 

Laggan as a result of increased mortality of other taxa and potentially increased 

available food (i.e. carrion) as observed in shallow-water studies (Ramsay et al. 1998; 

Dolmer et al. 2001). There may have also been some enrichment effects, with recently 

exposed sub-surface sediments providing a food source for meio- and macro-faunal 

prey species. 

The sestonivores increased in abundance with reduction in disturbance at Laggan. 

Although such taxa may experience enrichment effects these would likely be outside 

the zone of this study (i.e. >250m) and over periods of longer duration than the present 

study. Survival of sestonivores at Laggan was shown to be directly related to motility. 

The impact of disturbance on sessile forms would be related directly to levels of 



Chapter 4 

128

suspended solids and to their ability to clear particles from their feeding and respiratory 

surfaces, as observed in many shallow-water sessile organisms (Rogers 1990). 

Disturbance may also have sub-lethal effects on megabenthic organisms, particularly 

sessile forms, that are not addressed in this study. 

Deposit feeder abundance was not significantly different between partial and 

undisturbed areas at Laggan, these taxa are typically adapted to handling large amounts 

of particulate material and so may not be as susceptible to increased sedimentation. 

Deposit feeders, such as epibenthic echinoids and holothurians, are likely to be amongst 

the first recolonisers of the disturbed area. The increased availability of fine particles 

may reduce the need to sort through larger mixed size sediment complexes (Hudson et 

al. 2004) potentially allowing greater turnover and increased reprocessing of organic 

material within disturbed areas. In undisturbed areas, deposit feeder abundance may be 

limited by high abundances of suspension feeders (Gray 1974). The reduction in 

suspension feeders resulting from disturbance, along with the changes to the substratum 

observed at Laggan, may have promoted the preferential recolonisation of impacted 

areas by epibenthic deposit feeders, thereby changing overall species composition and 

allowing deposit feeders to dominate the disturbance/recolonisation community. 

At Laggan faunal abundances increased with reductions in disturbance. In this study it 

is not known if abundances are at or near ‘normal’ levels, an indication of this can be 

gained from comparison with other, undisturbed ecosystems in similar physical 

environments (Figure 4.8). The megafaunal communities of the Laggan area, although 

not arctic by location, essentially inhabit arctic waters from the Norwegian Sea, 

alternating between Norwegian Sea Arctic Intermediate Water and Faroe-Shetland 
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Channel Bottom Water (Turrell et al. 1999). It is therefore most relevant to compare the 

Laggan communities with those of the Norwegian Sea and the Arctic rather than the 

geographically closer Rockall Trough. Abundances were compared with respect to 

depth as it has been shown to have important controls on faunal abundances 

(Piepenburg et al. 2001). While megafaunal abundance at Laggan was variable in areas 

of no or limited disturbance (244 to 11,514 individuals ha-1), it is towards the low end 

of values found in other undisturbed arctic megafaunal studies. Faunal abundances 

typically increase until a point is reached where all available resources are utilised and 

inter- and intra-specific density-dependant processes limit abundances of each species 

(Begon et al. 1990). In disturbed areas, faunal abundance was clearly reduced in 

comparison to other studies. Faunal abundance provides an indication of ecosystem 

production, and the low abundances of this study may reflect a reduction in ecosystem 

production as a result of disturbance. These comparisons must be tentative as a result of 

physical differences between sites or methodological variation, particularly the 

inclusion of smaller faunal size classes in other studies. Nevertheless, the observed 

reductions in abundance with disturbance at Laggan suggest significant changes in 

ecosystem function. 

Diversity increased with distance from the source of disturbance at Laggan. Some 

diversity indices showed a small decrease in diversity at maximal distance and minimal 

disturbance. Diversity was depressed by high disturbance but intermediate levels have 

been found to increase diversity levels in certain environments (e.g. Connell 1978). The 

trend observed at Laggan was very slight and may be attributed to reduced sampling 

effort at minimal disturbance sites. The whole community multivariate measures 

reflected a clear trend of increased similarity of megabenthic communities with 
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decreased disturbance. This trend is commonly observed in community measures in 

many marine disturbance settings (Clarke and Warwick 2001).  

The megafaunal diversity of Laggan, as with abundance, was variable with extent and 

degree of disturbance. The Shannon-Wiener diversity at Laggan was broadly similar to 

comparable studies of megafaunal diversity in undisturbed arctic areas (Figure 4.8), 

although this should interpreted cautiously given the differences in sampling 

methodology between studies. Shannon-Wiener diversity in disturbed areas at Laggan 

was low, but within the values recorded at undisturbed sites elsewhere; this may result 

from the typically high dominance levels observed in many undisturbed arctic 

megafaunal studies (Piepenburg et al. 2001; Starmans and Gutt 2002). At Laggan, H´ is 

driven by low richness and high evenness; unfortunately richness cannot readily be 

compared between studies (Gray 2000). The similarity of diversity at Laggan and in 

other arctic megafaunal communities suggests that the less disturbed ecosystems at 

Laggan have similar ‘function’ to those in comparable, undisturbed areas. Diversity is 

best used as a measure for ecosystem health in conjunction with information on the 

functioning of specific ecological aspects of the community (Raffaelli et al. 2002). 

Changes in diversity with initial disturbance may not adversely affect ecosystem 

functioning, in many cases a high diversity can act to buffer the effects of first 

disturbance. However, as species are displaced by disturbance it becomes increasingly 

likely that species dominating the functionality of an ecosystem will disappear (Hughes 

and Petchey 2001). Suites of species responsible for specific functions may get smaller 

thus increasing the susceptibility of the ecosystem to further disturbance (De Ruiter et 

al. 2002). In the deep-water ecosystem at Laggan there appear to be only a few 

megafaunal species that are responsible for some major ecosystem functions, 
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particularly those associated with processing of soft sediments. Disturbance may have 

impacted the ability of the Laggan ecosystem to utilise available resources as a result of 

differences in species resource use and the effects of interactions among species 

(Hughes and Petchey 2001). 

Figure 4.8: Comparisons of megafaunal abundance and Shannon-Wiener diversity (H´) with depth for 

this study (Laggan site: open circles; increased disturbance is indicated with an arrow), studies in the 

Faroe-Shetland Channel (solid circles: FSC values from Chapter 3 and (Axelsson 2003)) and other arctic 

studies (solid triangles: Dahl et al. 1976, Christiansen & Thiel 1992, Mayer & Piepenburg 1996, 

Starmans et al. 1999, Piepenburg et al. 2001).

The relative changes in megafaunal diversity and abundance with physical 

anthropogenic disturbance recorded at Laggan are common to other areas despite 

differences in the community composition. As an example, megafaunal communities at 
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Laggan are significantly different from those at shallower depths in the Faroe-Shetland 

Channel (authors’ personal observations) with virtually no megafaunal species common 

between Laggan (600m) and shallower study sites (508m) as a result of the large 

changes in water mass properties (particularly temperature) that occur between these 

depths in the Faroe-Shetland Channel. While diversity and abundance were higher in 

these shallower communities, both of these measures decreased in a similar way with 

disturbance.

The extent of visible seabed disturbance at Laggan is relatively small in comparison 

with other studies of well sites (Davies et al. 1981; Olsgard and Gray 1995) but larger 

than found at previous well locations in this area (Block 206/1, TOTAL 2004). The 

widespread effects on the fauna from drilling activity on the Norwegian continental 

shelf (Olsgard and Gray 1995) did not appear to have occurred around Laggan. Many 

of these effects were attributed to the discharge of cuttings contaminated with oil-based 

drilling mud, in Laggan only water-based muds were discharged to the seabed (TOTAL 

2004). Note , however, that comparisons with studies on macrofauna (e.g. Olsgard and 

Gray 1995) should be treated with caution as only megafauna were analysed in the 

present study. 

The effects of physical disturbance at Laggan were manifested as the partial or 

complete defaunation of disturbed patches through physical smothering and (presumed) 

direct mortality. Numerous additional effects of disturbance on sediment properties 

were observed which may impact subsequent community recovery. Changes to 

sediment topography were noted as a result of disturbance, such changes can alter near 

bed hydrodynamics (Thrush et al. 1992) and may therefore affect the deposition of 
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particles, such as organic matter and benthic invertebrate larvae (Dernie et al. 2003), 

this may be particularly important in the high current regimes to the West of Shetland. 

Reduced sediment heterogeneity was apparent in the disturbed areas at Laggan; this has 

been shown to lead to reduced diversity in the deep sea (Levin et al. 2001). The 

blanketing of the seabed with sediment of a different composition, such as occurred at 

Laggan, has been shown elsewhere to result in conditions unfavourable to the typical 

resident communities, reducing immigration of mobile fauna and limiting larval 

settlement (Snelgrove et al. 1999), and increasing recovery time. The increase in 

suspended particulate loading as a result of disturbance at Laggan may have lead to 

clogging of filter feeding apparatus of some organisms (Sharma et al. 2001). 

At Laggan the most obvious environmental change with disturbance was a change from 

coarse to fine sediment, in studies of disturbance by trawling in shallow water, recovery 

was quickest in areas of coarse sediment (Thrush et al. 1995) but more stable, muddy 

areas recovered slowly (Tuck et al. 1998). Measured rates of recovery for mobile 

species from fishing disturbance were largely as a result of immigration, since what is 

known of life histories of benthic species (Brey 1999) suggested that population 

regeneration would not occur on these time scale. 

Although megafauna are not typically assessed to provide indication of impact, this 

study along with others (Bluhm 2001; Rodrigues et al. 2001; Sharma et al. 2001) shows 

the utility of megabenthic assessment. The use of photography in megabenthic 

assessment has advantages over more commonly used trawl sampling techniques 

(Thurston et al. 1998). Photography allows quantitative data to be obtained on the 

abundance of megafauna, unlike trawls which at best provide semi-quantitative 
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estimates of abundance (Grassle et al. 1975). Trawling is difficult in the West of 

Shetland area with a high risk of gear loss as a result of the large boulders present (e.g. 

Bett et al. 1997). Photography preserves ecological information that is lost with 

trawling, particularly the relationship between fauna and local habitat as well as the 

small-scale distribution of megabenthic organisms (Parry et al. 2002; Teixido et al. 

2002). Use of ROVs allows quantitative assessment of megabenthos at a very high 

resolution over a wide area and unlike other photographic assessments (e.g. Hersey 

1967) allowed concurrent detailed observation and sampling of the fauna, permitting 

positive identification of species. ROV sampling allows fragile species to be seen in

situ then collected with minimal damage. The real-time nature of sampling also allowed 

the quality of the video footage to be continually assessed and transects repeated if 

necessary. 

Summarising, this study indicates that physical disturbance in deep-water areas can 

have significant impacts on megafaunal communities, reducing the abundance and 

diversity of fauna and modifying community composition. In the case of the present 

study of drilling impact, the areal extent of the main effects appears to be relatively 

small. This work suggests the utility of ROV systems for the high resolution 

investigation of deep-water impacts on megafaunal communities. 
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CHAPTER 5: ECOLOGY OF BENTHIC MEGAFAUNAL COMMUNITIES AT 

KANGERDLUGSSUAQ FJORD MOUTH, EAST GREENLAND 

INTRODUCTION 

Changes in physical factors have long been shown to be integral in controlling 

ecosystem structure (e.g. Connell 1972) and this has been shown repeatedly in Arctic 

waters (Curtis 1975; Piepenburg and Schmid 1996a; Piepenburg et al. 1997; 

Piepenburg and Schmid 1997). Of these, depth is often seen as one of the greatest, and 

its effects have been shown to be very important in structuring marine ecosystems 

(Gage and Tyler 1991) as well as controlling diversity (Rex et al. 1997; Holte et al. 

2004) and density (Filatova 1982). Habitat has also been found to be very important in 

governing the distribution of deep-sea fauna (e.g. Barthel and Tendal 1993), with 

reductions in habitat heterogeneity leading to reduced diversity (Levin et al. 2001). 

Physical disturbance is a key factor in controlling spatial and temporal variations in the 

composition of benthic communities (Probert 1984; Sousa 1984; Hall et al. 1994) 

particularly in polar areas (Conlan et al. 1998; Gutt and Piepenburg 2003). The effects 

of disturbance on community patterns can occur on very short to evolutionary time-

scales and depend on the effects to specific species activity, life history and recruitment 

(Sousa 1980; Clarke 1983; Connell and Keough 1985; Gutt 2001; Conlan and Kvitek 

2005; Thatje et al. 2005) as well as interspecific interactions (Gutt and Starmans 2001; 

Barnes and Kuklinski 2003). The presence of ice is very important in the biology of the 

Arctic regions causing wide scale disturbance of the seabed (Gutt et al. 1996; Conlan et 

al. 1998) as well as reducing potential surface production (Andersen 1989; Gutt 2001) 

and as a means of transporting sediment to marine environments (Syvitski et al. 2001).  
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The megafauna are an important constituent of many deep-sea benthic communities 

particularly in Arctic waters (Piepenburg et al. 1996). Motile species of epibenthic 

megafauna contribute significantly to the dispersal of large food falls and vertical and 

horizontal sediment mixing through bioturbation and bioirrigation activity (Smith 1985; 

Romero-Wetzel and Gerlach 1991; Smith et al. 1993). Megafaunal species may be 

important components in the overall energy budget of the deep sea (Lauerman et al. 

1996), a quantitative understanding of their densities and spatial patterns is necessary in 

order to assess their contribution to energy flow through these systems (Smith 1992; 

Lauerman et al. 1996). 

In this study, the effects of physical factors, particularly depth and sediment type, on 

megabenthic density, diversity and distribution is assessed through quantitative data 

derived from seafloor images obtained from both a towed camera platform and some of 

the first Autonomous Underwater Vehicle (AUV) photographs obtained of the seabed 

(Jones et al. 2005). This study will expand existing faunal studies of the East Greenland 

slope to include the megafauna, and provide an insight into the ecology of Arctic slope 

epibenthic megafaunal communities and how they are influenced by their physical 

environment, particularly depth, disturbance, habitat type and hydrography. 
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MATERIAL AND METHODS 

Study area 

East Greenland is largely influenced by Arctic waters, its shelf being dominated by the 

cold southward-flowing East Greenland Current as far south as Kangerdlugssuaq 

(Figure 5.1). There is continual ice presence in the fjords and over the shelf and slope 

areas, ranging from continuous sea ice in the winter to low ice cover in summer 

(Toudal 1999). Between Kangerdlugssuaq and Angmagssalik, Bertlesen (1937) found 

strongly contrasting faunas suggesting that a major biogeographic boundary occurs 

(Madsen 1936), separating more typical boreal marine fauna from true arctic forms. 

This is concurrent with an abrupt change in the mean sea temperatures between these 

areas (Stein 2000). The seabed in this area is composed primarily of heterogeneous 

glacimarine sediments both from melt water runoff and ice-rafting (Syvitski et al. 1996; 

Dowdeswell et al. 1998; Smith and Andrews 2000). It is also heavily impacted by ice, 

particularly the scouring of the seabed by larger icebergs to depths of 550m 

(Dowdeswell et al. 1993). 
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Figure 5.1: (A) Location of study area, (B) swath bathymetry of Kangerdlugssuaq Fjord and C) 

bathymetry of sampling sites (sun position north-east, showing the position of the sampling sites as well 

as iceberg ploughmarks on the seabed). Swath data collected and processed by J. Evans et al. 

(Dowdeswell 2004). 

The benthic communities of east Greenland have had a long history of study (Curtis 

1975) dating from the publication of Fauna Groenlandica (Fabricius 1780). Results of 

early expeditions to the area, particularly the Ingolf expedition (1895 and 1896) in the 
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south of Greenland and the Denmark expedition (1906-1908) to the east, were compiled 

as the Conspectus Faunae Groenlandicae, published in the journal Meddelelser om 

Grønland between 1898 and 1917. The Godthaab expedition of 1928, whilst taking 

extensive collections of benthic fauna, did not venture to east Greenland (Kramp 1963). 

The first quantitative benthic investigations of north eastern Greenland fjords, Franz 

Joseph Fjord (73 N) and Scoresby Sund (70 N), were undertaken by Spärck (1933) and 

Thorson (1934). The benthic biology of the eastern fjords, Kangerdlugssuaq (68 N) and 

Angmagssalik (65 N), were investigated by Bertelsen (1937) as part of the 7th Thule

expedition. A brief mention of the megafauna within the Kangerdlugssuaq fjord system 

has been made as part of more general sedimentological investigations (Syvitski et al. 

(1996). Studies to date have generally been carried out in shallow water, typically to a 

maximum depth of 200m. Modern studies in the area have concentrated on deeper 

water faunas particularly off north eastern Greenland (Dahl et al. 1976; Piepenburg and 

Schmid 1996b; Starmans et al. 1999; Piepenburg et al. 2001) although Piepenburg et al. 

(2001) sampled macrofauna from 390-1570m in the Denmark Strait just south of 

Scoresby Sund. There have been no bathyal megafaunal investigations in East 

Greenland south of 75 N.

Field sampling 

Sampling was conducted as part of the UK National Environment Research Council 

(NERC) Autosub Under Ice (AUI) thematic programme on board the Royal Research 

Ship James Clark Ross (cruise JR106; see Dowdeswell 2004). 
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Sampling was carried out along a bathymetric gradient at the mouth of the 

Kangerdlugssuaq Fjord, east Greenland (Figure 5.1). Stratified random sampling was 

carried out along the depth gradient. One photographic transect was carried out within 

each of 5 approximately equally spaced depth bands (Table 5.1). Seabed survey 

photography was undertaken using the National Oceanography Centre (NOC) Wide 

Angle Seabed Photography (WASP) vehicle and the NOC Autosub Autonomous 

Underwater Vehicle (AUV) (Babb 1993; Jones et al. 2005). 

Table 5.1: Study site data: Site identifier (A-E), station number (unique identifier of camera 

deployment), date of observations, central position of observations, average water depth (m), total area 

analysed (m2), total seafloor area (%) with hard substrata (>64mm sediment size) and number of 100m2

samples used in analysis. 

Site Station Date Lat ( N) Long ( W) Depth 
(m)

Area photographed 
(m2)

Hard substrata 
(%)

Number of 
‘samples’

A 56508#1 08 Sep 2004 68.0842 31.7060 270 335 1.7 4 

B 56509#1 08 Sep 2004 68.0677 31.7043 374 476 1.1 5 

C 56512#1 09 Sep 2004 68.0665 31.7205 481 243 3.6 3 

D 56503#1 03 Sep 2004 68.0513 31.7723 625 1084 0.9 11 

E 56513#1 09 Sep 2004 68.0557 31.7290 722 430 4.0 5 

The WASP vehicle (Huggett 1987) is an off-bottom (2-4 m) towed camera platform, 

operated using an acoustic telemetry system, carrying a vertically-mounted still camera, 

and a vertically-mounted video camera. This vehicle was typically operated for one 

hour at the seabed, yielding some 250 still photographs (35mm Kodak Vision 250D 

colour negative) and continuous video footage (mini digital video cassette). The course 

of the WASP vehicle was not pre-defined or on a constant heading. 
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Autosub is a long range, deep diving, AUV. It carries a wide variety of physical, 

biological and chemical sensors including a vertically-mounted digital still camera 

(Jones et al. 2005), swath bathymetry system, Seatex MRU 6 attitude sensor (for 

magnetic heading, pitch and roll), Digiquartz 430 kT 700 bar pressure sensor (for depth 

data) and Simrad Mesotech 808 echo sounder (for altitude information). The vehicle 

was programmed to operate at 10m above the seabed for part of a longer mission in the 

fjord mouth. Agassiz trawl and rock dredge samples were obtained to aid in the 

identification of the fauna observed in photographs.  

Photo analysis 

The megabenthic fauna in each photograph were recorded. Given the physical scale of 

the photographs it was determined that only animals with a maximum dimension >5cm 

could be consistently identified. Altitude data (i.e. the height of the camera above the 

seabed) were printed directly onto each photograph allowing the scale of the image to 

be calculated using the following equation, where a = camera altitude,  = horizontal 

camera acceptance angle,  = vertical camera acceptance angle: 

Area of photograph = 
2

tan
2

tan4 2a

Megafaunal organisms were identified, counted and measured on each frame and their 

numbers converted to numbers per hectare. Sabellid tubes were counted, but as it was 

not possible to ascertain whether they were alive, they were omitted from the 

calculation of diversity indices and density values. Sponge colonies were counted as 

individuals when no visible separation between colonies was observed. Only benthic 
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fish were counted i.e. those fish that dwell on and feed on the seabed. Recent 

Lebensspuren were classified, counted and their area measured. 

Seabed type/grain size was assessed using Wentworth sediment size classes 

(Wentworth 1922) under 100 randomly chosen points overlaid on the photograph. A 

subsample of 30 photographs spaced evenly along the transect was used for each site. 

Hard substrata were taken as sediments classified as cobble or larger (>64mm 

maximum dimension). Unsuitable photographs (high altitude or out of focus) were 

discounted from all analyses. 

Data analysis 

Species counts of individual photographs (from the whole series of photographs at each 

site) were pooled at random, without replacement, into ‘samples’ that covered 100m2

1m2. In the last ‘sample’ per station, if there were insufficient samples to cover 100m2,

random photographs from throughout the sampling site were pooled until 100m2 was 

reached. Although the original photographs were contiguous, the transects were 

conducted in random locations (within depth stratifications) and the course of the 

WASP vehicle was not pre-defined or constant. For these reasons each sample was 

considered a replicate. In analyses ‘samples’ have been treated as replicates for all 

further analysis except for the investigation of spatial pattern where non-randomised 

individual photograph counts were used. 

Taxon accumulation curves (Colwell et al. 2004) were used to compare species richness 

between sites at Kangerdlugssuaq. Dominance was assessed using the Berger-Parker 
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index (Berger and Parker 1970). A selection of diversity indices (see e.g. Magurran 

2003) were used to cover patterns in both ‘rare’ and ‘common’ taxa: Simpson’s ´

(Simpson 1949), Shannon Diversity Index, H´ (Margalef 1968), Rarefaction, ES(n)

(Hurlbert 1971) and S, the total species present. Univariate diversity indices were 

calculated using PRIMER (Clarke and Warwick 2001) and Biodiversity Pro (Version 2, 

Natural History Museum, London and Scottish Association for Marine Sciences, 

Oban). Species richness estimates were calculated from sample-based species 

accumulation curves using EstimateS software (Colwell 2005). 

The within-transect spatial distribution of the fauna was analysed using a standardised 

Morisita's index of dispersion (Krebs 1998). The level of iceberg disturbance at each 

site was assessed qualitatively by reference to seabed ploughmark features observed in 

the WASP video footage, such as elevated ridges of sediment, displaced sediment, or 

scour related sediment lineation. 

Multivariate analyses (hierarchical clustering and non-metric multidimensional scaling) 

were carried out using the PRIMER software package (Clarke and Warwick 2001). 

Following the general recommendations of Clarke and Warwick (2001) a square root 

transformation was applied to the faunal density data and the Bray-Curtis similarity 

measure employed (Bray and Curtis 1957). 
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RESULTS

Environment and physical setting 

Seabed sediments ranged from mud to boulders characteristic of ice-rafting. All sites 

were characterised by a predominance of fine muddy sediment although the amount of 

hard substrata present was variable (Table 5.1). A significant difference in mean 

sediment size was observed between sites (Kruskal-Wallis H = 73.52 df = 4, p<0.001), 

although non-parametric post-hoc comparisons after Miller (1981) revealed that the 

sediments at sites A, B and D were not significantly different from each other 

consisting predominantly of fine material with very little available hard surface. 

Sediments at sites C and E were not significantly different from each other but had 

significantly more coarse-grained material than A, B and D, and therefore more hard 

surface available.  

Swath bathymetry and backscatter data collected during the cruise (Dowdeswell 2004) 

from the fjord mouth area (Figure 5.1) indicates that iceberg ploughmarks are numerous 

(>5 km-2) down to 300m, infrequent (1-5 km-2) between 300m and 500m and virtually 

absent deeper than 500m; note that it was only possible to enumerate large 

ploughmarks (>20m minimum dimension) from these swath data. From the WASP 

photographs and video it appears that the density of iceberg ploughmarks is higher at 

the shallow sites (A & B) than the swath bathymetry suggests, whilst at intermediate 

(C) and deep sites (D & E) no evidence of iceberg disturbance was observed using 

visual imaging techniques.  
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Bottom water temperatures determined from CTD casts (Dowdeswell 2004) were 

similar at all sites (Figure 5.2) slightly decreasing with water depth from around 1 to 

1.5 C at shallow sites to around 0.5 to 1 C at the deep sites. 

Figure 5.2: Temperature section through the mouth of Kangerdlugssuaq fjord showing positions of study 

sites. Data collected by K. Heywood et al. (Dowdeswell 2004). 
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Density 

A total of 4351 megabenthic organisms were observed from 45 nominal taxa in an area 

of 2568 m2 (Table 5.2). There is a significant difference in the density of total 

megafauna between sites (Kruskal-Wallis H = 19.67, df = 4, p<0.001; Figure 5.3), and 

a significant negative correlation between density and depth (r´ = -0.70, p<0.001). 

Densities are highest at stations A and B, notable for the presence of high numbers of 

the comatulid crinoid Poliometra prolixa.

Figure 5.3: Megafaunal diversity and density for Kangerdlugssuaq study sites. (A) Taxon accumulation 

curves (showing species richness), (B) variations in dominance (Berger-Parker index), (C) Shannon-

Wiener Diversity (H´ log e) and (D) faunal density (no m-2). Error (H´ and density shown with 95% 

confidence intervals). 



Chapter 5 

147

Table 5.2: Composition and density of epibenthic megafauna at Kangerdlugssuaq, Greenland 

investigated by means of seafloor photography.  

   Numbers (ha-1)

Phylum Class Species A B C D E 

Cnidaria Actiniaria Indet. anemone 1 27 15 28 26 44 

  Indet. anemone 2 0 0 223 58 53 

  Indet. anemone 3 87 0 0 24 0 

  Indet. anemone 4 298 1,374 521 14 30 

  Indet. anemone 5 61 0 395 0 0 

  Indet. anemone 6 0 0 168 0 0 

 Ceriantharia Cerianthus sp. 0 20 0 410 129 

 Alcyonaria Indet. Alcyonarian 14 94 0 0 0 

Alcyonium sp. 0 0 97 0 0 

 Pennatulida Indet. pennatulid 0 0 0 25 0 

 Scleractinia Stylaster sp. 2,350 8,106 5,384 1,488 580 

Porifera Demospongia Stylocordyla borealis 172 109 311 181 567 

Chondrocladia gigantea 0 20 0 68 0 

  Indet. spikey sponge 0 0 42 104 126 

  Indet. tube sponge 0 0 0 197 0 

  Indet. ear shaped sponge 0 63 20 14 74 

  Indet. encrusting sponge 98 669 65 0 0 

  Indet. perforated sponge 0 17 76 0 193 

  Indet. bottle shaped sponge 0 0 34 0 486 

  Indet. ball shaped sponge 0 0 0 0 1,653 

Echinodermata Crinoidea Poliometra prolixa 26,539 50,603 532 0 21 

 Ophiuroidea Ophiura sarsi 0 0 0 142 0 

Ophiacantha bidentata 50 1,303 229 148 0 

Ophioscolex glacialis 72 214 0 319 0 

  Aff. Ophiactis abyssicola 3,543 8,111 2,996 0 183 

Gorgonocephalus sp. 0 0 76 0 0 

 Asteroidea Indet. star 1 0 15 68 66 154 

  Indet. star 2 0 0 0 26 0 

  Aff. Pteraster sp. 0 0 0 5 0 

Hymenaster pellucidus 430 213 0 106 0 

Luidia sp. 107 164 67 0 27 

  Aff. Porania sp. 0 46 0 0 0 

Mollusca Cephalopoda Sepia sp. 19 0 0 0 0 

 Gastropoda Indet. whelk 106 249 204 27 64 

Arthropoda Pycnogonida Colossendeis sp. 120 0 31 0 25 

 Decapoda Pandalus borealis 0 19 0 0 0 

Annelida  Indet. terebellid 0 0 0 134 0 

  Indet. purple proboscis 0 0 0 31 0 

  Indet. errant polychaete 42 0 0 24 17 

  Indet. sabellid 5,305 10,238 29,513 46,543 46,717 

Hemichordata Indet. ascidian 117 34 0 0 0 

Chordata  Lycodes sp. 95 0 0 106 87 

Amblyraja  sp. 0 0 0 9 0 

  Aff. Eumicrotremus  spinosus 0 29 37 0 0 
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Diversity

Species richness increased with depth (Figure 5.3) with a clear division between low 

richness at sites at A and B and higher richness in the deeper stations (C-E). Evenness 

was low (high dominance) at the shallow sites as a result of the high relative 

abundances of the crinoid Poliometra prolixa. At the deep sites, communities had more 

even distribution of individuals among taxa (Figure 5.3; Table 5.3). The combined 

result of low richness and low evenness at the shallow sites resulted in low diversity 

across all univariate indices (Figure 5.3; Table 5.3). Heterogeneity diversity (as 

measured by H´) was significantly different between sites (Kruskal-Wallis H = 23.35, 

df = 4, p<0.001) with a significant positive correlation between heterogeneity diversity 

and depth (r´ = 0.395, p<0.05). The shallower stations tended to have high densities but 

low species richness, whereas the deeper stations show significantly lower densities but 

elevated species richness. The combined effects of high species dominance (low 

evenness) at the shallow stations and the increasing patterns of species richness resulted 

in an increasing diversity with depth. The increase of diversity (in all indices) with 

depth reflects increased diversity in the entire megafaunal community from rare to 

common taxa. 

Community composition 

Overall the observed megafauna were dominated by echinoderms (77.7%), although 

cnidarians (16.8%) and sponges (4.2%) were also important. Echinoderms are clearly 

dominant at sites A (89.3%) and B (85.7%), with cnidarians dominant at C (59.2%) and 

D (51.5%) and sponges dominant at site E (75.32%). 
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Classification and ordination of stations, based on root-transformed taxon density and 

Bray-Curtis similarities, revealed a distinct depth zonation in the distribution of 

megabenthic assemblages. ANOSIM revealed significant differences between stations 

(R=0.816, p<0.001). Three faunistic zones were discernable in the cluster diagram and 

MDS plot (Figure 5.4): 

Shallow. Clearly dominant at the shallow stations was the crinoid Poliometra prolixa

(40,253 ha-1, 63.6%), sabellids while important (12.3%) were not as abundant as in 

other zones. Ophiuroids were seen frequently at this zone (9.7%) as was the “deep-

water” coral Stylaster (8.9%).  

Intermediate. A single station (C) represents an intermediate situation between the 

shallow and deep faunas, it is more closely allied to the shallow stations (mean Bray-

Curtis similarities: 43% similarity to shallow, 25% similarity to deep) than the deep but 

does possess faunal elements of each. Densities of Poliometra were significantly 

reduced (1.3%) with only occasional specimens observed, sabellids were dominant 

(71.8%), coral (13.1%) and ophiuroids (7.3%) were abundant, actiniarians were also 

relatively abundant (3.2%).  

Deep. This group encompassed those stations in water depths of 625 to 725m. Sabellids 

were highly abundant, dominating faunal numbers (92.2%), Stylaster was also 

important (2.5%) as were demosponges (1.8%) and cerianthids (0.7%). 
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Variations in the availability of hard substrata did not appear to influence community 

parameters at the between-site scale. 

Table 5.3: Characteristics of sites and epibenthic faunistic zones distinguished in the Kangerdlugssuaq 

area. For each zone, stations included, water depth (m), number of species found, dominant species, 

evenness (Pielou’s J´), Mean density of total epifauna  95% confidence interval, Rarefied estimated 

number of species (ES220), Shannon-Wiener diversity index, H´ (base log e), Simpson’s Index (1- ´) and 

Berger-Parker Index (B-P). 

Cluster stations Depth
(m) 

species 
number Dominant species Evenness 

(J') 
Density 

No. m-2  C. I. ES(220) H' 1- Lambda' B-P 
             

 A 270.2 20 coral, Poliometra,
brittle 4 0.312 3.435 0.748 9.641 0.934 0.387 0.774 

 B 374.4 22 sabellid, coral, 
Poliometra, brittle 4 0.309 7.149 0.844 7.639 0.956 0.432 0.738 

 C 480.8 22 sabellid, coral, brittle 4, 
anemone 4 0.590 1.16 0.291 21.720 1.825 0.713 0.478 

 D 625.3 25 sabellid, coral, 
cerianthid, brittle 3 0.788 0.3752 0.1312 22.898 2.535 0.877 0.279 

 E 721.6 19 sabellid, sponge, coral 0.728 0.4513 0.1242 18.843 2.145 0.812 0.383 
             

Shallow A, B 261-
375 28 coral, Poliometra,

brittle 4 0.289 5.551 0.633 9.774 0.962 0.4221 0.749 

Intermediate C 480-
501 22 sabellid, coral, brittle 4, 

anemone 4 0.590 1.160 0.291 21.72 1.825 0.7132 0.478 

Deep D, E 625-
725 32 sabellid, coral, sponge, 

cerianthid 0.797 0.395 0.102 28.7 2.761 0.9065 0.147 
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Figure 5.4: Multivariate analysis of Kangerdlugssuaq megabenthos. (A) Dendrogram and (B) 

multidimensional scaling ordination (see text for details of analysis). 

Small-scale patchiness 

While inter-station analyses of the faunal data revealed zonation in the distribution of 

epibenthic assemblages, within-station evaluation of the transects (Figure 5.5) provided 

small scale distributional information for the most abundant epibenthic species, the 

crinoid Poliometra (sites A and B), stylasterine corals (sites C and D) and sponges (site 

E). 
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Poliometra was highly abundant at the shallower sites (A and B). Crinoid densities 

were very high, reaching a mean value of 50,603 ha-1, although their distribution along 

transects was patchy (Figure 5.5) with counts ranging from 0 to 53 individuals in a 

single photographic frame (0 to 17.71 m-2). Dispersion of Poliometra was found to be 

significantly clumped at both sites (Standardised Morisita Index Ip=0.505 p<0.05 for 

site A; Ip=0.501, p<0.05 for site B). Poliometra was observed to occur in preference on 

topographical elevations such as sediment ridges and boulders. 

Stylasterine coral was highly abundant in all stations, but only dominant in stations C 

and D. Their densities reached a mean of 8106 ha-1 but in some cases the distribution 

was patchy (Figure 5.5) with counts ranging from 0 to 25 colonies per frame (0 to 8.5 

m-2). Dispersion of stylasterines was found to be significantly clumped at site D (also in 

B although it was not dominant) and random at site C (Standardised Morisita Index 

Ip=0.501, p<0.05 for site B; Ip=-0.396, ns for site C and Ip=0.532 p<0.05 for site D). 

Stylasterine colonies had no obvious affinities with particular seabed characteristics. 

Sponges were important at all sites, but were only dominant at site E. Their densities 

reached a mean of 2532 ha-1, with counts ranging from 0 to 4 colonies per frame (0 to 

1.77 m-2). Dispersion of sponges was found to be random (Standardised Morisita Index 

Ip= -0.11, ns). Sponge colonies were observed to occur predominantly associated with 

hard substrata, particularly with larger sized cobbles and boulders. 



Chapter 5 

153

Figure 5.5: Spatial variation in the distribution of selected (dominant) taxa along phototransects.  

Traces 

Faunal traces of varying nature were observed in the soft sediments at all sites. Nine 

distinct trace types were observed (Figure 5.6). For some trace types it was possible to 

identify causative organisms (or group of organisms) from trace form or direct 

observation of trace formation. While only a small percentage of the total seabed area 

was disturbed by faunal traces, considerable numbers of traces were observed (Table 

5.4).

Trace density (Kruskal-Wallis H = 13.95, df = 4, p<0.05) and area (Kruskal-Wallis H = 

9.95, df = 4, p<0.05) were significantly different between sites. There was a significant 

positive correlation between trace number and depth (r´ = 0.76, p<0.001), primarily 
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driven by particularly high trace density at one of the deeper sites (site D). Many trace 

forms had higher numbers and areal coverage in the deeper sites (Table 5.4).  

Multivariate comparisons, based on root-transformed data and Bray-Curtis similarities 

of trace assemblages, revealed significant differences between sites in both trace 

number (ANOSIM R=0.561, p<0.001) and trace area (ANOSIM R=0.390, p<0.001). 

Trace number and area followed the same trend, being low in the shallow sites (A, B 

and C) and generally high in the deep sites (D and E). This trend was the opposite of 

that found for faunal density; faunal density was highest in the shallow sites but very 

low in the deep sites. The proportion of infaunal to epifaunal traces was found to 

change across the bathymetric gradient. Traces produced by infaunal organisms 

represent 49% of total trace numbers at site A, at the other sites there was 83-89% of 

infaunal traces. 

Table 5.4: Lebensspuren observed in photographs of the bathyal Kangerdlugssuaq area, Greenland. No. 

represents number of Lebensspuren per hectare, area represents proportion (0-1) of total area sampled 

occupied by Lebensspuren (x105 to show small values). 

Trace name Origin Trace type A B C D E 

   No. Area No. Area No. Area No. Area No. Area 

Large circular hole unknown Dwelling 383 0.19 478 1.60 131 0.83 8888 11.09 5382 11.54 

Small circular hole unknown Dwelling 995 0.57 1791 0.63 4857 0.29 57223 1.04 8416 1.16 

Molpadid mound Holothurian Dwelling 77 0.59 0 0 0 0 116 1.52 0 0 

Asteroid trace Asteroid Resting trace 153 1.89 0 0 0 0 871 4.77 734 109.00

Ophiuroid trace Ophiuroid Resting trace 0 0 0 0 0 0 2440 27.17 0 0 

Narrow plough Gastropod Crawling trace 1148 31.95 299 8.61 919 11.76 1336 13.54 734 15.58 

Wide plough Gastropod? Crawling trace 0 0 119 16.65 0 0 3950 402.42 98 30.11 

Faecal plough Holothurian Crawling trace 230 2.41 60 0.78 131 1.60 116 0.30 49 10.56 

Crenulated plough Fish? Crawling trace 0 0 0 0 0 0 2498 563.63 0 0 

             

  Total 2986 37.42 2747 26.67 6039 13.65 77440 1014.38 15412 166.41
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Figure 5.6: Megafaunal traces recorded in seabed photographs of the bathyal Kangerdlugssuaq area, 

Greenland. (A) large circular hole, (B) small circular hole, (C) molpadid mound, (D) asteroid trace, (E) 

ophiuroid trace, (F) holothurian faecal plough, (G) narrow plough, (H) wide plough, (I) crenulated 

plough. 
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DISCUSSION 

Density 

The density of megafauna was observed to decrease by over an order of magnitude with 

increasing depth at Kangerdlugssuaq. This could not be explained with changes in 

hydrography, which was relatively constant between sites, or seafloor habitat, which 

also showed no distinct trends with depth. Variability in the supply of food is a major 

controlling factor of benthic faunal density. Benthic communities depend on the 

downward flux of organic matter for food. In open ocean environments, this decreases 

with depth (Lampitt et al. 2001) and is manifested in reductions in benthic community 

density with depth throughout the oceans (Gage and Tyler 1991). The situation at 

Kangerdlugssuaq is much more complex, with very high input of glacially derived 

sediment (from 0.6 - 2.4 cm a-1) and meltwater flux (around 4 km3 a-1), both with 

potentially elevated nutrient levels (Syvitski et al. 1996; Smith and Andrews 2000). 

This is combined with very high ice cover, both from sea ice and the high volume of 

iceberg influx (15 km3 a-1), which will severely limit surface primary production for at 

least 8 months of the year where the fjord is entirely ice covered (Syvitski et al. 1996). 

The result of these factors is likely high phytoplankton production for <4 ice-free 

months, possibly around 5.3 mmol C m-1 d-1 as measured in a similar fjord in NE 

Greenland (Rysgaard et al. 1996), although potentially as high as 95 mmol C m-1 d-1 as 

measured off the coast of NE Greenland (Smith et al. 1995). High flux of organic 

matter to the seafloor has been found during these blooms, with as much as 50-80% of 

phytoplankton stock sinking to the bottom (Wassmann 1991). Water currents 

predominantly flow out of the fjord (Syvitski et al. 1996; Dowdeswell 2004) so it is 
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unlikely that high quality organic matter will be advected from surface primary 

production in less ice-impacted waters outside the fjord. The combination of these 

factors suggest that there is not much variation in surface organic matter supply 

between study sites, especially given their spatial proximity. Density variations are still 

likely related to reductions in available food with depth. There are tidally-reversing 

currents and horizontal mixing occurring around the study area (Dowdeswell 2004) that 

will pass much of the sinking organic matter over the dense beds of suspension feeders 

(particularly crinoids) in shallow water. Beds of suspension feeders have been shown to 

reduce available food supplies significantly (Fabricius and Dommisse 2000; Tweddle et 

al. 2005). This will likely reduce the available food supply to the deeper stations and 

hence reduce faunal densities. 

Megafaunal density in this study was highly variable (1881 to 60,132 individuals ha-1).

Such densities and the major reductions in density with depth are consistent with other 

Arctic megafaunal studies (Figure 5.7). Absolute densities and bathymetric pattern in 

the density of Arctic fauna is likely governed by a complex of interdependent factors 

(primary production, flux rates, ice cover and seafloor properties) which vary at each 

location investigated (Ambrose and Renauld 1995; Brandt 1995). For example, in an 

area of high primary production, the Northeast Water Polynya, Piepenburg et al. (2001) 

found higher megafaunal densities than in this study. Analysis of all published 

megafaunal density values for the Greenland Sea, Norwegian Sea and Denmark Strait 

reveal a significant negative correlation between total density and depth (r´ = -0.355, 

p<0.05).
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Diversity

Analysis of the benthic species distribution revealed a conspicuous depth zonation at 

Kangerdlugssuaq, in which the benthic assemblage of the shallow stations could be 

clearly distinguished from that of the deeper parts of the fjord mouth. Similar 

bathymetric zonation patterns in Greenland have been reported for the megafauna, 

epifauna and selected species (Piepenburg and Schmid 1996b; Piepenburg et al. 1997; 

Starmans et al. 1999; Starmans and Gutt 2002). Diversity is frequently found to 

increase to intermediate depths in open ocean environments (Rex et al. 1997); possibly 

being driven by: increased large-scale environmental stability (Sanders 1968), 

patchiness of food resources, and localized autochthonous disturbances (Grassle 1991). 

The situation at Kangerdlugssuaq is considerably more complex with additional 

controls on diversity from the disturbance effects of grounding ice and the related 

effects of high sedimentation (Wlodarska-Kowalczuk et al. 2005). In the shallower 

waters of Kangerdlugssuaq, seabed disturbance by icebergs plays an important role in 

regulating local benthic diversity, as seen at local scales in the Arctic (Conlan et al. 

1998) and Antarctic (Gutt and Piepenburg 2003; Teixido et al. 2004). In shallow waters 

it appears that the high levels of disturbance from iceberg activity is acting to reduce 

local diversity. There is a movement of around 1200 icebergs per year out of the fjord, 

past the study sites, and with an average keel depth of 250m (Syvitski et al. 1996) 

suggesting that the shallow study sites are disturbed regularly. In deeper waters there is 

a lower frequency of disturbance which will allow communities to build up their 

species complement, through succession, acting to increase diversity (Connell 1978). 

Small-scale, low intensity disturbance in the deeper waters will occur from the periodic 

deposition of iceberg drop stones, increasing diversity by providing new habitat for 
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colonisation and potentially allowing several successional stages to be assessed within 

individual photographs. The reductions in diversity with local disturbance found here 

have been shown on a regional scale to increase diversity, where, within a 

heterogeneous mosaic landscape, co-existence of different successional stages would 

act to prevent a steady-state climax community at the large scale (Gutt and Piepenburg 

2003).

Megafaunal diversity in this study showed a similar increase with depth to others in the 

literature but is difficult to compare directly as a result of the numerous diversity 

indices and sampling methods in use (Magurran 2003). The diversity recorded in this 

study is comparable with similar photographic studies of Arctic megafauna to the east 

of Greenland (Figure 5.7). When all available diversity measurements are compared 

with depth an overall positive correlation is evident (r´ = 0.526, p<0.05) for H´ (the 

most widely quoted index). However there is a unimodal peak in diversity at around 

600-800m, with reducing diversity at both shallower and deeper depths. This peak in 

diversity occurs at about the average limit of iceberg disturbance over the last 10,000 

years (Dowdeswell et al. 1993). It may be that ice-related disturbance reduces shallow 

water diversity throughout the Greenland Sea and Denmark Strait area. 
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Figure 5.7: Comparisons of megafaunal density (log numbers ha-1) and Shannon-Wiener diversity (H´) 

with depth for this study (solid circles), and other arctic water studies (open circles) after (Dahl et al. 

1976; Christiansen and Thiel 1992; Mayer and Piepenburg 1996; Starmans et al. 1999; Piepenburg et al. 

2001; Axelsson 2003; data in this thesis). 

Species richness is difficult to compare between studies as a result of differences in 

sample size or sampling method (Gray 2000). The present study recorded a comparable 

taxon richness to other Arctic photographic studies. However, it is apparent from the 

taxon accumulation curves that there may be many more species present, supported by 

widespread trawl sampling on the Northeast Greenland Shelf where Piepenburg and 

Schmidt (1996b) found over 200 megabenthic species. 

Community patterns 

Organisms are broadly constrained by depth as a result of their physiological tolerance 

to pressure. While this sets lethal limits, the bathymetric zone in which species are 
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abundant is narrowed by other local factors (Rowe 1983; Billett 1991; Howell et al. 

2002). While changes in hydrographic regime have been shown to be important in the 

zonation of benthic fauna (Gage et al. 1995; Callaway et al. 2002), in this case, with 

negligible differences in hydrographic properties between stations, it is unlikely that 

this is an important structuring force driving community patterns. However, many 

environmental parameters are correlated with water depth. One of the major ecosystem-

structuring forces on the Greenland continental shelf is disturbance from icebergs (Gutt 

et al. 1996). Grounding ice modifies seabed topography, reworks the sediment, and 

ploughs and crushes the seabed biota (Conlan et al. 1998). Scouring by icebergs has 

been shown to be a significant process in water depths < 550 m (Dowdeswell et al. 

1993). Iceberg scouring intensity varies inversely with water depth. The most intense 

scouring occurs at depths of < 300-400 m (Dowdeswell et al. 1993). Gutt et al. (1996) 

show that the seafloor in open-ocean Arctic Greenland was disturbed by icebergs 

statistically once every 53 years. At Kangerdlugssuaq, it would seem that the frequency 

of disturbance is much higher than this (Syvitski et al. 1996). In situ photographs and 

videos taken here and elsewhere have demonstrated that iceberg grounding in polar 

regions locally causes considerable damage to benthic communities (Gutt et al. 1996; 

Gutt and Starmans 2001; Gutt and Piepenburg 2003; Teixido et al. 2004). Scavenger 

abundances have been found to increase as a result of ice disturbance related mortality 

and damage (Conlan et al. 1998). At Kangerdlugssuaq very low densities of scavenging 

fauna were observed, these often highly mobile fauna may only present at high 

densities in very recently disturbed areas and move around following disturbance 

events. All motile species can move into disturbed areas quickly. This is apparent at the 

shallow stations at Kangerdlugssuaq where, in clearly disturbed areas, there are very 

high densities of mobile organisms compared to sessile species, particularly evident in 
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Poliometra prolixa although also in the ophiuroids (e.g. Ophiacantha bidentata and 

Ophiactis abyssicola) and asteroids (e.g. Hymenaster pellucidus). In less disturbed 

patches, the ratio is more equal. Sessile organisms are eradicated by initial disturbance 

and subsequently pioneer species begin to grow in high densities on the impacted 

substratum, being replaced by a succession of species, going through a number of 

stages of recolonisation before recovery (Teixido et al. 2004), there is insufficient 

evidence in this study or other literature on Arctic interspecific interactions, growth or 

reproductive rates to evaluate the successional hierarchy of fauna in this area. In the 

shallow sites it appears that areas are frequently disturbed and remain in a state of 

incomplete recovery as found in other polar areas (Gutt et al. 1996). Disturbance also 

has implications beyond direct impacts to fauna, the action of ice ploughing changes 

the seafloor topography. Suspension feeding fauna, such as crinoids have been found 

here to aggregate on topographic highs where flow rates are increased (Muschenheim 

1987; Wildish and Kristmanson 1997), this was predicted, but found to occur in the 

shallow Canadian Arctic (Conlan et al. 1998). In the deeper sites, where iceberg 

disturbance is less frequent or ancient, the high rates of sediment deposition at 

Kangerdlugssuaq will have covered all visible evidence of disturbance, essentially 

homogenising the environment, as well as providing habitat for infaunal organisms, 

such as molpadid holothurians. Stochastic deposition of ice-rafted drop stones 

continually creates habitat for many taxa. In some cases, post depositional processes, 

such as iceberg ploughing, can produce patches of larger sized sediments. The 

distribution of hard substrata explains variations in the distribution of stylasterine 

corals, many sponges and other attached taxa. 
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Traces 

Trace numbers increased, despite decreases in total faunal density, at greater depths. 

This may reflect a number of changes, including the dominant feeding mode: deposit 

feeding increased at greater depths increasing trace formation; this is coupled with a 

reduction in physical or biological factors that remove traces. Changes in feeding 

pattern with depth have been found in many assemblages (Carey 1972; Gage and Tyler 

1991; Flach et al. 1998) and reflect a move towards deposit feeding with depth, with 

deposit feeding more likely to produce traces. Traces found at Kangerdlugssuaq suggest 

a much higher infaunal density or activity in the deep areas (>500m).  

Trace numbers and area may have been reduced in the shallow sites as a result of 

physical or biological forces acting to remove them. However these effects will be 

relatively small over the time-scale for typical trace duration, likely to be less than a 

year with measured sedimentation rates (Hollister et al. 1975; Syvitski et al. 1996). 

Although disturbance rates are higher, and there is some evidence that sedimentation 

may be elevated slightly in shallower sites closer to the glacier fronts (Syvitski et al. 

1996), trace densities are likely to be more reflective of the communities present than 

the forces removing them. 

There is a considerably higher proportion of epifaunal organisms at the shallowest site 

when compared with the other infaunal-dominated sites. In some situations infaunal 

organisms have been found to be more susceptible to disturbance (Jennings et al. 2001), 

hence less abundant in the shallow sites. Epifauna, particularly mobile forms, can 

respond quickly to disturbance events, they have been shown to recolonise disturbed 
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areas within hours (Ramsay et al. 1998). Disturbed areas at Kangerdlugssuaq have large 

sediment sizes and topographic highs favourable to suspension feeding epibenthos, 

these conditions may further reduce infaunal organism density through reductions in 

food and larval supply. 
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CHAPTER 6: ECOLOGY OF BENTHIC MEGAFAUNAL COMMUNITIES IN 

THE FIMBUL ICE SHELF REGION, WEDDELL SEA, ANTARCTICA 

INTRODUCTION 

Considerable research has been carried out on Antarctic benthic communities during 

the last decades, mainly related to aspects of systematics, zoogeography, reproduction 

and foraging biology (Dayton 1990; Arntz et al. 1994; Gutt 2000). Studies on patterns 

and processes are important in understanding development, structure and function of 

Antarctic benthic communities (Hedgpeth 1971; Dell 1972; White 1984; Arntz et al. 

1994; Clarke 1996; Teixido et al. 2002). Knowledge of the density, spatial distribution 

and diversity of species within a community is fundamental to understanding 

ecosystems (Sousa 1980; Paine and Levin 1981; Connell et al. 1997; Newell et al. 

1998).

The influence of ice is a characteristic feature of Antarctic communities, impacting 

benthic communities through both direct processes such as ice scouring (Barnes 1999; 

Teixido et al. 2004) and indirect processes including changes to surface water 

productivity caused by the presence of seasonal sea ice (Andersen 1989; Gutt 2001). 

Disturbance from icebergs is among the most significant disturbances that any large 

ecosystem on earth experiences (Gutt and Starmans 2001). Natural disturbance is 

widely recognised as an important determinant of the occurrence and density of species 

(Dayton 1971; Pickett and White 1985; Huston 1994; Paine et al. 1998; Sousa 2001). 

Disturbance effects on communities depend on the individual life histories of the 
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species present, and the dispersal and recruitment patterns of their offspring (Grassle 

and Grassle 1974; Sousa 1980; Connell and Keough 1985; Giangrande et al. 1994). 

Environmental gradients are important in determining the distribution of benthic fauna 

and the structure of seabed communities (Garrabou et al. 2002). In the Antarctic, as 

elsewhere, depth is one of the most important marine environmental gradients (Dayton 

1990; Arnaud and Hain 1992; Starmans et al. 1999). Community changes with depth 

concern not only the composition, but also the organization of the communities. 

Community parameters such as diversity, species richness and standing stock have been 

shown to be affected by depth (Rex et al. 1997; Gutt and Starmans 1998; Gutt et al. 

1999; Gage et al. 2000).  

Photography and image analysis are increasingly used to investigate the fauna of deep-

sea environments (Smith et al. 1993; Priede and Merrett 1998; Lampitt et al. 2001; 

Solan et al. 2002). In the high Antarctic, despite the vast areas, only a few studies have 

investigated the megafauna quantitatively (e.g. Piepenburg et al. 1997; Gutt and 

Starmans 1998; Starmans et al. 1999; e.g. Barry et al. 2003). The bulk of work on 

Antarctic benthos has been carried out using trawling (e.g. Arnaud et al. 1998), which 

is at best semi-quantitative (Thurston et al. 1994). Towed camera platforms allow the 

megabenthos of large areas of seabed to be studied quantitatively without disturbing the 

environment under study. Photographs can provide an undisturbed view of the benthos 

over a wide area allowing the elucidation of large-scale faunal spatial patterns (Solan et 

al. 2002) revealing any heterogeneity in the distribution of assemblages that is lost with 

trawling (Clarke and Johnston 2003). Along with the geology of an area (Masson 
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2001), megafaunal species richness and standing stock are commonly assessed from 

photographs (Fell 1967; Bohnsack 1979; Gutt and Starmans 1998; Gutt et al. 1999).  

This study aims to investigate the community structure, diversity and density of deep-

water benthic megafauna in an area impacted by both seasonal and permanent ice. I aim 

to characterise patterns in benthic community structure in relation to major physical 

factors, particularly depth, habitat type and disturbance from icebergs. While 

communities have been separated in distinct areas in the Antarctic (Gutt and Starmans 

1998), this work focuses on the effects of physical factors on the benthic fauna in a 

single area. 

METHODS 

Study area 

The Fimbul Ice Shelf is the largest ice shelf in the north eastern Weddell Sea 

(Swithinbank 1957; Lunde 1961; Nost 2004). Jutulstraumen, the largest outlet glacier in 

the central Dronning Maud Land, feeds the central part of the Fimbul Ice Shelf. The 

eastern and north eastern Weddell Sea region has a very narrow continental shelf, with 

ice shelves occasionally overhanging the continental slope. The unique position of 

these ice shelves relative to the deep ocean makes them important areas for study and 

with a potentially unique fauna. Much of the Antarctic continental shelf is unusually 

deep as a result of scouring from ice shelves and depression by the enormous mass of 

continental ice (Clarke 1996). Continental shelves globally are typically 100-200m 

deep and 75km wide; those around Antarctica average over 450m deep and 125km 
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wide. The southern Weddell Sea in particular has a very wide continental shelf 

predominantly covered with ice shelves (Clarke and Johnston 2003). The megafauna of 

the Weddell Sea is reasonably well studied, with publications on benthic megafaunal 

communities (Voss 1988; Galéron et al. 1992; Gutt and Starmans 1998), specific 

megafauna (Gutt 1991; Gutt et al. 1991; Barthel and Gutt 1992; Gutt and Koltun 1995; 

Gutt and Ekau 1996; Piepenburg et al. 1997; Tendal and Barthel 1997; Gutt 2002), and 

the effects of environmental factors on the megafauna (Gutt et al. 1996; Gutt 2000; Gutt 

2001; Gutt and Starmans 2001; Gutt and Piepenburg 2003; Gutt and Starmans 2003; 

Teixido et al. 2004). Most Antarctic benthic work has been carried out on the 

continental shelves, with the slope and the deep sea far less well known. Recent work 

on deep water Antarctic benthos is addressing this shortfall (Clarke 2003; Brandt et al. 

2004).

The surface waters of the north eastern Weddell Sea are heavily impacted by seasonal 

sea ice cover (Figure 6.1). The Fimbul ice sheet is around 200-300m thick at the ice 

edge (Nost 2004) in the area of study with a draft of 150-250m. The seabed of the 

narrow continental shelf slopes from around 500m to the east to around 200m at the 

west of the study site (Figure 6.2). 

The distance from the edge of the ice-shelf was within 10km for all stations. The effects 

of km scale differences in distance were not considered in this study because of the 

general patterns of circulation around the study sites. There is a predominant south 

easterly flow of bottom currents at Fimbul (Nichols et al. in prep) which will result in a 

reduced significance of the distance from the ice shelf on the benthic communities, at 

least in terms of food supply. 
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Figure 6.1: Average percentage concentration of sea ice in a 10 degree longitude section (0-10 W) of the 

southern ocean from 50 S to the ice shelf edge. Data averaged from NOAA/NMC/CAC Antarctic 

Monthly sea ice extent from 1973-1990. Data courtesy of National Snow and Ice Data Center, University 

of  Colorado, USA. 

Figure 6.2: Processed EM120 Swath bathymetry of the study site on the edge of the Fimbul ice sheet, 

showing positions of WASP stations. Thick black line indicates edge of ice shelf. 
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Field sampling 

Sampling was conducted as part of the UK National Environment Research Council 

(NERC) Autosub Under Ice (AUI) thematic programme on board the Royal Research 

Ship James Clark Ross cruise JR97. Sampling was carried out along a bathymetric 

gradient at the edge of the Fimbul ice sheet, in the north eastern Weddell Sea, 

Antarctica (Figure 6.2). Stratified random sampling was carried out along the depth 

gradient. One photographic transect was carried out within each of 7 approximately 

equally spaced depth bands (Table 6.1). Seabed survey photography was undertaken 

using the National Oceanography Centre (NOC) Wide Angle Seabed Photography 

(WASP) vehicle. The WASP vehicle (Huggett 1987) is an off-bottom (2-4 m) towed 

camera platform, operated using an acoustic telemetry system, carrying a vertically 

mounted still camera, and a vertically mounted video camera. This vehicle was 

typically operated for one hour at the seabed, yielding some 250 still photographs 

(35mm Kodak Vision 250D colour negative) and continuous video footage (mini digital 

video cassette). 

Swath bathymetry was carried out using a hull mounted Kongsberg-Simrad EM120 

multibeam swath bathymetry system. High resolution measurements were obtained 

over the WASP survey areas by low ship speed (10 km hr-1), low beam angle (30

beam angle) and high ping rate (0.5 Hz). See Nicholls (2005) for more details. 

Rock dredge samples were obtained to aid in the identification of the fauna seen in the 

photographs. Rock dredges were hauled over the ground for 30 minutes at 0.7 knots. 



Chapter 6 

171

The dredge had an opening 1m wide and 0.5m high, it had 10mm mesh net inside a 

chain mesh net. 

Table 6.1: Station list. For each site: site name, unique cruise identifier, date of sampling, water depth 

(m), position in decimal degrees Latitude ( S) and Longitude ( W), total area photographed and analysed 

(m2) and number of sampling units.

Site station date depth 
(m) start time lat start 

( S) 

long
start 
( W)

end time lat end 
( S)

long end 
( W)

Area 
analysed 

(m2)

Number of
‘samples’

A 56607#1 21/02/2005 245 22:44:39 70.1144 1.9377 23:16:00 70.1164 1.9268 498 5 

B 56608#1 21/02/2005 300 23:55:27 70.1029 1.9033 00:30:00 70.1061 1.8927 423 5 

C 56603#1 21/02/2005 340 09:34:00 70.0383 1.7853 10:05:30 70.0394 1.7765 423 5 

D 56606#1 21/02/2005 388 20:44:57 70.0403 1.7048 21:19:30 70.0414 1.6921 351 4 

E 56604#1 21/02/2005 425 11:58:22 70.0498 1.6275 12:34:00 70.0502 1.6134 489 5 

F 56605#2 21/02/2005 465 18:50:51 70.0499 1.5418 19:22:00 70.0498 1.5305 420 5 

G 56601#1 13/02/2005 510 20:26:36 70.0499 1.4341 21:30:00 70.0488 1.4090 947 10 

Photo analysis 

Megabenthic fauna in each photograph were recorded. Given the physical scale of the 

photographs I determined that only animals with a maximum dimension >5cm could be 

repeatedly identified. Altitude data (i.e. the height of the camera above the seabed) 

were printed directly onto each photograph allowing the scale of the image to be 

calculated using the following equation, where a = camera altitude,  = horizontal 

camera acceptance angle,  = vertical camera acceptance angle: 

Area of photograph = 
2

tan
2

tan4 2a
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Megafaunal organisms were identified, counted and measured on each frame, and their 

abundance converted to densities (numbers per hectare). Sabellid tubes were counted, 

but as it was not possible to ascertain whether they were alive density values were 

treated with caution. Sponge colonies were counted as individuals when no visible 

divide between colonies was observed. Only benthic fish were counted i.e. those fish 

that dwell on and feed on the seabed. Unsuitable photographs (high altitude or out of 

focus) were discounted from all analysis, around 30% of photographs were discarded 

for each station. 

Classification of disturbance 

To investigate present community structure related to iceberg disturbance it is 

necessary to describe plough marks in terms of their extent and approximate age. This 

is very difficult to achieve in practice. An integrated approach was used here to classify 

disturbance in as much detail as possible by remote methods. Disturbance was 

investigated at three scales using different methods: swath bathymetry was used to 

identify iceberg plough features at a large scale (20-1000m), continuous video used to 

identify the broad patterns of visible effects of iceberg ploughing, such as patterns in 

sediment distribution and clear topographic differences from mechanical disturbance at 

plough edges (scale 5-20m) and still photography to identify biological patterns 

associated with iceberg ploughing (scale 0.05-5m). 

Swath bathymetry, video and photographic observations revealed clear patterns in 

sedimentation related to disturbance, this was particularly clear in the deep sites (Figure 

6.3). The seabed sediments were classified into three groups: coarse, intermediate and 
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fine (Figure 6.3C, D and E respectively). Coarse sediment was defined as having <20% 

sediment smaller than pebbles (<4mm) and including >25% cobbles or larger 

(>64mm); fine sediment had >80% of sediment smaller than cobbles (<64mm) with no 

boulders (>256mm) visible; intermediate included the sediments in between. 

Operationally these sediment classifications were clearly distinct in photographs. 

Data analysis 

Species counts of individual photographs (from the whole series of photographs at each 

site) were pooled at random, without replacement, into ‘samples’ that covered 100m2

1m2. In the last ‘sample’ per station, if there were insufficient samples to cover 100m2,

random photographs from throughout the sampling site were pooled until 100m2 was 

reached. Although the original photographs were contiguous, the transects were 

conducted in random locations (within depth stratifications) and the course of the 

WASP vehicle was not pre-defined or constant. For these reasons each sample was 

considered a replicate. In analyses ‘samples’ have been treated as replicates, except for 

analysis of sediment groups. In analysis of sediment groups, the whole series of 

photographs for each site were divided into 3 groups based on sediment composition of 

the whole photograph (coarse, intermediate and fine) and faunal totals for each group 

used (standardised to numbers per ha).
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Figure 6.3: Seabed disturbance from iceberg ploughing. Swath bathymetry (site C) showing clear 

iceberg plough marks, latitude and longitude indicated (A); mosaic of seabed video (site G) covering 

approx. 30x3m of seafloor showing clear edge of ploughmark characterised by coarse sediment (B);

seafloor photographs covering approx. 3x2m, examples of fine (C), intermediate (D) and coarse (E)

sediment classifications (sites F, G, G respectively). 
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Taxon accumulation curves (Colwell et al. 2004) were used to compare species richness 

between sites at Fimbul. Dominance was assessed using the Berger-Parker index 

(Berger and Parker 1970). A selection of diversity indices (see e.g. Magurran 2003) 

were used to cover patterns in both ‘rare’ and ‘common’ taxa: Simpson’s ´ (Simpson 

1949), Shannon Diversity Index, H´ (Margalef 1968), Rarefaction, ES(n) (Hurlbert 

1971) and S, the total species present. Univariate diversity indices were calculated 

using PRIMER (Clarke and Warwick 2001) and Biodiversity Pro (Version 2, Natural 

History Museum, London and Scottish Association for Marine Sciences, Oban). 

Species richness estimates were calculated from sample-based species accumulation 

curves using EstimateS software (Colwell 2005). 

Multivariate analyses (hierarchical clustering and non-metric multidimensional scaling) 

were carried out using the PRIMER software package (Clarke and Warwick 2001). A 

square root transformation was applied to the faunal density data and the Bray-Curtis 

similarity measure employed (Bray and Curtis 1957; Clarke and Warwick 2001). 

RESULTS

The seabed environment 

The seabed was characterised by a heterogeneous mix of sediment type and size with 

clear evidence of iceberg ploughing. Swath bathymetry (Nicholls 2005) revealed a 

complex pattern of plough marks (e.g. Figure 6.3A) in the sediment at all sites (Lien et 

al. 1989), particularly in shallow waters where over 10 distinct ploughs (>20m 

minimum dimension) were observed per km2. Video and photographs revealed changes 
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in seabed composition between areas of coarse and fine sediment. The coarse sediment 

is elevated and forms long mounds. These features are related to ice ploughing, with the 

coarse material pushed up and out of the icebergs path. The fine material would appear 

to settle in the trench left behind after the iceberg has moved on. The intermediate 

sediments represent the transition phase found at the edge of the extent of disturbance. 

There is also evidence of deposition of coarse sediments from ice rafting (Lien et al. 

1989), although this forms small patches of material distinct from the iceberg plough 

features. 

Faunal density 

Total faunal density was significantly negatively correlated with depth (r´ = -0.701 

p<0.001). This trend is apparent even with sabellids removed from analysis. As well as 

the overall trends, there is a significant difference in both sessile (Kruskal-Wallis H = 

24.35, df = 6, p<0.001) and motile faunal density between sites (Figure 6.4; Kruskal-

Wallis H = 26.81, df = 6, p<0.001). Sabellids increased the densities of sessile fauna at 

the shallow sites; even with their removal from analysis densities of sessile fauna still 

varied between sites (Kruskal-Wallis H = 21.67, df = 6, p<0.001). Both sessile (r´ = -

0.54, p<0.001) and motile faunal densities (r´ = -0.588, p<0.001) were negatively 

correlated with depth. The ratio of sessile to motile taxa (not including sabellids) was 

significantly different between sites (Kruskal-Wallis H = 27.86, df = 6, p<0.001) and 

generally there was an increasing relative density of motile forms with depth, except at 

station G where relative densities of sessile forms were as high as at station A. 



Chapter 6 

177

Figure 6.4: Total density of motile and sessile megafauna at each study site on the edge of the Fimbul ice 

sheet, Antarctica. Study sites can be seen in Figure 6.2. 

Total density of fauna of all sites was significantly different depending on the sediment 

type (Figure 6.5; Kruskal-Wallis H = 10.02, df = 2, p > 0.01), total megafaunal density 

was highest in areas of coarse sediment. The underlying causes of this trend are habitat 

preferences of individual faunal groups (Figure 6.6). The majority of fauna observed 

have highest densities on coarse substrata with the notable exception of sabellids and 

holothurians. The highly dominant small ophiuroids elevated motile fauna densities in 

coarse sediment. With ophiuroids excluded there were approximately equal motile 

faunal densities in each sediment type. Most taxa had a notable preference for one 

sediment type. 
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Figure 6.5: Total density of megafauna in different sediment types at each study site on the edge of the 

Fimbul ice sheet, Antarctica. 
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Table 6.2: Megafaunal taxa observed in Fimbul Ice Shelf region, NE Weddell Sea Antarctica. Densities 

quoted as number per hectare to reflect low densities of some taxa. 

Phylum Class Taxa Station total densities (no ha-1)
   A B C D E F G 

cnidarians hydroida Giant hydroid 0 0 24 0 20 48 0 
  Indet. Hydroid 0 0 0 0 246 0 11 
 actiniaria Indet. Actinarian 1 40 95 71 57 0 0 32 
  Indet. Actinarian 2 40 95 0 142 0 0 0 
  Indet. Actinarian 3 0 0 0 0 41 0 21 
  Indet. Actinarian 4 100 0 47 57 0 0 0 
  Indet. Actinarian 5 100 473 118 199 164 119 42 
  Indet. Actinarian 6 161 142 71 256 102 167 32 
  Indet. Actinarian 7 20 24 0 0 20 0 11 
  Indet. Actinarian 8 40 0 0 0 20 24 0 
  Indet. Actinarian 9 0 378 142 0 0 0 11 
  Indet. Actinarian 10 0 95 0 0 0 24 0 

 Isotealia antarctica 40 260 0 114 102 95 0 
 ceriantharia Indet. Cerianthid 0 47 189 256 61 24 11 
 gorgonacea Indet. Gorgonian 0 0 0 0 0 24 0 
 pennatulacea Indet. Pennatulid 0 0 0 0 0 95 84 

 Umbellula sp. 20 71 0 28 82 48 0 
 scleractinia Indet. Scleractinian 4,918 473 71 171 20 24 0 

ctenophora platyctenida Lyrocteis flavopallidus 40 24 0 0 0 0 0 
sponges demospongia Chondrocladia sp. ? 40 0 0 0 0 0 0 

  Indet. Demosponge 1 1,706 567 213 171 61 95 32 
  Indet. Demosponge 2 100 118 95 0 102 0 11 
  Indet. Demosponge 3 201 24 0 57 0 0 0 
  Indet. Demosponge 4 161 284 47 28 82 119 253 
  Indet. Demosponge 5 482 47 71 0 41 71 0 
  Indet. Demosponge 6 281 402 71 0 20 0 42 
  Indet. Demosponge 7 0 47 0 28 0 0 0 
  Indet. Demosponge 8 0 47 0 0 0 0 0 
  Indet. Demosponge 9 0 47 0 0 0 0 0 
  Indet. Demosponge 10 0 24 71 199 205 24 74 
  Indet. Demosponge 11 0 0 24 0 20 71 21 
  Indet. Encrusting Demosponge 1 221 307 24 0 82 214 918 
  Indet. Encrusting Demosponge 2 0 0 0 0 82 262 602 

 Kirkpatrickia variolosa 20 24 0 0 0 0 0 
 Stylocordyla borealis 0 213 24 28 82 24 11 

 hexactinellida Indet. Hexactinellid 1 60 24 71 28 20 24 32 
  Indet. Hexactinellid 2 20 0 0 0 0 0 11 

 Rossella fibulata 0 24 118 0 0 0 0 
 Rossella nuda 60 71 71 28 0 0 32 

molluscs gastropoda Amauropsis rossiana ?? 40 0 0 0 0 24 11 
  Indet. Gastropod 0 47 0 28 0 0 0 
  Indet. Nudibranch 0 0 24 0 0 0 0 
 polyplacophora Indet. Chiton 0 24 0 0 0 0 0 
 bivalvia Indet. Pectennid 0 24 24 0 0 0 11 
 cephalopoda Indet. Octopus 0 47 0 0 0 0 0 

arthropods chelicerata Aff. Dodecolopoda mawsoni 120 95 0 0 0 24 0 
polychaetes  Indet. Sabellid 46,167 2,506 284 114 512 0 84 
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  Indet. Polychaete 40 24 0 0 0 0 0 
echinoderms ophiuroids Indet. Ophiuroid 1 13,890 5,864 5,465 12,393 8,901 17,037 4,360 

  Indet. Ophiuroid 2 6,443 11,089 118 2,536 82 0 11 
  Indet. Ophiuroid 3 562 260 0 0 0 0 11 
  Indet. Ophiuroid 4 0 71 71 199 102 0 11 

 Astrotoma agassizii 0 24 0 0 348 0 0 
 Ophionotus victoriae 0 0 0 0 0 0 42 

 crinoids Indet. Comatulid crinoid 542 166 520 171 1,371 143 95 
  Indet. Comatulid crinoid 2 20 24 24 57 102 0 11 

 Pomachocrinus kerguelensis 40 0 24 28 41 48 0 
 asteroids Indet. Asteroid 1 141 284 237 199 143 95 53 
  Indet. Asteroid 2 20 71 71 28 0 0 0 
  Indet. Asteroid 3 20 47 0 0 0 0 0 
  Indet. Asteroid 4 0 24 24 85 164 71 21 
  Indet. Asteroid 5 20 47 0 28 20 71 0 

Hymenaster sp. 0 0 71 256 225 834 95 
  Indet. Asteroid 6 0 0 0 0 0 0 11 
  Indet. Asteroid 7 0 0 0 0 0 0 11 
  Indet. Asteroid 8 40 71 615 456 164 167 11 

 Odontaster validus 100 284 47 57 82 95 106 
  Indet. Asteroid 9 0 24 24 85 41 167 63 
  Indet. Asteroid 10 0 0 24 57 41 0 0 

 Labidiaster annulatus 0 47 24 28 0 0 0 
  Indet. Asteroid 11 0 0 0 0 20 0 0 
 holothurians Indet. Synallactid Holothurian 141 260 308 256 143 48 11 

 Bathyplotes bongraini 60 213 142 57 389 71 42 
 Pseudostichopus mollis 40 142 166 85 818 524 348 
 Peniagone vignioni 100 0 213 798 593 453 222 
 Staurocucumis turqueti ? 60 24 0 0 0 0 21 
 Trachythyone parva ? 0 0 47 0 552 1,001 127 

 echinoids Sterechinus antarcticus 0 0 0 0 0 0 528 
  Indet. Echinoid 0 0 0 0 0 0 84 

fish  Champsocephalus gunnari 462 520 308 570 409 477 116 
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Figure 6.6: Density of selected megafaunal groups totalled across all sites for different sediment types on 

the edge of the Fimbul ice sheet, Antarctica. 

Diversity  

A total of 80 megabenthic taxa were distinguished from photographs (Table 6.2) with 

total numbers of taxa per site ranging from 38 (site F) to 56 (site B). Species 

accumulation curves (although not approaching asymptotic values) reveal changes in 

species richness between sites but no clear patterns with depth (Figure 6.8). The 

accumulation curve for site A is clearly different, driven by the dominance of sabellids 

at this site. The gradients of the species accumulation curves were very similar between 

sites. Rarefied estimates of species richness showed similar patterns to the species 
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accumulation curves with low richness at site A and similar, higher richness for the 

other, deeper sites. Species density has been found to decline with depth (Figure 6.7).  

Figure 6.7: Megabenthos species diversity at each study site on the edge of the Fimbul ice sheet, 

Antarctica: species richness (Rarefied ES(n=434)), species density (Mao Tao S obs (400m2)).

Figure 6.8: Taxon accumulation curves for study site on the edge of the Fimbul ice sheet, Antarctica: 

taxon accumulation per individual and taxon accumulation per unit area (m2). 
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Heterogeneity diversity indices reveal significant changes in diversity between sites (H´ 

Kruskal-Wallis H = 24.80, df= 6 p<0.001). Indices show depressed diversity and 

evenness at sites A, D and F but there are no clear depth related patterns. 

Heterogeneity diversity indices vary significantly with substratum (eg H´ Kruskal-

Wallis H = 7.72, df = 2, p < 0.05). Within each site diversity changes with substratum, 

although there are no clear overall trends in diversity with substratum that are 

applicable to all sites (Figure 6.9). Depth and specific community composition control 

the changes in diversity that occur with changes in substratum. There were significant 

differences in Shannon Diversity between sediment groups (Kruskal-Wallis H = 7.72, 

df = 2, p<0.05). Diversity was highest in intermediate sediment areas and lowest in fine 

sediments. 

Figure 6.9: Species diversity (Shannon-Wiener, H´) of megafauna in different sediment types at each 

study site on the edge of the Fimbul ice sheet, Antarctica.
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Community patterns 

Analysis of photographs revealed a total of 8801 megabenthic organisms in an area of 

3550m2 (Table 6.3). Overall echinoderms were the most abundant megafauna (57% 

megafauna; up to 2.2m-2), these were predominately ophiuroids (48.8%), although 

holothurians (3.6%), asteroids (3.4%), crinoids (1.8%) and echinoids (0.3%) were also 

represented. Sabellid polychaetes were important constituents of the total megafauna 

(27%) particularly as a result of large numbers at site A (4.6m-2), their density reduced 

significantly with depth (r´= -0.857 p<0.05). Cnidarians were important (7.4%), these 

were predominantly actinarians (3.4%) and anthozoans (3.1%) but also included 

cerianthids, pennatulids and gorgonians. Sponges (5.7%) and fish (1.6%) were also 

important with the remainder of the megabenthos comprising of molluscs, arthropods 

and ctenophores. 

Table 6.3: Characteristics of sites at the edge of the Fimbul ice sheet, Antarctica. For each station: water 

depth (m), density of total epifauna, dominant species, total number of species found, Rarefied estimated 

number of species, Shannon-Wiener diversity index, H´ (base log e), Simpson’s Index (1- Lambda´), 

evenness (Pielou’s J´) and dominance (Berger-Parker index, B-P). 

Site Depth 
(m) 

Total density 
(No ha-1) Dominant species Species 

number ES(444) H' 1-Lambda' J' B-P 

A 245 77942 Sabellids, ophiuroid 1, Scleractinians 45 20.8 1.45 0.61 0.38 0.59 

B 300 26765 Ophiuroid 1, sabellids, demosponges 56 41.3 2.23 0.77 0.55 0.41 

C 340 10504 Ophiuroid 1, commatulids, ice fish 44 44.0 2.28 0.72 0.60 0.52 

D 388 20427 Ophiuroid 1, Peniagone, ice fish 40 34.6 1.77 0.61 0.48 0.61 

E 425 16942 Ophiuroids 1, commatulids, 
Pseudostichopus 45 39.1 2.19 0.71 0.57 0.53 

F 465 22947 Ophiuroid 1, Trachythyone, Hymenaster 38 30.1 1.34 0.44 0.37 0.74 

G 510 8804 Ophiuroid 1, encrusting sponge, Sterechinus 48 38.4 2.17 0.73 0.56 0.50 
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Multivariate analyses of whole community abundances reveal significant differences 

between stations (ANOSIM R=0.839, p<0.001). Both hierarchical clustering and Multi-

Dimensional Scaling ordination reveal distinct between-site separation of communities 

(Figure 6.10). The pattern of multivariate similarity strongly suggests a gradient of 

species between sites (and depths) with a strong faunal discontinuity separating site A 

and B from the deeper sites. The pattern of points within each site is relatively diffuse 

indicating high within site heterogeneity. 

Multivariate analyses of variance reveal significant differences in communities between 

different sediment types (ANOSIM R = 0.064, p <0.05). 

Figure 6.10: Megabenthos composition at the edge of the Fimbul ice sheet, Antarctica. Hierarchical 

clustering and multidimensional scaling ordination (see text for details) of megafauna composition (each 

point represents the data from a group of photographs covering 100m2 of seabed). 
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DISCUSSION 

Characterisation of the seabed environment 

Physical disturbance from icebergs is widely regarded as one of the most important 

structuring forces for polar shelf communities (Gutt et al. 1996; Gutt and Piepenburg 

2003; Thatje et al. 2005), while its effects are clear (Gutt et al. 1996) it is very difficult 

to measure the extent and impacts of disturbance (Thatje et al. 2005). The integrated 

approach used in this study facilitated investigation of extent of the plough disturbance, 

although there are several limitations in this method. While it is clear that the coarse 

material is produced at the edges of ploughmarks it is not always apparent if the fine 

sediment is inside or outside of the ploughmark, clearly a very important factor in 

establishing community patterns in relation to disturbance. The disturbance status of 

fine sediments is particularly a problem in deep water where visible disturbance inside 

the ploughmark is less obvious as a result of post-disturbance erosional processes. The 

presence of large hexactinellids, for example Rossella spp. (>400mm diameter in some 

cases), found throughout fine sediment areas indicate that these ploughs are likely to be 

very old (>500 years from Dayton 1979). An additional limitation of this classification 

scheme is that in shallow water, although generally applicable, the divisions are not as 

clear as in deep waters most likely owing to regular disturbance.  

In understanding community patterns it is important to classify the timing of 

disturbance but this cannot be done by imaging methods unless the disturbance event is 

directly observed. The date of each disturbance event has to be approximated using 

information on the life histories of benthic organisms, relating to growth rates (Brey 
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and Clarke 1993), life strategy (MacArthur 1960; Clarke 1979) and community 

successional patterns (Gutt and Starmans 2001). Gutt and Starmans (2001) assigned 

disturbance categories to the benthos based principally on the faunal composition, from 

heavily disturbed (R0) through recolonisation stages (R1 and R2) to undisturbed (UD). 

These categories were used to investigate the impacts of disturbance on benthic 

diversity (Gutt and Piepenburg 2003). The photographs of the benthos that were 

obtained at the shallow Fimbul stations bear resemblance to their representative 

photographs (Gutt and Piepenburg 2003) with most affinities with the highly disturbed 

R0 category, although small patches <10m were occasionally observed resembling R1 

or R2. Hexactinellids such as Rossella spp., which are an indicator of a long term 

undisturbed benthos, were seen in these patches.  

There were very high levels of iceberg disturbance in our study sites particularly sites A 

and B. The bathymetry observed at Fimbul resembles the “large iceberg bank” which 

Gutt and Starmans (2001) showed was the most likely to receive large-scale 

disturbance from icebergs. Several icebergs were observed grounded in this region 

during the study period. The levels of disturbance at Fimbul are very high, particularly 

in the shallower stations, where many ploughs were observed, with extensive damage 

to the seabed visible in photographs. They are comparable with those of the similar 

Austasen bank, approximately 150nm west of Fimbul, on which 70% of seabed was 

disturbed of which 30% was in the recently disturbed R0 category (Gutt and Starmans 

1998).
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Faunal density 

Megafaunal density was found to decrease with depth at Fimbul, which has also been 

observed in other Antarctic and Sub-Antarctic megafaunal studies (Arntz et al. 1994; 

Thatje and Mutschke 1999) and is most likely related to reductions in organic matter 

available to the benthos with depth (Lampitt et al. 2001). The trend in faunal density 

with depth is difficult to compare between regions or even stations as there appears to 

be a highly heterogeneous nature of habitats and benthic community types (Gutt and 

Schickan 1998; Gutt and Starmans 1998), which have important effects on measures of 

community density (and diversity as discussed later). 

The maximum faunal densities found in the Weddell Sea from photographic studies 

(Gutt and Starmans 1998) are higher than found here by over an order of magnitude. 

This was most likely a result of higher optical resolution from a combination of a 

reduced imaging area and increased film size in their study. The lowest values found in 

their ‘deposit feeder poor’ assemblage were lower than the low densities found in the 

deepest station suggesting the fauna sampled in this study was not in this assemblage. 

Density was found to vary with disturbance intensity. At the shallow station A, the high 

numbers of sabellids suspension feeding on fine sediment increased the densities of 

visible megafauna in fine sediment to over that of the less disturbed area. In the less 

disturbed areas many of the fauna were small colonial forms such as cheilostomatous 

bryozoans or small sponges that are difficult to enumerate from photographs. In the 

deeper stations trends in density appeared to be controlled by changes in substratum as 

a result of past disturbance and not a result of recent direct disturbance from icebergs. 
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Density was generally higher in areas of coarse sediment associated with the edges of 

past iceberg ploughing. On the coarse substrata the fauna generally consisted of 

suspension feeding, sessile forms. Suspension feeders are dominant elsewhere in the 

Weddell Sea (Gutt and Starmans 1998). Density was lower in fine sediment, which had 

a deposit feeder dominated community. These trends may reflect a general increase in 

food availability for suspension feeders over deposit feeders in the Weddell Sea. The 

density of buried infauna in fine sediments, although not visible in photographs, is 

thought to be low in the Weddell Sea (Arntz et al. 1994). 

Diversity 

At Fimbul, diversity was relatively constant between sites, apart from low evenness 

(and related reduction in diversity measures) at site A (from high densities of sabellids) 

and a slight decrease in species density with depth. Diversity typically is found to 

increase with depth in many areas (Rex 1981; Rex et al. 1997). However, in Antarctic 

species it is postulated that this is not often the case. During Cenozoic glacial periods 

much of the Antarctic continental shelf was heavily impacted by ice, resulting in mass-

wasting of benthic communities. Subsequently, it is thought that the continental shelf 

was predominantly recolonised by deep-water organisms with wide bathymetric 

tolerances (Thatje et al. 2005) which are still evident (Dayton et al. 1982). Large scale 

changes in diversity have been found in the Antarctic associated with the transition 

between shelf and slope, but not with depth in a specific area of the shelf (Arntz et al. 

1997; Gutt and Starmans 1998). The reductions in species density with depth are 

related to reductions in faunal density leading to fewer individuals present to be 

sampled (Gotelli and Colwell 2001). 
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At the shallowest site (A) diversity reduced with disturbance, in undisturbed areas 

communities had been allowed to develop a high diversity. The structure of these 

communities resembles the ‘multistoried assemblages’ found elsewhere in the Weddell 

Sea (Gutt and Schickan 1998) where structuring species such as sponges, gorgonians or 

bryozoans serve as a substratum for other species, creating a complex habitat with high 

diversity. Many of the species associated with these habitats were too small to be 

enumerated from WASP photographs, thus reducing observed diversity compared to 

Gutt and Starmans (1998). Diversity of larger fauna at the shallow sites at Fimbul was 

slightly reduced from that found in similar communities elsewhere (Gutt and Starmans 

1998). The small size of undisturbed patches may reduce supply of potential re-

colonisers (Underwood and Chapman 1996), particularly with the common Antarctic 

life history pattern of direct development or short-lived larvae with limited dispersal 

(Thorson 1950; Mileikovsky 1971). In areas of iceberg disturbance communities were 

less diverse, being dominated by sabellids and a motile fauna consisting predominantly 

of ophiuroids, asteroids and holothurians. Classification into substratum type was not as 

effective in delineating disturbance regimes in this habitat as in the deeper sites. 

Disturbance in the deeper sites at Fimbul causes changes in community composition. 

However, unlike the shallow sites, it seems that changes in substratum are the cause for 

changes in diversity. In this study I found that diversity was highest at intermediate 

sediments; these sediments had considerably higher substratum heterogeneity and 

hence had taxa characteristic of both fine and coarse sediment. Coarse substrata were 

found to be more diverse than fine, a possible result of the relatively high diversity of 
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suspension feeding taxa in the Antarctic (Gutt and Starmans 1998), many of which 

prefer hard substrata. 

Community composition 

The findings of this study are an extension of the studies based on data obtained from 

R.V. Polarstern expeditions ANT XIII/3 and ANT XV/3 to the eastern Weddell Sea 

(Gutt et al. 1996; Gutt and Starmans 2001; Teixido et al. 2002; Gutt and Piepenburg 

2003; Gutt and Starmans 2003; Teixido et al. 2004), which represent the most major 

recent work on megabenthos in this area. The present study extends their work, with 

overlapping communities at stations A (and to an extent B) and extending deeper into a 

different community.  

The seabed communities at site A were significantly different from those at the other 

stations, as revealed from the megafaunal results and particularly from the fauna visible 

in the photographs but too small to quantify. These are most likely the expansive three-

dimensional habitats formed of a complex of small suspension feeders including, for 

example, bryozoans and small sponges (Gutt and Schickan 1998; Gutt and Starmans 

1998). The fauna in these patches at Fimbul is less diverse than those in similar 

communities observed elsewhere in the Weddell Sea (Gutt and Starmans 1998). 

Additionally, owing to the very high levels of disturbance at the shallow Fimbul sites, 

the patches of undisturbed fauna are small. At a landscape scale, the complex of iceberg 

ploughing at Fimbul has left only small areas undisturbed for long enough to allow 

communities to reach a late successional stage or community equilibrium. At Fimbul, 

the successional stages appear to be similar to those presented by Gutt and Piepenburg 
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(2003) with a similar community at the early successional stages (their R0, R1 and R2) 

which were dominated by sabellids at Fimbul but the area investigated was lacking 

some dominant large fauna including compound ascidians. Many of the smaller fauna 

they observed were not visible in WASP photographs and hence density and diversity 

measured in this study may be lower than that measured elsewhere. 

At the stations deeper than 250m (B-G) the communities do not resemble the rich 

suspension feeder communities identified in Gutt and Starmans (1998) instead having a 

higher affinities with a combination of their ‘suspension feeders poor’ community and 

‘suspension and detritus feeders’ community. The deeper communities at Fimbul were 

clearly driven by changes in substratum brought about by past iceberg ploughing. It 

appears that, particularly in the deeper sites, the substratum changes are more important 

than direct disturbance to the communities from the plough event. The disturbance 

events probably occurred sufficiently long ago, as indicated by the presence of large 

hexactinellids, that a climax community has developed within each habitat type. Only 

the shallow, rich suspension feeder communities have been previously analysed in 

relation to iceberg disturbance (Gutt and Piepenburg 2003) and the effects observed in 

deeper water in this study are clearly different and more difficult to detect. 

In the waters deeper than 250m, the results of this study suggest that there is a gradient 

of taxa between sites. This appears to be related to individual taxon bathymetric and 

habitat preferences. There were no obvious faunal discontinuities observed at Fimbul 

apart from the separation of shallow (sites A and B) and deep faunas (sites C, D, E, F 

and G). Megafaunal community structure was found to vary with substratum as a result 

of individual taxon habitat requirements. The coarse substrata was preferential for most 
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suspension or filter feeders such as anemones, demosponges, corals and crinoids, 

providing hard substrata for attachment and an elevated position which may enhance 

the capture success rate of suspension and filter feeders (Muschenheim 1987; Wildish 

and Kristmanson 1997). The deposit feeders, particularly holothurians for example 

Bathyplotes bongraini (previously Bathyplotes fuscivinculum), were found 

preferentially on fine substrata (Gutt 1990) owing to their preference for fine particles 

to feed on (Billett 1991). 

The effects of the iceshelf on benthic communities are poorly known. The study sites 

investigated are all within 8 km of the Fimbul iceshelf. Reduced taxon richness has 

been found to occur in the southeastern Weddell Sea close to the iceshelf (Arntz et al. 

1994) but in the Ross Sea benthic life in the vicinity of the ice edge was rich and varied 

(Oliver et al. 1976; Oliver and Slattery 1985). Sites at the same depth but at different 

distances from the ice edge have been shown to have a similar fauna in other studies 

(Galéron et al. 1992). Dayton and Oliver (1977) show that sea floor current patterns are 

much more important than proximity to the ice shelf in governing faunal densities and 

community structure. At Fimbul the seafloor currents are predominantly from the 

direction of the open ocean, so it is unlikely that the presence of the ice shelf will 

reduce food supply to the benthic fauna. 

The polar conditions of Antarctica result in generally lowered overall metabolism of 

benthic organisms through reductions in energy intake related to reductions in food 

supply owing to seasonal ice cover (Clarke 1983). Lowered metabolic rates cause lower 

rates of growth and reproduction in Antarctic invertebrates (Clarke 1983) and hence 

reduce the speed at which disturbed areas can be recolonised. For example an Antarctic 
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echinoid has much lower growth and reproductive production than a temperate 

confamilial (Sterechinus antarcticus: individual somatic production PS = 0.01, gonad 

production PG = 0.02; Parechinus angulosus:  PS = 0.39, PG = 0.09; all as 

gAFDM)(Brey et al. 1995). There is also a general trend in Antarctic invertebrate 

reproduction towards lecithotrophic larval development (Thorson 1950; Pearse 1994), 

limiting dispersal of recolonising cohorts. Deep-water communities on the Antarctic 

shelf, as well as being amongst the most heavily disturbed deep-water communities in 

the worlds oceans (Gutt and Starmans 2001) are also among the slowest to recover 

(Thatje et al. 2005).  

NOTE

As part of this thesis an investigation into the effects of reducing flux of organic matter 

was planned using the Autosub Autonomous Underwater Vehicle to quantify 

megafaunal density, diversity and community patterns under the Fimbul Ice Shelf. A 

campaign of several photography missions was planned extending up to 50km under 

the ice shelf.  

Autosub mission 382 was successfully carried out under Fimbul ice shelf (70 00S

1 25W), penetrating 25 km into the under ice cavity. This first mission was run with 

cautious off-seabed and off-ice ranges and so afforded no opportunities for 

photography. Unfortunately, on the following mission (383), Autosub suffered a failure 

that immobilised the vehicle some 17km under ice and therefore beyond recovery. 
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CHAPTER 7A: BIOLOGICAL CONCLUSIONS 

INTRODUCTION 

In the concluding section of this study it is important to compare the physical controls 

on benthic communities at a within-region scale ( ) in areas with different physical 

controls on the benthic communities and then at the regional ( ) scale between the polar 

regions. Although this is based on a relatively small sample covering only a small area 

of these vast regions there are still justifications for this approach: 

The samples in this study use identical methodologies – while there have been 

several attempts to compare the polar regions, many of these are based on 

potentially biased data as a result of differences in scale and methodology of the 

investigations. Through the use of consistent methodologies in this study it is 

possible to compare these polar regions and different areas within each region 

without potential sampling bias. 

The WASP vehicle allows comparatively wide areas of the benthic environment 

to be compared quantitatively. This is likely to scale up to the regional scales 

more effectively than smaller or less quantitative samples. The visualisation of 

wide areas of the seabed environment also allows the assessment of 

heterogeneity within and between samples that may aid interpretation of 

regional scale applicability. 

The comparisons are based on essentially randomly chosen areas within each 

region.
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These results should be interpreted as an important step in characterisation of polar 

differences although they should be interpreted with caution, as they are based on 

sampling only a very small fraction of either region. 

The differences and similarities of benthic communities in the Antarctic and Arctic 

have been discussed in the literature (Dunbar 1968; Hedgpeth 1971; Dunbar 1977a; 

Dunbar 1982; Dayton 1990; Dayton et al. 1994; Starmans 1997; Starmans and Gutt 

2002). Despite some environmental similarities, for example, high latitude, low 

temperatures and strong seasonality (in light, ice cover and primary productivity), the 

benthos of Arctic and Antarctic waters differs considerably in certain ecological 

aspects, including higher species richness and diversity in the Antarctic (Dunbar 1977b; 

White 1984; Dayton 1990; Starmans 1997; Starmans and Gutt 2002). These large 

changes are generally explained in the context of major differences in geological 

history, recent interchange with adjacent oceans, degree of zoogeographic isolation, 

impact from land and freshwater as well as the age and variability of sea ice (Hempel 

1985; Dayton et al. 1994; Starmans and Gutt 2002). Within the Arctic region there are 

more comparable studies, particularly in recent times (Piepenburg et al. 2001). 

However, the benthic fauna of high Arctic areas has never been compared with an area 

as unique as the Faroe-Shetland Channel where Arctic communities exist undisturbed 

by ice and in deep-water that is overlain and supplied by temperate waters with their 

associated differences in primary production. The polar areas have obvious similarities: 

as high latitude, cold environments with strong seasonality and heavy ice impact. They 

do, however, have a number of differences outlined in table 7a.1. 
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Table 7a.1: Some physical parameters of Kangerdlugssuaq, East Greenland; Fimbul, north eastern 

Weddell Sea, Antarctic and the Faroe-Shetland Channel study sites. Compared by seabed temperature 

( C) and salinity measured at seabed for Kangerdlugssuaq and Fimbul in FSC from Turrell et al. (1999); 

ice cover as averaged yearly concentration for 10  longitude block (30-40 W for Arctic and 0-10°W for 

Antarctic) for latitudes greater than 50  (Ropelewski 1995); biogeographic provinces after (Longhurst 

1998); productivity values from SeaWiFS global primary productivity estimates (Holm-Hansen et al. 

1977; Clarke 2003); Predicted flux estimated using equations linking measured depth and surface 

productivity (Suess 1980; Berger et al. 1988; Herguera 1992); terrigenous input (Paul and Menzies 1974; 

Arntz et al. 1994; Masson 2001); sediment from observation; current as measured during field campaigns 

using ADCP over period of study (2-4 weeks; Iceberg disturbance calculated from swath bathymetry; 

and Latitude. 

Physical factor East Greenland, Arctic Fimbul area, Antarctic Faroe-Shetland 
Channel 

    
Temperature (seabed) 0.5 to 1.5 C -1.9 C -0.5 to 0.5 C
Salinity 34.7 34.3 34.9 
Ice cover Average 46.3 %  Average 39.6 %  None 
Biogeographic 
province 

Boreal Polar Atlantic Subarctic Austral Polar 

Surface productivity 5 to 500g C m-2 y-1 Average 16g C m-2 y-1 150 to 300 g C m-2

yr-1

Ave. predicted flux at 
average depth 

19.5 C m-2 y-1 1.6 C m-2 y-1 8.6 C m-2 y-1

Terrigenous input High Lowest Low 
Sediment Heterogeneous ice rafted Heterogeneous ice rafted Heterogeneous ice 

rafted 
Current 0.01 to 0.2cm s-1 3 to 8cm s-1 0.5 to 56 cm s-1

Iceberg disturbance 0-9 ploughs km-2 0-18 ploughs km-2 Relic disturbance in 
<500m water depth 

Latitude 68  N 70  S 61 N
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METHODS 

Scale is very important in ecology (Menge and Olson 1990; Levin 1992; Solan et al. 

2002), it is important to clarify the scales of investigation (Figure 7a.1). These 

partitions follows the terminology of Gray (2000). The evaluation of patterns at the 

scale of sample and assemblage have been dealt with previously (Chapters 3-6). This 

section deals specifically with the assessment and explanations of patterns at the scale 

of large area and between regions. 

Figure 7a.1: Scales of investigation in this study and the relative scales of data investigated. Following 

the nomenclature of Gray (2000). 
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Data analysis 

The diversity of single samples (within habitat,  diversity) was compared using firstly 

the number of taxa recorded, and secondly the number of taxa rarefied to the lowest 

number of individuals found at a station (Hurlbert 1971). 

Between-habitat ( ) diversity was assessed initially using Bray-Curtis similarities (Bray 

and Curtis 1957) with square root transformation calculated for the investigation areas 

(Magurran 2003). The higher the overall similarities are, the lower the  diversity. 

Non-parametric Kruskal-Wallis tests and post-hoc multiple comparison (after Miller 

(1981), see Zar (1999)) were used to test the significance of differences (p<0.05, 2 

tailed) between the areas of investigation. 

ANALYSIS 

Common fauna 

Between region 

Virtually no taxa were found at both the Arctic and Antarctic stations. The only 

possible exception to this was the demosponge Stylocordyla borealis, which appears to 

be present in all three study sites. A comparison of phyla between regions reveals 

similarities in the major phyla between both regions (echinoderms, annelids, cnidarians, 

poriferans and fish) however the proportions of these vary significantly (Figure 7a.2). 
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The most major difference is that the Antarctic communities have a greater proportion 

of echinoderms and lesser proportion of annelids. However in the shallow disturbed 

Antarctic stations this is not the case. Annelids are at proportions similar to those found 

in the Arctic; in the deeper Antarctic stations the difference in proportional abundances 

of annelids and echinoderms is more pronounced. At a smaller scale sponges are 

proportionally more abundant in the Antarctic than the Arctic. 

Within region 

There were 8 taxa that were observed to be common between the FSC and the 

Greenland areas. Although impossible to identify to species in the majority of cases, 

these 8 taxa are morphologically very similar in both areas. The majority of these taxa 

are morphologically characteristic sponges, but include pycnogonids (Colossendeis

sp.), asteroids (Hymenaster pellucidus) and fish (Lycodes sp.). Differences in 

proportional abundances of major phyla are apparent between the areas (Figure 7a.2), 

although proportions of the most abundant phylum, Annelida were similar in both 

areas. Greenland had a much higher proportional abundance of echinoderms than the 

FSC, which instead has higher abundances of cnidarians and to a lesser extent, sponges, 

arthropods (pycnogonids), molluscs and fish. 
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Figure 7a.2: Proportional abundance of megafaunal phyla at Antarctic, Arctic and Faroe-Shetland 

Channel sample sites.

Changes in faunal densities 

Overall faunal densities were not significantly different (Kruskal-Wallis H = 5.09, df = 

2, p = 0.08) between the Antarctic, Arctic and FSC (Figure 7a.3). However, there was a 

large range of megafaunal densities within each site (over an order of magnitude within 

the Arctic region). Potential causative mechanisms for this variation will be discussed 

later. 
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Figure 7a.3: Faunal density comparison between photographic samples at NE Weddell Sea (Antarctic), 

Kangerdlugssuaq fjord mouth, East Greenland (Arctic) and Faroe-Shetland Channel (FSC). Plotted as 

box plots: the centre line represents the median, the boxed lines represent the 25th and 75th percentiles and 

if sufficient sample size the bars represent the 10th and 90th percentiles, circles represent outliers. 

Changes in diversity 

Within habitat ( ) diversity 

Rarefied estimates of species richness (Figure 7a.4) do not reveal any significant 

differences between areas. However as a result of the low abundances of megafauna in 

the deep FSC, species richness estimates had to be rarefied to a low common sample 

size for comparison (n = 40). Rarefaction curves are difficult to interpret and may not 

reveal true patterns in species richness between assemblages at low n (Gray 2000; 

Magurran 2003). For this reason, the total number of species found (S) was also 
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compared (Figure 7a.4). While this metric does not account for differences in sample 

size (n = 444 to 3883 in Antarctic, n = 154 to 2859 in Arctic and n = 43 to 1060 in 

FSC) the ranges of n were similar in each area and a clear significant increase in 

species richness can be seen in the Antarctic stations. There is no significant difference 

in number of taxa between the FSC and the Arctic; this trend is echoed in the species 

accumulation plots (Figure 7a.5). Species accumulation curves do not approach 

asymptotic values, hence extrapolation to estimate total species richness in each area is 

not appropriate.  
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Figure 7a.4: Within habitat diversity ( ). (a) Rarefaction richness estimator ES(40); (b) number of taxa in 

megabenthic assemblages from Antarctic, Arctic and Faroe-Shetland Channel. Plotted as box plots: the 

centre line represents the median, the boxed lines represent the 25th and 75th percentiles and if sufficient 

sample size the bars represent the 10th and 90th percentiles, circles represent outliers. Arrows indicate 

significant differences (post-hoc multiple comparisons after Miller, p<0.05) between areas. Sample size 

(n)=7, 5, 10 for Antarctic, Arctic and FSC respectively. 
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Figure 7a.5: Between habitat species richness. Accumulation curve of number of taxa plotted against 

number of sampling stations (sample) for random permutations of Antarctic, Arctic and FSC stations. 

Bars show the 95% confidence interval.

Between habitat ( ) diversity 

There was a broad range of similarity co-efficients within the areas investigated (Figure 

7a.6). The FSC stations had the widest range of values and the lowest median 

similarity; this indicates high  diversity, as low similarity between spatial units is 

synonymous with a large difference between units in terms of species composition. 

Both the FSC and the Arctic areas had significantly larger  diversity than the Antarctic 

area.  

Large area megafaunal species richness ranged from ES(3800) of 72.6 in the Weddell Sea 

to ES(3800) of 43.1 in East Greenland. On average, local (within assemblage) species 
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richness was greater in Weddell Sea assemblages (mean ES(40) = 11.1) than in the East 

Greenland (mean ES(40) = 9.2) or FSC (mean ES(40) = 9.6). 

Figure 7a.6: Between habitat diversity ( ). Distribution of similarity coefficients between all possible 

combinations of stations. Sample size (n)=21, 10, 45 for Antarctic, Arctic and FSC respectively. Plotted 

as box plots: the centre line represents the median, the boxed lines represent the 25th and 75th percentiles 

and if sufficient sample size the bars represent the 10th and 90th percentiles, circles represent outliers. 

Arrows indicate significant differences (post-hoc multiple comparisons after Miller, p<0.05) between 

areas. 
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Changes in the physical environment between regions and the effects on the 

communities 

Changes with depth 

There are few common general trends between the study sites within each polar region 

(Figure 7a.7). However in both polar regions there is a general trend of reducing 

density with depth. In the Antarctic there appears to be no trends in species diversity 

with depth. In the Arctic however species diversity clearly increases with depth. 

Figure 7a.7: Changes in megafaunal density and diversity with depth in the high Arctic (Greenland) and 

Antarctic (NE Weddell Sea) sites investigated in this study. 

With increasing depth there were variable patterns in species accumulation between 

large areas (Figure 7a.8). In the Arctic there is uniform species accumulation. In the 
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Antarctic there is a clear reduction in species accumulation between 300-400m depth. 

In the FSC there is approximately uniform species accumulation with depth until 

approx 1150m depth where species virtually cease to accumulate with depth. 

Figure 7a.8: Species accumulation (not randomised; left hand side) and cumulative species gain and loss 

between samples (right hand side) with depth. 
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Changes with habitat heterogeneity and disturbance 

While it has been shown in the preceding chapters that habitat heterogeneity is 

important in governing the distribution of fauna, in these investigations it is difficult to 

distinguish these changes in communities from those associated with disturbance. It is 

only in the deep FSC (Chapter 3) that disturbance is sufficiently low for habitat to be 

analysed independently from disturbance. The effects of disturbance in all 

investigations result in changes to the habitat heterogeneity and therefore these will be 

discussed together. With the complexities in characterising disturbance there is no 

common metric by which communities can be compared effectively between regions. 

Changes with flux 

Figure 7a.9: Measured faunal density compared with levels of predicted flux. Average annual flux 

calculated from depth of sample site, SeaWIFS estimate of average surface primary production for region 

and average of results obtained from equations in Suess (1980), Herguera (1992) and Berger et al (1988). 
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Average annual flux estimates show no overall correlation with overall faunal density 

(r´= -0.036 p = 0.88; Figure 7a.9), for individual sites there is no significant correlation 

between flux and density for the Antarctic and Arctic areas (r´=0.68 p =0.09; r´=0.8 

p=0.10 respectively). A correlation was observed in the FSC (r´=0.65 p<0.05). Flux 

estimates are directly proportional to depth and so these correlations echo depth trends. 

DISCUSSION 

Common fauna between regions 

The variation in the faunal composition of the study sites in this thesis is not surprising. 

Polar invertebrate species have a wide range of distributions from isolated taxa to those 

with circumpolar or even bi-polar distribution, for example Stylocordylia borealis

observed here. The number of shared taxa between the Faroe-Shetland Channel and 

east Greenland is also concurrent with the findings of other studies. Many Arctic 

invertebrates are found in adjacent boreal or temperate regions (Hayward and Ryland 

1995). More widespread distribution is relatively rare although a number of Arctic 

invertebrates are found throughout the world’s oceans even including the Antarctic 

(Curtis 1975). For example, Ekman (1953) reveals 75% of fish genera found in the 

Arctic are present in temperate waters, whereas only 8% are common to both the 

temperate and tropical-sub tropical Pacific. In the Antarctic there are more circumpolar 

species than the Arctic (White 1984). For example, Gutt and Koltun (1995) found that 

79% of the sponge species that they observed in the Weddell Sea had also been found 

in other Antarctic sectors. However there appears to be less biogeographic affinities 

with the adjacent oceans than for the Arctic, reported Antarctic species endemism 
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ranges from 57 to 95% possibly owing to isolation by the hydrological barrier of the 

Polar Front / Antarctic Convergence (White 1984). 

Faunal density between regions 

The findings of densities that were not significantly different between sampling sites 

reflects the large small-scale differences in faunal density common to many benthic 

ecosystems. The early literature suggests significantly higher densities of fauna in the 

Antarctic compared with other deep-water areas (White 1984) but this hypothesis has 

not been confirmed by further investigation (Piepenburg and Schmid 1996; Gutt and 

Starmans 1998; Starmans et al. 1999; Piepenburg et al. 2001) where highly variable 

faunal densities have been found in both regions (Figure 7a.10). 

Diversity between regions 

The main differences in fauna between the polar systems is the increased age and 

longer isolation of the Antarctic (Brey et al. 1993). During the past 60 million years, the 

Antarctic experienced a slow and discontinuous transition from a warm water system in 

the early Tertiary (15 C) to today’s cold water system (-1.8 to 2 C) (Kennett 1977). 

The ice shelves were formed over 36 million years ago in the Oligoscene from 

glaciation (Zachos et al. 2001). The formation of the circum-Antarctic current about 23 

million years ago (Kennett and Barker 1990) isolated the Antarctic fauna from the 

world ocean (Brey et al. 1993). Most of the present fauna appeared to have evolved 

within the Southern Ocean (Clarke 1990) as indicated by high levels of endemism 

(White 1984; Brey et al. 1993). These levels are much greater than in the Arctic which 
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has only had a glacial climate since the end of the Miocene, with ice sheets forming 

around 8 million years ago and then very extensive glaciation in the Pleistocene 

(Zachos et al. 2001) with km thick ice sheets during the Pleistocene glaciations (Polyak 

et al. 2001). It appears likely that the Arctic marine fauna has only developed since the 

Pleistocene (1.8 – 0.008 million years ago) and may potentially may have been very 

heavily impacted by ice until 150,000 years ago (Polyak et al. 2001). Levels of 

endemism are low in the Arctic where boreo-Arctic species dominate (Brey et al. 

1993).

Changes between the poles in relation to physical factors 

Depth and potential flux 

When the results of this study are compared with those available in the literature 

(Figure 7a.10) it is clear that there is a wide variation in both density and diversity 

between areas and studies. There is a general reported trend of reducing density with 

depth in both polar areas, related to reductions in availability of organic matter with 

depth (Suess 1980). This trend cannot be directly linked to flux estimates here, but this 

is likely partially a result of estimates being highly approximate. Estimated flux values 

were based on regional surface primary production and not local (Lampitt et al. 2001), 

which coupled with widely varying seasonal production and potential underestimates of 

flux in mass export situations, such as may occur after seasonal blooms (Berger and 

Wefer 1990), may explain the lack of strong correlations. 
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Alpha diversity appears to increase predominantly with depth, particularly in the Arctic, 

although there is no clear trend in the Antarctic. This, in addition to the observed low ß 

diversity between Antarctic stations (chapter 6), supports the hypothesised wide depth 

ranges of shelf fauna in the Antarctic relating to past recolonisation of the shelf from 

deep water following late Cenozoic glacial defaunation (Thatje et al. 2005). It is likely 

that depth, while very important in controlling diversity, is just one of the many 

environmental and biological factors that influences diversity and has to be analysed 

with respect to changes in all these factors. 

Figure 7a.10: Comparison of megafaunal density and diversity in the high Arctic (white circles) and 

Antarctic (black circles) investigated in this study and other values from the literature (Piepenburg and 

Schmid 1996; Gutt and Starmans 1998; Starmans et al. 1999; Piepenburg et al. 2001). 

The changes in species accumulation, loss and gain with depth are related to 

discontinuities between assemblages. In the Arctic, there is uniform species 
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accumulation suggesting a gradient of fauna with depth from one community to another 

with no major discontinuity. In the Antarctic there is a clear discontinuity between 

assemblages at 300-400m depth where no new species are accumulating. This appears 

to be the transition zone between the shallow multi-storeyed fauna identified by Gutt 

and Starmans (1998) and the deeper fauna found at Fimbul. In the FSC again there is 

evidence of assemblage partitioning particularly with regard to the lack of species 

accumulation in the deep, depauperate, very low density assemblage, which may be 

similar to deep-water communities found throughout the Norwegian Sea (Dahl et al. 

1996).

Disturbance 

The effects of disturbance have been evaluated in this study within a specific 

environmental location. From this work it can be seen that there is a large variety of 

effects of local disturbance on fauna which are summarised in Figure 7a.11. These 

effects can be divided into two types resulting from initial disturbance: direct changes 

to the fauna and changes to the environment. Both these effects have important 

implications for population dynamics and ecosystem function, and these effects, in turn, 

determine the future recovery of the ecosystem as well as its resistance (ability of the 

ecosystem to withstand change) and resilience (ability to recover quickly from change) 

to future disturbances. 

The effects of disturbance on ecosystems are somewhat divided temporally into the 

initial and the long-lasting effects of the disturbance. The initial effects are primarily 

those that directly affect the fauna and the long-lasting effects are particularly changes 
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to the environment and the ecosystem functioning of the communities affected by the 

disturbance. In the ROV investigations (Chapter 4), the acute effects of local 

disturbance on the fauna and the immediate changes to ecosystem functioning were 

being investigated. However long term changes to the environment and implications of 

the ecosystem changes were not apparent at this temporal scale. In the assessment of 

communities in the Faroe-Shetland Channel (Chapter 3), although the seabed 

environment was shaped by ice related processes, there has been very low natural direct 

disturbance for at least 10,000 years (Masson 2001). In the investigations of Arctic and 

Antarctic communities affected by natural disturbance (Chapters 5 and 6), the time 

since disturbance is not known; however through the changes to the ecosystems 

observed, and with reference to the growing literature on the effects of disturbance in 

polar ecosystems (Gutt et al. 1996; Gutt 2001; Gutt and Starmans 2001; Gutt and 

Piepenburg 2003; Teixido et al. 2004) it is possible to predict approximately the effects 

on the communities observed. 

Of the polar assemblages investigated it appears that it is only the shallow stations that 

have been impacted by disturbance recently enough for some of the direct impacts of 

disturbance, such as defaunation (Bluhm 2001; Stronkhorst et al. 2003), and some early 

evidence of recovery (Gutt and Piepenburg 2003) to be observed. In the Arctic these 

changes may potentially be visible in the shallow stations through faunal changes but 

these are more difficult to distinguish owing to a paucity in literature pertaining to ice-

related disturbance in the Arctic (Gutt et al. 1996; Conlan et al. 1998). As well as this 

the dominant fauna in the shallow Arctic are motile organisms, these can quickly 

recolonise disturbed areas compared with sessile fauna.  
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In the deeper Antarctic stations the effects of iceberg disturbance are visible but it 

appears that these effects are entirely a result of large scale changes in the environment. 

The disturbance has resulted in a partitioning of the habitat into coarse and fine 

fractions and as a result these habitats have been colonised by separate taxa in response 

to their individual habitat preferences. It is not clear at what stage the disturbance took 

place, but with the low sedimentation rates in the Antarctic it may be that these deep-

water ploughmarks were caused at the last glacial period where sea levels were lower 

and the ice sheets were thicker (Berkman 1997). 

In the deep Arctic stations it appears that disturbance from ice is not an important 

structuring force for the communities under investigation. With present ice conditions, 

icebergs are not generated in East Greenland with sufficient draft to effect directly the 

seabed at depths greater than 550m (Dowdeswell et al. 1993). The high rate of 

terrigenous input from the glaciers ensures that the deep benthic environment is 

homogenised with all relic evidence of ice disturbance covered. The terrigenous inputs 

in themselves lead to small-scale variation in habitat as a result of the size ranges of 

particles deposited; this variation appears to be at a scale too small to be readily 

detected in megafaunal community studies.  

In the FSC the situation appears similar to that in the deep Arctic, although the 

processes that control the communities are different. There are very low sedimentation 

rates in the FSC and the seabed habitats have remained little changed since the last 

glacial period when ice rafting of terrigenous material formed the habitat (Masson 

2001). For this reason the communities of the FSC have become more specialised to the 
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environment, although again these effects are probably much more pronounced at a 

smaller scale than investigated (e.g. Klitgaard 1995). 

Scale is very important in the understanding of ecological patterns (Levin 1992), 

particularly those associated with changes in diversity (Menge and Olson 1990; Levin 

et al. 2001; Gutt and Piepenburg 2003). The studies presented here have focussed on 

evaluation of pattern at the local scale. Without large sampling programmes, covering 

wide areas, extrapolation of these local scale changes to the regional scale is rarely 

possible, particularly in remote polar deep-waters.  

The results presented here allow comparison of high and low disturbance regimes in 

Arctic communities. In the Kangerdlugssuaq sites  and ß diversity was not as high as 

in the similar habitat of the southern Faroe-Shetland Channel stations (excluding the 

more deep-sea like stations at the north of the FSC). This may be because local 

disturbance at Kangerdlugssuaq is sufficiently high throughout the stations investigated 

(from both ice grounding and increased sedimentation) that succession is limited. The 

mobile fauna may be transient within the depth boundaries, being displaced by 

disturbance frequently. An r-selected sessile pioneer epifauna may be all that develops 

throughout the local system, with slow growth rates, low reproductive output and high 

disturbance frequency limiting succession (Clarke 1983). In the Faroe-Shetland 

Channel, large-scale disturbance to fauna does not occur, the high habitat heterogeneity 

from relic disturbance has resulted in a high  and ß diversity (at the scale investigated 

here) as more diverse late successional stages are being observed. 
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At the regional scale local disturbance will act to increase species diversity (Gutt and 

Piepenburg 2003). This will occur through both the effects of direct impacts to the 

fauna and the changes to the environment caused by disturbance. At the regional (or 

landscape) scale temporally varied disturbance will result in a high habitat 

heterogeneity, with a mosaic of local patches, with different communities, at different 

stages of succession. While some individual patches may have an impoverished fauna 

from local disturbance, regional diversity will be high. It would be useful to assess at 

the large scale, through comparison of high and low disturbance Arctic regions, the 

relative effects on diversity of direct effects to fauna and habitat changes resulting from 

disturbance.  
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Figure 7a.11: Model of the effects of disturbance on population dynamics and ecosystem function. 

Sufficiency of sampling 

Species richness 

Until an assemblage has been sampled exhaustively, species richness measures will 

underestimate species richness to an unknown degree (Magurran 2003). An investigator 

should be relatively confident that the sample is large enough to provide an accurate 
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estimate of the size of the assemblage, but without knowledge of how large the 

assemblage actually is. Empirical stopping rules are used to indicate the point beyond 

which further sampling is unnecessary. Colwell and Coddington (1994) suggest that a 

census can be treated as complete if all species have occurred in at least two samples. In 

this study, as a result of sampling limitations, this situation was not reached in any sites. 

Magurran (2003) suggests dividing the total sample into two parts (at random) and 

estimating the richness of each part separately. If the answers are consistent with that 

obtained for the whole data set, the investigator can be confident that sufficient data 

have been collected. In this study again this is not the case with estimates of richness 

differing between the two parts. For this reason estimates of total species richness as 

has been done elsewhere (e.g. Colwell et al. 2004) are not appropriate. 

Community patterns 

The results of this study are important in our understanding of polar ecosystem 

structure and its controlling factors. There is sufficient coverage of sampling to 

characterise all but the rare taxa in the epibenthic megafaunal communities investigated 

within each defined area. It is often the most abundant taxa within an ecosystem that 

are most important in controlling the biological processes and the ecosystem responses 

to physical change. The wide coverage of the imaging methods used here provide 

comparable or greater areal coverage within each study site than most other polar 

studies. However, owing to the limited number of study sites, caution should be 

exercised in extrapolation of these results to wider areas, although with our limited 

understanding of polar systems there is value in this, particularly with inclusion of the 

additional information found in other studies. 
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CHAPTER 7B: METHODOLOGICAL CONCLUSIONS 

INTRODUCTION 

Seabed imaging technology has been in scientific use for a several decades (Hersey 

1967; Heezen and Hollister 1971). In recent times the diversity of imaging methods had 

become huge, with a wide variety of imaging platforms, devices and methodologies. 

Science is often driven by available technology and this is particularly true for the deep 

sea. Specific hypotheses remain untested until technology creates the opportunities to 

conduct in situ collection, survey or experimentation to answer these questions. 

Technology for deep-sea biology is, in some cases science driven, for example deep-

water trawls and the WASP camera system. However, in recent years it is commercial 

applications of subsea technologies that is driving progress, particularly in ROVs and to 

some extent AUVs and it has been possible for science to benefit from this 

development. It is very important that, in scientific studies, the methods are carefully 

assessed, in relation to the strengths and limitations in the data they provide. 

Throughout the biological observations in this study it has been important to assess the 

strengths and limitations of each photographic method. From using a range of methods 

as a result of this study it has been possible to make comparisons between them both in 

terms of practical and biological values. In some cases this has been possible through 

direct comparison of produced data and in others comparisons are discussed through 

extensive use of methods for this study. 
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Towed camera platforms 

Towed camera platforms provide a deep-water equivalent of arial photography 

although at a smaller spatial scale taking into account the much increased attenuation of 

the visible light spectrum in water compared to air. Towed camera platforms are used 

routinely in the investigation of deep-water biology (Machan and Fedra 1975; 

Hashimoto and Hotta 1985; Christiansen and Thiel 1992; Hecker 1994; Bett et al. 1995; 

Barker et al. 1999; Cailliet et al. 1999; Bett 2001; Kollmann and Stachowitsch 2001; 

Cranmer et al. 2003; Mortensen and Buhl-Mortensen 2004) and geology (Hecker 1990; 

Leybourne and Vanwagoner 1992; Barker et al. 1999; McHugh and Ryan 2000; Fornari 

2003), often for the initial assessment of the seabed character before more detailed 

investigations take place such as in hydrothermal vent research (Lonsdale 1977a; 

Lonsdale 1977b; McConachy et al. 1986; Klinkhammer et al. 2001).  

ROVs

Remotely Operated Vehicles are incredibly versatile tools for deep-water science. With 

essentially unlimited power and endurance as well as real time control a huge variety of 

imaging studies and experiments can be carried out. Quantitative imaging of the 

seafloor with an ROV has been carried out repeatedly in deep-waters for biological 

observations (Auster et al. 1991; Butler et al. 1991; Adams et al. 1995; Vetter and 

Dayton 1998; Starmans et al. 1999; Ambrose et al. 2001; Brodeur 2001; Hovland et al. 

2002; Gutt and Starmans 2003; Jonsson et al. 2004; Stein et al. 2005). The utility of 

ROVs has been considered by an number of authors (e.g. Barry and Baxter 1992). 
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AUVs 

Autonomous underwater vehicles are relatively new and have only recently become 

viable for scientific use. Most of the AUV scientific projects have used acoustics 

(Stansfield et al. 2001; Millard et al. 2003); direct imaging techniques from AUVs are 

in their infancy (Jones et al. 2005). At present three AUVs have still camera systems, 

the NOC Autosub and two Woods Hole Oceanographic Institution Deep Submergence 

Laboratory (WHOI DSL) vehicles, Autonomous Benthic Explorer (ABE) and SeaBED. 

Photographs 

Deep-water photography is a long established technique for the investigation of benthic 

environments. It offers high resolution imaging of reasonably wide areas of seafloor. 

Practically, a single photograph of the seafloor of use in megafaunal investigation can 

cover approximately 1-10m2 of seafloor. In biological investigations it is most practical 

to measure resolution as the minimal size of repeatedly identifiable organisms, referred 

to subsequently as ‘biological resolution’. Values as low as 1mm have been reported 

for a 70mm medium format camera operated on a bounce camera system (Gutt and 

Starmans 1998). These systems tend to photograph only a small area of the seafloor 

(1.4m2 in the previous example). An alternative strategy, as adopted by WASP and 

many other towed camera platforms is to photograph much greater areas of the seafloor 

at a lower resolution. Typically these systems have a biological resolution of around 

5cm. There is generally a trade-off between spatial extent of a survey, film or memory 

requirements, duration of survey and biological resolution. 
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The medium for photographic recording is also important in deep-water photography. 

Traditionally 35mm film is used (Hersey 1967), which provides a reasonably high 

resolution and, as a standard format, relatively low cost development. Conventional 

film has some disadvantages, it occupies reasonably large physical spaces particularly 

in the volumes needed for biological survey, processing usually cannot be done at sea 

and so image quality and faunal patterns cannot be assessed quickly at a time scale 

relevant to further sampling and post processing of the film for analysis e.g. scanning 

can take longer. The resolution of 35mm film conventionally used in deep-water 

photography (ISO 250 film) is approximately equivalent, in terms of silver crystal 

density, to a digital resolution of around 10 megapixels, however noise in digital 

cameras is much lower than grain (its counterpart) in film. Digital camera systems are 

being increasingly used in deep-water photography (see e.g. Fornari 2003); these 

systems may have reduced resolution over film but have a number of important 

advantages: immediate results, low operational cost, virtually unlimited storage and 

native digital format facilitating presentation and analysis. Computer aided analysis 

techniques for digital photographs include digital image analysis (for quantification of 

sizes and areas) and potentially more advanced techniques discussed later. Computer 

aided analysis techniques are possible by scanning film photographs, however this is 

costly and time consuming for the volume of photographs required for high quality 

analyses.  

There are several options for camera mounting used in deep-water photography 

pertaining to the angle of the camera from vertical. A vertical camera angle facilitates 

scaling, and subsequent measurement as well as maintaining relative size of fauna. 

Oblique angles provide a greater coverage for a given height as well as a more natural 
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view of the seabed, facilitating identification and observation of fauna; scaling, while 

possible becomes difficult and perspective effects change relative sizes of fauna 

depending on their position on the frame (Wakefield and Genin 1987). If photo 

mosaicing is used a vertical camera angle is necessary. Both methods have been used 

successfully in deep-water photography (Hersey 1967) although vertical camera angles 

are more typical. 

Video

Underwater video allows a wide swathe of benthos to be recorded quickly with 

complete coverage. Video resolution if often low, practically around 500 x 500 

effective ‘pixels’ (phosphor dots), this figure applies to blacks, greys and whites only, 

colour resolution is much less, most often between 25x25 and 50x50 (NTSC Broadcast, 

VHS, S-VHS, Hi-8). Video resolution is continually improving with the state of the art 

High definition digital video (HD) presently record 1080x1280 effective ‘pixels’. Most 

existing science video systems, including WASP use lower quality systems although 

several science-class ROVs have HD video cameras and recording equipment. 

METHODS 

Photographic technique 

Photographs vs video 

Using a towed camera platform such as WASP that collects video and photographic 

data simultaneously, it was possible to compare the biological outcomes for the two 
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techniques directly. This was carried out for an example station in the Faroe-Shetland 

Channel (FSC1). Photographic and video data were collected as described in chapter 3. 

Photographic data were analysed as previously described, video data were analysed as 

ROV video (chapter 4). 

Altitude comparisons 

Using photographs from the shallow Faroe-Shetland Channel (FSC 1 – 5; Chapter 3) 

before unrepresentative frames had been removed from analysis, the effect of altitude 

on mean density of fauna observed was analysed. It was assumed that actual average 

faunal density was approximately constant and organisms are randomly distributed. 

The expected relationship between the mean number of individuals in one photograph 

and altitude, is: 

Where, with WASP camera acceptance angles:   

Area  =   0.6 altitude 2

Therefore: 

 Mean no. individuals  =  actual density. 0.6 altitude2

Actual density was not known, however the “best fit” expected relationship was 

calculated iteratively to minimise the Chi-squared statistic: 

ected
ectedobserved

exp
exp 2

2
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The iterative “best fit” occurred when actual density was 0.9 individuals m-2.

Two transects were undertaken using ROV video at the Schiehallion field, UK (420-

421m depth, 60 22.95´N 04 05.95´W). The seabed was undisturbed and distant from 

drilling activity (>1km) but had a small diameter pipeline running across it. Two ROV 

video transects were conducted running along this pipeline between two conspicuous 

markings spaced 50m apart on the pipe. One transect was run at 1m altitude and the 

other at 3m. 

Sample size 

It was important to provide replication for subsequent analyses. However, the logical 

sampling unit of individual photographs did not contain enough individuals or species 

for valid comparisons. Photographs had to be grouped to minimise variance in data 

between sampling units. As all photographs were taken along a single transect it was 

important to avoid possible pseudoreplication. All measures were taken to avoid 

potential sampling biases: 

Transects were undertaken following a stratified random sampling strategy 

direction of the vehicle was random, both with respect to ship track and current 

conditions driving vehicle track 

photographs to be pooled were selected randomly along the transect.  

To pool photographs into a useable sampling unit, photographs within a towed camera 

platform transect were randomised and then sampled without replacement into pooled 
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groups of a set sample size. It was important to assess correctly the size of the 

individual sampling units to maximise replication but minimise variance between 

samples. A Matlab routine was written to assess the effects of differing sample size on 

the variance of the Shannon-Wiener diversity index between samples. This sampled all 

photographs within a transect at random without replacement until the area covered was 

equal to the sample size (  2 m). It then pooled the numbers of each species for each 

sample and stored this individual sample array in a species by sample matrix. It 

continued doing this until there were insufficient photographs left to create a sample. 

Shannon-Wiener Diversity index (as an example index) was calculated on the values 

for each sample and the variance calculated between each diversity index measurement. 

This process was repeated for incrementing sample sizes (incrementing by 10m2)

between 10 and 200m2 which were the practical limitations of the potential replicates as 

a result of the total photographs taken per station. 

Comparison of vehicles 

An arctic deployment of Autosub from the RRS James Clark Ross allowed comparison 

of AUV images with seabed photographs from a towed camera platform. The NOC 

Wide Angle Seabed Photography (WASP) towed camera system was operated in areas 

clear of ice at a similar depth to the Autosub operations (WASP station D = 625 m 

depth; Autosub mission 377 = 564m depth; chapter 5). While the exact same area was 

not covered, the communities within both areas have been shown to be similar (See 

chapter 5). Unfortunately, owing to the limited number of Autosub photographs (n=19) 

direct numerical comparison of the communities observed was not possible. 
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ANALYSIS 

Photographs vs video 

Despite the greater areal coverage of video as a result of continuous recording (183% 

coverage of photographs), there were large reductions in faunal densities (38% 

photographic densities) and all diversity measures when compared with photographic 

assessment of the same community (Table 7b.1). 

Table 7b.1: Photographic vs. video counts of megafauna from WASP vehicle in Faroe-Shetland Channel 

example station (FSC1). Includes: Total megafaunal number (N), number of taxa observed (S), Rarefied 

number of taxa (ES(300)), Shannon-Wiener diversity index (H'), Margalef diverisy index (d), Pielou 

evenness (J'), Simpsons diversity index (1- '), Total faunal density (no ha-1), and area of seabed covered  

(m2) by each method. 

 N S ES(300) H' d J' 1- ' Density (no ha-1) Area covered 
Photo 437 31 27.59 2.32 4.93 0.67 0.82 4215.44 1036.7 
Video 317 18 17.83 1.74 2.95 0.60 0.72 1676.61 1890.7 

Importance of altitude 

Altitude was found to be very important in photographic investigations. In the WASP 

investigation tested here, at both high and low camera altitudes there were large 

departures of observed individuals from expected (Figure 7b.1). Low altitude 

conditions resulted in the greatest enumeration of organisms, although it was not 

consistently possible to fly the WASP vehicle at altitudes below 150cm. At high 

altitudes, while the areal coverage was great, there were significantly lower numbers of 

visible fauna. Photographs taken between 150 and 350cm altitude revealed consistent 

average numbers of organisms as well as providing a reasonable range of altitudes for 
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effective operation of the WASP vehicle and hence a reasonable number of 

photographs for analysis. 

Figure 7b.1: Changes in mean number of individuals in one photograph observed (n = 572) and 

expected and departure from expected (difference between observed and  expected). The data were from 

the shallow Faroe-Shetland Channel sites (FSC1-5) before high altitude photographs were removed from 

analysis. Error bars represent the standard deviation.  

In video observations at 3m altitude 3 times the areal extent of seabed was investigated 

to that at 1m altitude. However, only one taxon could be identified at 3m altitude, a 

brilliant white sponge and even the densities of this species were nearly half that 
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identified from the 1m altitude transect. Overall densities were clearly much reduced in 

the high altitude video (Table 7b.2). 

Table 7b.2: Comparison ROV video transect data from identical length transects (50m) undertaken at 

low (1m) and high (3m) camera altitude, in the Schiehallion field, UK. Number of species found (S), 

Estimated number of species (ES(50)), number of individuals (N) and density (no individuals m-2).

 S ES(50) N Density (no m-2)
Low 6 5.381 114 2.51 
High 1 1 51 0.37 

Sample size 

Sample size was important in controlling variance in H´ (Figure 7b.2). Variance 

between individual photographs was very high and as a result pooling of photographs 

was found to be advisable. Samples were pooled on the basis of area as this allowed 

comparability of samples between study sites. A sample size of 100m2 was taken as this 

provided at least three replicates at all stations but had minimal associated variance in 

diversity between samples. 
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Figure 7b.2: The effect of sample size (m2) on the variance of Shannon-Wiener diversity index. Points 

represent the results from one random sample grouping from one transect, the line represents a Monte-

Carlo simulation of variance based on 500 random regroupings. 

Comparison of vehicles 

AUV vs towed camera platform 

Images obtained from Autosub were broadly comparable with those taken by the 

WASP vehicle (Figure 7b.3). Despite the differences in operating altitude, each frame 

showed a comparable average area of seabed. Unlike Autosub, which holds a relatively 

constant altitude, WASP ranges in altitude with the ship’s heave, producing useful 

images from 2m to 4m altitude (area of seabed covered = 2.35m2 to 9.41m2). There was 

a discernibly higher resolution in the WASP images reflecting the increased resolution 

of conventional film over the CCD imager (1392x1040 pixels). The resolution of the 

Autosub images is nevertheless satisfactory for scientific characterisation of the seabed. 
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The colour images from WASP facilitated identification of some species when 

compared with the monochrome Autosub images. 

Figure 7b.3: Comparison between Autosub image (left) and WASP image (right) from Arctic 

Greenland. Autosub image from a water depth of c.600m. The image area is cropped  to 2.0 m x 1.6 m. 

Illumination from the bottom of field. Date: 09/09/04; Time: 04:16:27; Altitude: 10.31 m; Depth 588 m; 

Position(deg): 68.0336 N, 31.7911 W; Heading /Pitch/ Roll (deg) 36.2, -5.2; -2.45. WASP image from a 

water depth of 658m. The image area is cropped to 1.4 m x 1.0 m. Illumination from the right of field. 

Image originally in colour. Date: 03/09/04; Time: 09:46; Altitude: 2.98 m; Depth 658 m; Position(deg): 

68.0485 N, 31.7610 W.

DISCUSSION 

Imaging investigations 

The altitude at which photographs were taken affects the biological resolution of the 

photographs, which has been shown here to affect the measured density and diversity of 

the communities under investigation. However increases in altitude result in sampling 
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an increasing area of seabed, particularly important as the area sampled increases 

proportionally to the square of the altitude. 

Photographs

The reduction in faunal numbers observed with increasing altitude was a direct result of 

the limitations of underwater camera systems. As light dissipates through water much 

faster than through air; underwater photography over a distance of greater than several 

metres is challenging. Both absorption by seawater and scattering by suspended 

particulate matter rapidly reduce light intensity. Additionally, the increased distance 

results in decreased film grains per area of seabed and hence lower resolution of 

photographs, making it difficult to distinguish organisms from a heterogeneous 

substratum. 

At low camera altitude there was a high departure of observed individuals from 

expected. This appears to be a result of greater detection of fauna present from higher 

resolution of photographs. It was not possible to ‘fly’ the towed camera platform 

consistently at altitudes of 100cm or less, owing to variations in the bathymetry of the 

areas investigated.  

The biological conclusions of this suggest that when using faunal density values 

obtained from a platform with variable altitude, caution should be exercised as to the 

altitude of the vehicle. The optimal altitude depends on the minimum size of fauna that 

needs to be resolved and the minimum operational altitude of the vehicle. In practical 

terms for this study with a minimum faunal resolution of 5cm, estimates of faunal 

density from WASP photographs are likely to be very much reduced from actual values 
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at altitudes greater than 350cm. Only the larger and more conspicuous fauna will be 

seen at altitudes greater than 350cm. 

Video

It is important in ROV studies to minimise the altitude of sampling to identify as many 

megafaunal organisms as possible. ROVs have a much greater level of control than 

camera platforms allowing flying altitudes of around 20cm with a resultant camera 

altitude of around 75cm (or less for systems specifically designed for survey). It has 

been shown here that video investigations of megafauna should not be conducted at 

high altitude (>2m). 

Comparisons of vehicles 

There are a wide variety of vehicles in use for ecological survey in the deep sea. The 

best method depends strongly on the nature of the survey and facilities available (Table 

7b.3). In this section the vehicles will be compared assuming the same camera system 

is used on each. It should be emphasised that the vehicle is only as good as the imaging 

sensor it carries. 
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Table 7b.3: Comparison of platforms for deep-water ecological survey. Including: method of obtaining 

ecological data, maximum practical resolution (minimum size of organism quantifiable) for photographs 

and video, comparable coverage of a transect, extent of survey (e.g. area covered per unit time), expense 

of survey (costs of operating vehicle per unit time), facilities required (additional requirements to vehicle 

e.g. minimum: standard research ship; maximum: dynamic positioned research ship, fibre optic cables, 

dedicated control teams and facilities etc.). 

Method method of obtaining 
ecological data 

Max. photo 
resolution 

Video 
resolution Coverage Extent 

of survey Reliability Expense 
of survey 

Facilities 
required 

         
Bounce 
Camera photographs high / low very low high low low 

Towed Camera 
Platform 

photographs 
and video medium medium high high high medium low 

AUV photographs low but 
increasing / high high low high medium 

ROV photographs, 
video, samples high high high medium medium high very high

Submersible photographs, 
video, samples high high high low high very high high 

         

Trawl samples / / medium 
qualitative

medium 
qualitative 

high/
medium low low 

Sensor choice 

Sensors have to be chosen carefully with respect to the operational requirements of the 

vehicle. This is particularly important for AUVs such as Autosub, which will be used as 

an example to highlight the issues involved and some solutions. The operational 

limitations of the AUV, particularly with regard to the safe flying altitude (of 10m in 

Autosub) require solutions for effective photography. Scattering of light by suspended 

particulate matter can be reduced by minimising the overlap between the illumination 

and imaging paths. Consequently the camera and flashgun were mounted as far apart as 

possible, an approach adopted by most imaging vehicles. At a flying altitude of 10m 

(round trip for light of 20m), very little light except blue and violet returns to the 

camera lens. Even in pure water very little of the red-orange end of the spectrum 

returns: 99.5% is attenuated. Hence a colour camera was inappropriate and as only one 
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in four (the blue) pixels would register any light, the sensitivity of a colour system 

would be at best 25% of a monochrome camera. 

If possible maximal resolution should be prioritised in sensor choice. As the most 

severe limitation of biological analysis of photographs is the detection of species, at 

whatever scale analysed, resolution is paramount. Without repeatable and accurate 

identification of species the biological conclusions that can be made from photographs 

are minimised. 

AUV vs towed camera platforms and ROVs 

At present AUVs are limited to some degree in terms of power, and hence sensors. The 

high power requirements of continuous lighting for video as yet have not been met 

however photography has been shown to be entirely feasible (Jones et al. 2005). 

Autosub is severely limited, in terms of photography by its flying mechanism (using lift 

generated by forward motion) and hence minimum safe altitude. One of the more 

scientifically important alternative approaches is that taken by the Woods Hole 

Oceanographic Institution Deep Submergence Laboratory’s (WHOI DSL) Autonomous 

Benthic Explorer (ABE) vehicle (Yoerger et al. 1992). This vehicle is unlike Autosub 

in design and more adapted to precise control over considerably shorter range than 

Autosub (theoretical range <50km for ABE, 800km for Autosub), ABE has 7 thrusters 

and is capable of movement in any direction much like an untethered Remotely 

Operated Vehicle (ROV). It has a camera system currently consisting of stereo, 

monochrome, downward pointing digital cameras each providing an image resolution 

of 576x768 pixels with a dynamic range of 8 bits. When updated as planned the ABE 

camera system will allow colour imaging as the vehicle can operate closer to the 
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seafloor. These vehicles represent different solutions to AUV imaging for science and 

hence will have different scientific uses. While ABE-like systems may produce ‘better’ 

images over a short range they will not be able to sample in the more remote 

environments or at the long ranges which vehicles such as Autosub are capable of 

investigating. A development, parallel to ABE, at the WHOI DSL is the SeaBED 

vehicle (http://www.whoi.edu/DSL/hanu/seabed/index.html), which represents an 

alternative approach to AUV imaging. It is a readily-available operationally-simple 

AUV designed to test imaging methods and docking methodologies with the aim of 

pursuing repeat surveys for change detection and quantification of features. SeaBED is 

a hover-capable vehicle that performs optical sensing with a 12bit 1280x1024 

monochrome CCD camera, combined with acoustic high resolution mapping systems 

(Singh et al. 2000). The systems and protocols developed with SeaBED will be adopted 

by larger systems such as Autosub and ABE which will allow these new methods to be 

carried out in deeper and more remote environments. 

The field operations have shown the capacity for AUVs to collect high quality images 

of the seafloor that are suitable for scientific analysis. Despite reductions in resolution 

and their monochrome nature, Autosub images were otherwise comparable with those 

taken with existing towed deep-water imaging systems. While the expense of AUVs 

will be a consideration in their imaging potential their autonomous nature allows them 

to be used in remote environments that cannot be sampled with existing technology. In 

addition, their autonomy from research vessels and ability to work concurrently with 

other sampling programmes, will make AUVs increasingly important for adding extra 

data and value to existing research cruises. 
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AUV photography has a number of novel scientific applications beyond the work in 

remote environments, predominantly in high resolution surveys over reasonably large 

areas. Survey work is the most important area of commercial AUV use (Danson 2003), 

with AUV survey already being explicitly commissioned in deep-water surveys for the 

oil and gas industry (Knott 2005). While this commercial survey work is principally 

acoustic, it is inevitable that, with imaging technology becoming available, that this 

survey will extend to imaging. In many respects these applications could be achieved 

by other, existing technology such as ROVs or towed camera platforms, but in these 

cases, the use of AUVs will be justified in terms of time or financial savings. AUVs are 

particularly suited to high resolution surveys over long distances that can be conducted 

without the need for human intervention. The AUV can be launched, then left to carry 

out the scientific task while the mother ship is conducting other work elsewhere. This 

was proven in the Autosub Arctic field operations where Autosub was deployed and 

two WASP stations were surveyed (56512#1 and 56513#1) while Autosub was carrying 

out a photography mission (mission 377). As well as this, the ship requirements of 

AUVs are potentially low, certainly without the need for the expensive, dynamically-

positioned support vessels needed for ROV operations. 

One particular aspect of AUV operations, relevant to photography is the unique ability 

of AUVs to follow terrain closely and maintain a constant altitude. This can be a 

problem in towed camera studies where only coarse altitude control is possible and as a 

result, images vary in altitude depending on bathymetry and sea conditions (although 

typically 2 m), leading to many unusable images for analysis. Surveys carried out by a 

large class of imaging platforms, particularly operator-driven ROVs and towed camera 

platforms, may typically contain large rotational and scale changes between successive 
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images. AUVs, as a stable platform, will avoid these limitations, facilitating 

photomosaicking of reasonably wide areas of seafloor (Singh et al. 2004). Much current 

work is going into the design of docking systems, for re-charging and data download, 

which will allow AUVs to operate for long periods without human intervention 

(Galletti di Cadilhac and Brighenti 2003). This will expand the scientific uses of AUVs 

allowing temporally replicated wide-area, high-resolution imaging without human 

intervention. AUV docking technology may allow high temporal resolution through 

increased access to deep-water environments and substantial savings in ship time.  

While it is perhaps inevitable that AUVs will replace towed camera platforms in the 

future, at present they are not yet capable of producing images of comparable quality 

and at a comparable cost. AUVs, as a technology in its infancy, are not yet reliable 

enough for present survey needs as was shown so graphically by the insufficiency of 

Autosub image data from Greenland and the loss of the vehicle under the Fimbul Ice 

Shelf.

ROV vs towed camera platform 

The comparison of ROVs and towed camera platforms is difficult as it depends on the 

sensors that are installed on both systems. Assuming the same sensor, the main 

differences, in terms of quantitative imaging is in terms of the manoeuvrability and the 

cost. ROVs can be used effectively as towed camera platforms as has been shown by 

Starmans and Gutt (2002) but they also have the capacity for much more structured and 

replicated random sampling. They also can be used consistently at much lower altitudes 

than towed camera platforms. Another benefit is that ROVs can conduct pre-survey 

collection or detailed imaging of important organisms facilitating identification. There 
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are numerous other benefits of ROVs in terms of manipulation or monitoring of the 

environment which will not be discussed. Towed camera platforms are significantly 

cheaper, more robust (can be taken into more challenging environments) and can 

potentially cover a wide area of seabed than ROV systems. 

Bounce camera vs towed camera platform 

As bounce cameras are triggered at a constant altitude it is possible to set the camera in 

a way that maximises its efficiency as the depth of field, lighting and focus is 

accurately known in advance. This permits high quality, high resolution images to be 

obtained consistently. The limitations of this technique are that it only samples a very 

small area of seabed, while extensive sampling can allow investigation of larger scale 

patterns, for example over the entire Weddell Sea (Gutt and Starmans 1998). It is only 

by very extensive survey that landscape level changes in benthic environments become 

apparent. While towed camera platforms are less able to obtain very high resolution 

pictures they do allow quantification of a large area of seabed and landscape patterns 

become more obvious. In deep-sea environments particularly, another limitation of the 

small scale bounce camera approach is that the number of animals per unit area may be 

very low (for example in the deeper waters of the Faroe-Shetland Channel investigated 

in this study) and it is only with a more wide scale approach that sufficient area will be 

covered to give meaningful faunal density measurements. 

THE FUTURE FOR PHOTOGRAPHIC ANALYSIS 

Photographic analysis is a technique that is sure to increase in use into the future, with 

increasing acceptance as a quantitative tool that has minimal environmental impact. Its 
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limitations are widely understood and are comparable with those of other techniques 

e.g. semi quantitative nature of trawls. Photographs provide a minimum quantitative 

sample of a known part of the faunal community in a similar manner to a sieve sample 

of macrofauna. Photographic techniques are continuously in development and the 

following section provides a speculative account of where I think that photographic 

techniques will be progressing in the next 10 years. 

Investigation of spatial patterns

Conventional studies of megabenthos communities are only partly able to resolve the 2-

dimensional distribution of individuals, i.e. trawls lose all spatial information and 

towed-camera systems provide only a narrow strip of seabed for analysis. With imaging 

from manoeuvrable ROVs or AUVs, coupled with high-resolution underwater 

navigation systems, it is possible to create 100% coverage faunal distribution maps 

through integration with Geographical Information Systems (GIS). Such detailed 

information on faunal distribution patterns will aid in accurate estimation of population 

densities and will likely provide insight into the behaviour, reproduction and dispersal 

of the dominant species present. 

Once integrated into GIS spatial pattern in megabenthic communities can be 

investigated using a variety of integrated approaches: 

1. Using statistical approaches to describe organism distribution, such as indices of 

dispersion (Krebs 1998) to quantify spatial pattern in megafaunal communities. 

2. Analysing the environmental causes of organism distribution using the spatial 

analysis functions of ARCGIS as well as linked programmes (e.g. Biotas) as a powerful 
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tool for analysis of interrelationships between faunal distribution patterns and available 

environmental information. 

3. Investigation of faunal community dynamics in response to recovery from 

anthropogenic disturbance along similar lines to the work by Durand et al. (2002) in 

changing vent communities. 

With access to a wide range of spatially referenced data including high resolution 

bathymetry, ongoing CTD casts, ADCP current data, temperature data, physical and 

chemical sediment data and pre-drilling environmental and photographic data. The 

effects of these physical factors on the benthic fauna can be assessed in two 

dimensions. Spatial pattern is of interest in itself because it is important to understand 

the ecological processes determining the locations of individuals, which are rarely 

spread at random over the landscape (Krebs 1998). Ecology at the landscape scale is 

becoming more and more important in terrestrial and freshwater systems (Forman 

1983; Urban et al. 1987; Wiens et al. 1993; Hill et al. 2001; Arbuckle and Downing 

2002) and while shown to be important in the marine environment (Levin et al. 2001), 

the investigation of megafaunal spatial pattern is predominantly limited to those 

environments easily accessible for sampling namely the intertidal zone (Underwood 

and Chapman 1998). Although recent work has used photographs to investigate the 

structure of more remote benthic communities (Garrabou et al. 1998; Garrabou et al. 

2002; Parry et al. 2002; Teixido et al. 2002). The spatial structure of deep-sea 

megabenthic communities has received very little attention due to the limitations of 

sampling methods and expense of wide area survey.
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Three dimensional imaging 

Three dimensional photography is not a new technique, stereo imaging and 

photogrammetry (Wolf 1983) have been used extensively in terrestrial as well as 

marine settings (Schuldt et al. 1967; Done 1981) to quantify features in three 

dimensions. This technique appears to be less widely available now than it was in the 

early days, perhaps as a result of very little actual early work published that made 

reference to the third dimension (although they had the technology to do it), time 

pressures (photogrammetric analysis is time consuming), increased camera cost and 

increased accuracy of camera systems (removing the need for a backup system). It has 

been shown in recent years that this approach can be very useful in obtaining accurate 

volume (and hence more accurate biomass) estimates in a non-destructive fashion 

(Bythell et al. 2001). This is particularly relevant with increased use of digital camera 

systems which enable quick, easy computer analysis to be carried out through a variety 

of software packages. This approach is being extended to stereo video systems using 

software such as Geomsoft’s Vision Measurement System to find objects 3d 

coordinates from video. Quick and accurate quantitative measurement in three 

dimensions will facilitate species identification (through morphometric analyses), 

enable faunal volume measurements to be made and assessed over time and improve 

quantification of features seen in “difficult” video (with variations in vehicle altitude, 

pitch and roll and camera zoom, pan and tilt) that is very commonly obtained. 

Investigation of novel ecological problems 

The collection of images, in conjunction with new technologies, enables novel 

ecological problems to be investigated. These are particularly related to spatial patterns 

at varying scales, as discussed before for the large scale. These patterns can also be 
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investigated at very small scales if the photographs are taken at low enough altitude and 

at high enough resolution. This has been shown to be effective in evaluating patch 

mosaics at the centimetre scale (Garrabou et al. 1998; Teixido et al. 2002) providing a 

new way of characterising communities with almost complete spatial coverage from 

photographs. This technique has much potential with regard to the investigation of 

temporal trends in communities where space is the limiting resource such as the 

intertidal and shallow sublittoral zone and in deeper waters the Antarctic suspension 

feeding zone. 

CONCLUSIONS 

Seabed imaging is a very important technique for quantitative analysis of benthic 

ecosystems. A wide variety of techniques exist using different sensors and vehicles 

which are suited to different investigations. There is typically a compromise between 

area investigated, time and biological resolution. Of these factors biological resolution 

is the most important, for, without it organisms cannot be distinguished, severely 

reducing the utility of images. Photography is typically more useful than video 

investigations particularly for community quantification. All platforms for photography 

(bounce cameras, towed camera platforms, ROVs and AUVs) have their own specific 

uses and are all suitable for biological investigation. 

Photographic studies have been shown to be very effective in quantifying megabenthic 

faunal abundances in a variety of habitats (Piepenburg et al. 2001). In photographic 

studies of the seafloor there are several limitations particularly in the identification of 

species. Many species can only be identified from small scale morphological variations 

(Hayward and Ryland 1995) that are not visible in photographs. For many groups, only 
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identification to family or genus is possible. This has consequences of the resolution of 

results, especially for diversity comparisons and when morphologically similar forms 

have different life habits. Another limitation found in the use of towed camera platform 

photographs is in the resolution of small specimens, the minimum size limit of this 

study (50mm) was large in comparison with the majority of studies, especially as 

megafauna is typically regarded as >10mm in size (Grassle et al. 1975). As well as this, 

biomass, an important characteristic of communities, is difficult to assess from 

photographs, as accurate size-biomass inferences need large associated specimen 

sample datasets to obtain accurate measurements. Nevertheless, it is clear that 

photographic studies can provide a valuable insight into the megabenthic ecology of an 

area such as the Faroe-Shetland Channel. Although there are problems associated with 

the use of photography it does provide more accurate information on the abundance of 

this group than other sampling methods. Although megafaunal diversity and biomass 

estimates may be better in conjunction with trawling techniques (Christiansen and Thiel 

1992), these would be impossible in around half of the stations sampled in this study as 

a result of the rocky substratum (see e.g. Bett et al. 1997). Photography also provides 

additional ecological information on spatial distribution, size, substratum preference 

and faunal traces that can not be obtained from trawl samples. 



Summary and conclusions 

247

SUMMARY AND CONCLUSIONS 

Investigating community scale patterns in polar ecosystems has shown that despite the 

variation in species complements of these ecosystems, in the areas investigated, the 

physical controlling factors in both Arctic and Antarctic areas are similar. The effects 

of ice appear to be the most important in structuring these communities, with past and 

present ice related impacts on community structure ranging from direct destruction of 

organisms to long-term habitat changes with associated differentiation of communities 

between habitat types. Depth is also important in both areas, species-specific 

bathymetric limits control the overall distribution of organisms. Differences in the 

physical environment of the study sites changed the duration of the effects of ice 

mediated disturbance, very high sedimentation rates in Arctic areas removed evidence 

of disturbance in less impacted areas, homogenising the environment. In the Antarctic 

where sedimentation rates were very low, iceberg ploughmarks potentially will still 

have community-structuring effects thousands of years after they were formed. In the 

Faroe-Shetland Channel, where ice is not present now, much of the existing sediment is 

of glacial origin, changes in depth and sediment type are responsible for community 

patterns in this area. 

From the results presented here it is clear that disturbance is a very important control on 

benthic community structure in natural environments. What is not clear, however is the 

effects of different aspects of the iceberg disturbance. It is clear that those organisms in 

the middle of the ploughing will be completely destroyed but at the edge the nature of 

the effects are less obvious. It is not apparent if it is indirect effects (e.g. changes in 

habitat) or direct effects of disturbance (e.g. sedimentation) that drive densities, 
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diversity and community structure. Through investigation of a known level of 

disturbance, where Arctic benthic communities were subject to smothering by 

sediment, as occurs at the edges of ploughmarks, it was possible to quantify the direct 

effects of this type of disturbance over a short time scale. The effects of disturbance by 

smothering depended on the extent of disturbance, in general, above a threshold level 

sessile fauna and some motile fauna are killed, more motile fauna can escape the 

disturbance event. At low levels of disturbance sessile megafauna can survive the 

sedimentation and numbers return to typical background levels within a small distance 

of the disturbance event. This study shows that mobile fauna recolonise disturbed areas 

within weeks, with elevated density in intermediate disturbance areas. At this small 

scale diversity increases with distance from disturbance, with no evidence found to 

support increased diversity at intermediate disturbance. This effect would appear to 

occur at a larger scale for megafauna. It would seem that changes in community 

function as a result of habitat changes do not occur at the temporal scale investigated at 

Laggan. 

As methodologically identical studies were carried out in Arctic and Antarctic areas, 

despite the small scale of investigations, it is possible to draw some general 

comparisons between these polar areas. Megafaunal density is within the same range in 

both areas at comparable depths, but small-scale variation is very high in both areas. 

Diversity is considerably higher in Antarctic stations compared to Arctic with around 

double the taxa identified. The proportion of taxonomic groups present differed 

significantly between the regions with higher densities of echinoderms in the Antarctic 

stations and lower densities of annelids. There were large variations in the proportions 

of phyla observed with changes in disturbance. Differences in the diversity of the polar 
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regions can only be explained on an evolutionary timescale. It is clear that there has 

been a much longer evolution of the Antarctic fauna than that in the Arctic, although 

the specific mechanisms of faunal evolution are not yet fully known. 

The use of a range of imaging methods allowed comparison of their uses in deep-water 

ecology. Photography is generally preferable over video. Different imaging methods 

have different practical uses, the most versatile vehicles are typically the most 

expensive. Some vehicles such as AUVs have unique applications in remote 

environments. From this work it has been possible to investigate experimentally the 

biological outcomes from these vehicles through a range of potential operations and 

fine tune to produce the best ecological outcomes. 

In many deep-water areas the first basic stages in ecology have not been completed, 

there is often very little prior knowledge of the densities or diversity of taxa, 

community structure is generally even less well known. This information is important 

in understanding the environment and its biological processes as well as being highly 

valuable for the interpretation of point samples and experimental investigations. Once 

the controlling factors on these communities can be ascertained, the information gained 

in studies of community patterns can more readily be extrapolated to other areas. The 

studies here all bring to light many important questions that can only be answered by 

experimental investigations into responses to physical factors at scales from the 

community to individual organisms.  
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Deep water observations of Lophius piscatorius in the
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In situ behaviour of anglerfish Lophius piscatorius was observed by a remotely operated vehicle

(ROV) in the vicinity of the Schiehallion oil field to the west of the Shetland Isles, Scotland at

water depths c. 350m. Several behaviour patterns associated with the ‘sit-and-wait’ feeding

strategy of L. piscatorius were identified and are described. Concealment behaviour was

characterized by recess creation using pectoral and pelvic fins. Sit-and-wait and resting behav-

iour was typified by relaxed dorsal fin rays and a 34 s exhalation rate. Prey detection responses

had a range of c. 5 m and were identified by erection of the fin rays and a reduction in the

exhalation rate to once every 65 s. Prey attraction was characterized by lure (illicia) casting,

erect dorsal rays and was dependant on both the proximity and position of potential prey. An

opportunistic feeding attack is also described. Walking behaviour was also recorded and is

described. # 2004 The Fisheries Society of the British Isles

Key words: anglerfish; feeding; in situ behaviour; Lophius; monkfish; remotely operated vehicle.

INTRODUCTION

Two species of the genus Lophius occur in the north-eastern Atlantic: Lophius
piscatorius L. (anglerfish also known as monkfish) and Lophius budegassa
(Spinola) (black-bellied anglerfish). Both occur from the Mediterranean and
northwards to waters around Britain (Caruso, 1989). Lophius piscatorius dom-
inates in waters around Britain and its range extends to waters around Norway,
Faroe and Iceland. It occurs from the shoreline to a depth of at least 1000m
(Afonso-Dias & Hislop, 1996). The Lophiidae are distinctive in appearance,
with their depressed body form and wide mouth. Teeth are slender and recurved
(Caruso, 1989) and a fleshy flap (esca) on the distal end of the first dorsal fin
ray (illicium), situated on the snout, is used to lure prey towards the mouth
(Field, 1966).
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In waters around Britain, the biology of L. piscatorius is less well understood
than that of the more traditionally exploited species. Recent publications
have concentrated on the reproduction and early life history of the species
(Afonso-Dias & Hislop, 1996; Afonso-Dias, 1997; Hislop et al., 2000, 2001;
Wright et al., 2002). It has been found that, in general, juvenile fish are distrib-
uted inshore and move offshore into deeper water as they grow (Laurenson,
2003). Females have been found to mature at a greater size than males. Total
length at maturity (LT50%) values for Scottish waters varies between 73 and 98 cm
for females and 48 and 58 cm for males (Afonso-Dias & Hislop, 1996; Laurenson,
2003; J.D.M. Gordon, pers. comm.). Large sexually mature females appear to be
rare, with few being caught in fishery surveys, but they are presumed to live in
deep water.

Dietary analyses have found L. piscatorius to be mainly ichthyophagous
(Smith, 1891; Fulton, 1903), but Crozier (1985) reported that Nephrops norvegicus
(L.) could form an important part of its diet. Although the mode of life of
L. piscatorius has been described as well known (Field, 1966), this appears to
be based on inferences made from their morphology, or from tank based obser-
vation studies, such as those by Chadwick (1929), when feeding behaviour was
described. The behaviour of L. piscatorius is described as the individual lying on
the sea bed patiently flicking the lure to attract prey to the mouth (Field, 1966).
To date there is, however, no published information on the in situ feeding
behaviour of L. piscatorius.

Obtaining good quality in situ recordings of fish behaviour, particularly in deep
waters, is both difficult and expensive. Remotely operated vehicles (ROV) are
routinely deployed for oilrig maintenance and inspection work. Collaboration
between ROV operators and scientists and recent technological developments in
the cameras that can be used, has made it possible to obtain good quality
recordings of marine life in the vicinity of oilrigs. The ROVs used are ideally
suited as they provide a non-invasive means of obtaining detailed in situ observa-
tions in the location of deployment. During such recording deployments success
depends on the ROV pilots happening on an organism that is of interest when a
specific behaviour is being performed. Such opportunities can, however, be
infrequent.

In this paper in situ observations of specific behaviour patterns of anglerfish
are reported for the first time. From these observations, the authors suggest that
the behaviour patterns and mode of life of L. piscatorius are more complex than
the generally held preconception that an individual merely rests on the sea bed
‘flicking’ the lure to attract prey.

MATERIALS AND METHODS

Centurion HD work-class ROVs equipped with a full pan tilt zoom video camera
system and a 3�3 mega pixel digital stills camera were deployed from the MSV Regalia
operated by SUBSEA 7 and BP. Video sequences were recorded at the Schiehallion and
Foinaven oil fields west of Shetland during July 2002. Water depth at the site (60�060 N;
04�040 W) was 380m. Sediment in the area was mainly sand, c. 60mm. Video recordings
were obtained in the SVHS format via live video feed. Analysis from SVHS was com-
pleted using Final Cut Pro and Quicktime 5. Sequences to be analysed were captured and
split into frame-by-frame format (two frames s�1 and 25 frames s�1). Images were

948 C. H . LAURENSON ET AL .

# 2004TheFisheries Society of theBritish Isles, Journal of FishBiology 2004, 65, 947–960



formatted from colour into 16-bit greyscale in TIFF format. Images were edited
using Paint Shop Pro v7.04. Video footage was recorded as part of the BP-SOC ROV
Collaboration Scheme.

ESTIMATION OF FISH LENGTHS

Where possible, LT of individual fish: anglerfish, cod Gadus morhua L., ling Molva
molva (L.) and redfish Sebastes spp. were estimated in relation to structures of known
dimensions. From sequences of feeding behaviour by cod next to a pipe marked with
bands of known width, the lengths of three dominant size classes were identified. Lengths
of anglerfish could also be estimated in relation to these three dominant size classes of
cod.

FOOTAGE OF ANGLERFISH

Video footage of five anglerfish, that was >2 h in duration was analysed. Details are
given in Table I.

RESULTS

The most abundant fish species observed were cod, ling and redfish. Three
main size classes of cod were identified in the area. These were estimated to be
c. 45, 60 and 90 cm, with those c. 60 cm dominating. Lengths of ling ranged from
an estimated 50 to 110 cm. All the redfish were estimated to be between 30 and
40 cm. Additionally, dense swarms of unidentified crustaceans were observed in
association with some of the structures. From the video recording, one or more
types of behaviour were identified from each of five individual anglerfish. In total,
five distinct behaviour patterns were identified and are described. Anglerfish LT

were estimated to be 50–60 cm (one fish), c. 60 cm (three fish) and >100 cm (one
fish).

RESTING AND SIT-AND-WAIT BEHAVIOUR

Resting and sit-and-wait behaviour was typified by an individual lying
motionless and often recessed into the sediment. Individuals appeared to be

TABLE I. Summary of the video footage obtained of five anglerfish and the displayed
behaviours that were analysed

Fish
Estimated
LT (cm)

Date and start time
of recording (hours)

Duration of
recording (min) Behaviour analysed

1 >100 23/07/02 0910 75 Concealment, cough
response, resting
exhalation rates, prey
detection and attraction

2 50–60 24/07/02 1433 17 Walking, resting
exhalation rates

3 60 24/07/02 1451 28 Sediment scooping, attack
4 60 24/07/02 1544 5 Resting exhalation rates
5 60 25/07/02 2239 7 Attack
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well camouflaged, with dorsal fin rays held flat to the body, pectoral fins
extended and touching the sea bed and the caudal fin often lying to one side.
The only visible movement was the periodic exhalation of water through the gill
opening behind the pectoral fins. During exhalation the skin that covers the gill
opening formed a funnel with a circular or oval opening, through which a
current of exhaled water was passed. From a rear view and during exhalations
the white of the inside and underside of the gill opening could be seen. Between
exhalations the gill opening closed. Periods between each exhalation were
recorded from three resting individuals (Fish 1, 2 and 4; see Table I). The
mean� S.D. period between exhalations and numbers of observations were as
follows: Fish 1, 34� 1�65 s, n¼ 37; Fish 2, 34� 1�14 s, n¼ 15 and Fish 4,
34� 1�65 s, n¼ 8.

CONCEALMENT BEHAVIOUR

Two of the anglerfish were observed to use digging, scraping and scooping
actions to create recesses in the seafloor. Both Fish 1 and 3 were observed to use
the pectoral fins to scoop sediment out from underneath their bodies. An
example of the digging, scraping and scooping behaviours exhibited by Fish 1
was sequenced frame by frame and is illustrated in Fig. 1 where simultaneous
scooping of sediment using the pectoral fins and scraping of sediment using the
anal fin and undulations of the tail are shown.

During the behaviour sequence in which sediment was moved from under-
neath the body, Fish 1 had first employed a digging behaviour using the pelvic
fins. This appeared to loosen and ‘fluidise’ the sediment. The pectoral fins were
then used to scoop the loosened sediment from underneath the body. This
behaviour was alternated between each pectoral fin. It involved each pectoral
fin in turn being used to reach backwards and underneath the body. The fin was
then formed into an arc with the posterior edge (furthest underneath the fish)
being pushed into the loosened sediment. Bringing the fin (still in its arc shape)
away from under the body completed the scooping action.

Fish 1 was also observed to undertake several episodes of scraping behaviour
using the anal fin. This scraping behaviour was characterized by the tail being
lifted slightly above the sediment. The outer margin of the anal fin was then
pushed into the sediment. The lateral undulations of the tail that followed
resulted in the anal fin scraping then flicking sediment to either side of the
tail. During the process substantial sediment clouds were visible on either side
of the tail. The scraping behaviour had the effect of creating a recess in which
the tail would lie and was observed to occur both simultaneously to, and
following, bouts of scooping behaviour.

Fish 1 used a considerable amount of effort to conceal itself. When it later
moved from its recess, the recess was distinct on the sea bed. As it swam from
the recess it lifted itself from the sea bed by c. 10–20 cm. At this time it was
noted that the abdomen of this fish was visibly distended. The distended abdo-
men had effectively been concealed when the individual had been laying in the
recess that it had created. Fish 3 was also observed to use a scooping behaviour
to move sediment from under its body. The recording was, however, over a
shorter time period and that individual was in the early stages of recess creation.
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After digging, scooping and scraping, or during a prolonged bout of this
activity, Fish 1 was observed to exhibit ‘cough responses’, presumably to clear
the gills of any disturbed sediment. The ‘cough response’ was characterized by a

 

 

(c) (d)

(e) (f)

(a) (b)

FIG. 1. An anglerfish (Fish 1), scooping sediment using the left pectoral fin and scraping sediment using

the anal fin with the right pectoral fin pushed into sediment. (a) Left pectoral fin underneath body

and pushed into sediment, tail stationary with anal fin pushing into sediment, sediment cloud

emerging from left side of fish (0 s). (b) Left pectoral fin is formed into arc and emerges from under

the body; the tail is lifted to the right clear of the sediment (1�5 s). (c) Left pectoral fin emerges

further as tail is moved further to the right and the anal fin is pushed into the sediment (3 s). (d) Left

pectoral fin is lifted up and out, still in arc shape; tail twists then pushes sediment to the left

creating a sediment cloud (7 s). (e) Anal fin flicks sediment then is lifted from the sediment as the

left pectoral fin starts to reach under the body (10�5 s). (f) Left pectoral fin reaches further under the

body and down into the sediment as the tail is brought to the right (12 s).
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change from the resting exhalation rate, the head was lifted and the mouth
partially opened to take in water, the mouth was then closed and the expanded
buccal cavity contracted. A plume of water was forcibly exhaled through the gill
opening; on several occasions the plume appeared to be cloudy with sediment.
Sequences of two to three cough responses usually occurred in succession,
mean� S.D. time between coughs was 14� 4 s (n¼ 10) and each cough sequence
was 6–20 s in duration.

When the anglerfish had settled after a period of digging and scraping, cod
often approached, on occasion to within several centimetres of the tail. It
appeared that the sediment disturbance caused by the anglerfish attracted the
cod that were searching for invertebrate prey items in the benthos.

PREY DETECTION AND ATTRACTION RESPONSES

When potential prey, for example cod, approached to within a range of c. 5 m
a ‘prey detection’ response was frequently initiated. This was characterized by
an alteration of the exhalation rate and erection of the dorsal fin rays. The
exhalation rate halved from the resting rate to once every 65 s (16 observations
averaged over three fish). During prey detection the 4th–6th cephalic dorsal rays
were raised to an angle of c. 45� and if the potential prey approached to within
c. 2–3m these rays would generally become erect (c. 90� to the body). If a
potential prey was within a range of c. 1–2m and was in front of, or above the
anglerfish, then the eyes could on occasion be observed to move, apparently
tracking the potential prey.

During the ‘prey attraction’ response lure casting was always associated with
the rays being erect. Raising and casting the lure forwards took c. 1 s. From
being in the forward position, to returning to the lowered position took 1–2 s.
Casting was only observed when potential prey were within close proximity and
occurred in bouts of one to three casts. If the potential prey was not in a
position suitable for a successful attack, for example behind the anglerfish,
then lure casting was usually not initiated.

ATTACK BEHAVIOUR

Two instances of attack behaviour were observed. One was an attack where no
obvious potential prey was present (Fish 3), although there were krill and other
crustaceans in the area that may have initiated the response. This attack served to
illustrate the speed of the action, which was <1 s in duration. The sequence was
separated frame by frame at 25 frames per second and is illustrated in Fig. 2.

The other attack resulted in the capture of a cod and illustrated the oppor-
tunistic nature of the anglerfish as the attack occurred without prior attraction
behaviour being displayed. The anglerfish (Fish 5) was lying beside a piece of
equipment, the sediment in front of it had been disturbed and there was activity
by disturbed invertebrates. As the anglerfish had not raised or flicked the lure in
an attempt to attract the cod it is assumed that the cod was attracted by the
activity of the invertebrates. The cod was estimated to be 50 cm LT. As the cod
approached, the eyes of the anglerfish moved and appeared to focus on the cod
prior to the strike. During the strike it appeared that the pelvic fins were used to
propel the anglerfish upwards and forwards. The initial strike is illustrated in
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Fig. 3. As the strike was initiated, the cod started an escape response. This
resulted in the anglerfish catching the cod by gripping it across the left side
and over the back. The anglerfish held onto the cod for 3 min 17 s before it was
released. During this period the cod initially appeared to be stunned holding its
body in a rigid posture. The anglerfish made several attempts to reposition or
get a better grip on the cod by altering its bite. The cod was eventually released
after it started ‘thrashing around’ as is illustrated in Fig. 4.

 

 

 

(c) (d)

(e) (f)

(g) (h)

(a) (b)

FIG. 2. Frames illustrating the ‘fake attack’ by an anglerfish (Fish 3); (for scale each band on the pipe

was 7�5 cm). (a) Fish lying flat on sea bed, dorsal rays at 45� (0�00 s). (b) The mouth and anterior

part of the head starts to move upwards, anterior part of pectoral fin angled down (0�16 s). (c) Head

lifted higher as mouth opens (0�20 s). (d) Head at highest position and mouth with widest gape;

posterior part of tail lifting (0�28 s). (e) Mouth closing, buccal cavity expanded; tail lifted and

pectoral fin lifting (0�36 s). (f) Body lifted from sea bed, buccal cavity retracting as brachial cavity

expands (0�48 s). (g) Body straightening, mouth closing (0�60 s). (h) Mouth almost to closed

position, water being exhaled, fish still above sea bed (0�72 s).
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WALKING BEHAVIOUR

Fish 2 was observed to undertake several episodes of walking behaviour.
During each episode both the pelvic and pectoral fins were involved. To
illustrate the sequence of movement along one side of the body, one of the
episodes was sequenced frame by frame and is shown in Fig. 5. It appeared that
the pelvic fins were used to lift the body up from the sea bed and those were the
main weight bearing fins. The tail was slightly raised from the sea bed and
although it was moved back and forth the impression was given that the main
propulsion was due to a combination of the pelvic and pectoral fins.

The gait observed was such that as the right pelvic fin bore the weight of the
fish and was in a forward position, the right pectoral fin was angled backwards.
The left pectoral was also observed to be in the forward position at this time.
The left pelvic fin was obscured, but from the movement of the fish and from
the obvious weight bearing role of the right pelvic fin it is believed that the left
pelvic fin was in the backwards position. As the fish moved forward over the
right pelvic fin it also moved forwards in relation to the position of the left
pectoral fin. This resulted in both fins being in the backwards position. As this

(a) (b)

(c) (d)

FIG. 3. Frames showing strike sequence by an anglerfish (Fish 5) on a prey cod. (a) Anglerfish poised to

attack (0�00 s). (b) As the anglerfish moves forwards and upwards, the cod initiates an escape

response (0�24 s). (c) After propelling the anglerfish forwards and upwards the pelvic fins lift off the

sea bed, the buccal cavity is expanded and the anglerfish bites the cod (0�40 s). (d) The anglerfish

lifts from the sea bed, turning to the left (0�64 s).
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(a) (b)

(d)(c)

(e) (f)

(h)(g)

FIG. 4. Frames illustrating thrashing by the cod prior to release by an anglerfish (Fish 5). (a), (b), (c)

Anglerfish biting cod, the pelvic and pectoral fins of the anglerfish are extended and the cod is in a

rigid posture with opercula open (0, 1�5 and 5 s). (d) The cod starts thrashing, the tail is brought to

the right and this starts to twist the body of the anglerfish in a clockwise rotation (2�5 s). (e) The

movement of the anglerfish tail and pectoral fins appears to reverse the rotation; the cod is twisted

further up as the anglerfish rights itself (5 s). (f) The cod bends towards the left, as this happens the

anglerfish becomes more vertical and its tail twists to the left (l0 s). (g) The anglerfish twists around

so that the cod is facing downward (11�5 s). (h) The anglerfish starts to right itself (12�5 s).
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occurred, the right pectoral fin was brought forward. As the fish continued to
move forward it appeared that the right pectoral fin bore some of the weight of
the fish. As the forwards movement continued it resulted in the right pectoral

(a)

(c) (d)

(f)(e)

(b)

FIG. 5. Sequence illustrating an anglerfish (Fish 2) walking across the sea bed using the pectoral and

pelvic fins. (a) Right pelvic fin forward, bearing weight, right pectoral fin backward position (0�0 s).

(b) Moving over right pelvic fin, right pectoral fin further back, anterior edge starting to lift (0�5 s).

(c) Right pelvic fin backwards; right pectoral fin being brought forward (1�0 s). (d) Right pectoral

fin forwards; right pelvic fin not visible (1�5 s). (e) Right pelvic fin returned to forward position,

right pectoral fin moving backwards (2�0 s). (f) Moving over right pelvic fin, right pectoral fin

further back and lifting from sea bed (2�5 s).

956 C . H . LAURENSON ET AL .

# 2004TheFisheries Society of theBritish Isles, Journal of FishBiology 2004, 65, 947–960



fin returning to the backwards position and at this time the right pelvic fin
was observed to have returned to the forward position. From the spread of
the pectoral fins it appeared that they provided stability during the walking
behaviour.

DISCUSSION

For a sit-and-wait feeding strategy to be effective it seems logical that an
individual would benefit from increasing the effectiveness of its camouflage. It
appears that the creation of a recess assists in the concealment of individuals, in
particular, individuals with a distended abdomen, due to either a large meal or
due to the presence of ripe gonads. This is because the recess allows the dorsal
surface of the fish to be more level with the sea bed. From the video recording
obtained, it is evident that a significant investment can be made in recess
creation. The use of the pelvic fins as a digging tool to loosen sediment explains
their morphology. The pelvic fins are well developed in that they are thick,
fleshy and stout and the skin appears more robust than skin elsewhere on the
body. Similarly the well developed fan-like pectoral fins allows them to reach
underneath the body and their flexibility enables the arc shape to be formed and
this plays a key role in scooping the loosened sediment out from underneath the
body.

During recess creation substantial amounts of sediment were disturbed. After
bouts of sediment excavation cough responses were usually initiated. These were
presumed to have the effect of clearing the gills of sediment. Similar coughing
responses have previously been observed after periods of burrow excavation by
the snake blenny Lumpenus lampretaeformis (Walbaum) (Atkinson et al., 1987).
Once the anglerfish had settled into a resting behaviour, after a period of
sediment excavation, potential bottom feeding prey such as cod were observed
to approach and investigate the newly disturbed sediment. Cod attracted in this
manner appeared unaware of, or unperturbed by, the presence of the anglerfish.

The prey detection responses by the anglerfish were clearly initiated by the
approach, from any direction, of potential prey. The distance at which a response
was triggered was estimated to be c. 5m. The halving of the exhalation rate
would assist in continuing the concealment. The purpose of the 3rd–6th rays
being raised to an angle of c. 45� and then becoming erect upon a closer approach
by potential prey may be part of the prey attraction behaviour. Equally, the
erection of the rays could be important in the detection of vibrations in the water
caused by the swimming motion of the potential prey. The neuromasts that all
fishes have over their body surface, and in the lateral lines of teleosts and
elasmobranchs, are mechano-receptors that detect water movements (Moyle &
Cech, 2000). The swimming motion of fishes creates hydrodynamic trails and
recently it has been shown that fishes are capable of tracking other fishes on this
basis (Montgomery et al., 2002). The halving of the exhalation rate at this time
would reduce any water movements created by the anglerfish and this may
increase the sensitivity of the anglerfish to movements produced by potential
prey. In anthropomorphic terms, it appears analogous to holding one’s breath
and listening intently.
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In the observed cases, lure casting was used economically. No more than
three individual casts were observed to occur in succession and casting appeared
to occur only when a potential prey fish was towards the front of the anglerfish,
i.e. close to striking distance. On the occasions when cod were investigating
sediment, just centimetres from the anglerfish tail, casting was not initiated
although the other dorsal rays were erect. If a strategy of sustained lure casting
was undertaken it could result in the mechanism becoming less effective, for
example through loss of concealment or by habituation of the potential prey.

The attack on the cod that was recorded confirms that anglerfish can be
opportunistic in nature. Studies on the diet of anglerfish have shown that they
are unselective and that stomach contents largely reflect prey availability (Crozier,
1985; Laurenson, 2003). In waters off Shetland gadoids can form an important
part of the diet (seasonally up to 80% by mass) with cod representing 40%,
although this may be reduced during the summer (Laurenson, 2003). The oppor-
tunistic attack also demonstrated that anglerfish may attempt to take prey items
that are quite large in relation to their own body size. Diet studies have also
noted that anglerfish can consume large meals, of one or more prey items, to the
point where the stomach walls are thin and stretched, and the abdomen visibly
distended (Laurenson, 2003).

Incidences of net feeding, the opportunistic feeding during capture by trawl,
was recently found to occur in up to 15% of individuals captured during
demersal trawling around Shetland (Laurenson, 2003). During that study, cod
up to two-thirds LT of an individual anglerfish were recorded as having been
taken in this manner (C.H. Laurenson, unpubl. data). The LT of the cod
involved in the opportunistic attack recorded in this study was somewhat larger
(50 cm) in relation to the attacking anglerfish (60 cm). Although the attack that
was recorded was not successful, it does serve to highlight that the species will
attempt to take prey items almost as large as themselves. The largest anglerfish
observed in this study would certainly have been capable of preying on the
dominant size class of cod, estimated to be c. 60 cm LT. The remaining anglerfish,
themselves at c. 60 cm LT, may have been more limited to the smallest of the cod
and ling observed, and possibly the redfish (all estimated as 30–40 cm LT).

The other main behaviour described was the walking behaviour. This behav-
iour has not previously been reported in Lophius species. The gait observed for
L. piscatorius involved a combination of movements using both the pelvic and
pectoral fins. The pelvic fins, which, as previously discussed, are quite well
developed and stout in appearance, appeared to be the primary weight bearing
fins during walking and provides another explanation as to the functional role
in relation to the morphology of these fins. The pectoral fins, which when
extended appeared to act as wings, were more important for stability during
walking. The gait recorded is different to that described by Pietsch & Grobecker
(1990) for frogfishes Antennarius spp. when two different gaits were reported.
The first was described as ‘crutching’, when the pelvic and pectoral fin pairs
alternate in bearing weight. The second gait was described as ‘walking’ and was
characterized by use of only the pectoral fins.

The walking behaviour appeared to be adopted for moving short distances,
i.e. several metres at a time, across the sea bed. The function of walking, as
opposed to swimming, was not clear but it may be related to the selection of
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particular sediment characteristics, which it would presumably determine from
contact by the pelvic fins. The use of walking to allow the stalking of potential
prey was not recorded but the distances walked did, on occasion, appear to bring
the anglerfish into areas where potential prey were more densely congregated.

Catch rates of anglerfish in the region are typically lower than those for species
such as cod or haddock Melanogrammus aeglefinus (L.) (C.H. Laurenson,
unpubl. data). During this study it was not possible to determine whether
densities of the fish species were higher in the immediate vicinity of the under-
water structures compared to the surrounding area. The numbers of fish, and the
feeding activity that was observed as a result of sediment disturbance, however,
have led to the believe that the observed fish were aggregated around the
structures, at least on a temporary basis when work causing minor sediment
disturbance was being undertaken. Previous studies have also found significant
aggregations of fishes close to oil platforms (Caselle et al., 2002; Løkkeborg et al.,
2002; Soldal et al., 2002). Common reasons for fishes aggregating at artificial
reefs such as oil platforms include an improved food supply, shelter from currents
and possibly reduced risk of predation. In the current study it would appear that
the presence of the observed fishes could be related to food supply. In addition,
due to the 500m fisheries exclusion zones around platforms in U.K. waters the
platforms may act, on a small scale, as refuges or protected areas allowing
aggregations of fishes to form.

The video footage analysed in this paper serves to highlight the potential
wealth of in situ behavioural information that could be generated through the
use of ROVs, particularly through collaborative projects where ROVs are
already routinely deployed. This is of particular importance for commercially
exploited species such as anglerfish where relatively little is known of their
biology. From footage of just >2 h duration in situ feeding behaviour and the
associated behaviours of recess creation, prey detection and attraction responses
exhibited by anglerfish have been described for the first time. Walking behav-
iour has also been described for the first time and the functional morphology of
the pectoral and pelvic fins has been related to the behaviours described. The
behaviours described for L. piscatorius in this paper indicate that the investment
in concealment behaviour by a sit-and-wait strategist can be substantial.

We wish to thank the ROV pilots, offshore supervisors and onshore staff of Subsea 7
for their support, expertise and enthusiasm, without which this footage would not have
been taken, and to BP for their continued efforts in ROV collaboration projects. We also
wish to thank S. Marrs for comments on early versions of this manuscript.
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INTRODUCTION

A
utonomous Underwater Vehicles (AUV) are
unmanned, untethered, self-powered submersibles
that can be used for a variety of undersea tasks. They
are programmed to carry out missions without com-

munication from the surface. The potential of AUVs to gather
oceanographic and geophysical data from the world’s oceans is
large and their operation greatly increases the amount and qual-
ity of data that can be obtained from scientific cruises. The
Institute of Oceanographic Science Deacon Laboratory
(IOSDL), now part of the Southampton Oceanography Centre
(SOC), began the development of a scientific AUV called
Autosub, a 6.7m streamlined, torpedo-shaped vehicle with a
free-flooding hull, large payload space and sufficient battery
capacity for long range missions. Autosub can carry a wide vari-
ety of physical, biological, geophysical and chemical sensors to
provide scientists with the ability to monitor the oceans in ways
not possible with conventional research ships. These sensors
can be tailored to the science requirements of the mission. For
investigations close to the seabed a camera system can provide
very important information on seabed geology and biology,
although there are many inherent problems in integrating
seabed camera systems into AUVs.

Photography of the seafloor has been very important in
the development of marine science particularly in deeper
waters.1, 2 These direct observations of the oceanfloor are crit-
ical to understanding the physical, chemical and biological
processes occurring there. Photography is a very effective
tool for obtaining high resolution quantitative data about geo-
logical and biological features of the seafloor over a relative-
ly large area. Deepwater photography is typically carried out
using towed camera platforms3 or Remotely Operated
Vehicles (ROV)4 but these approaches require physical com-
munication with a research vessel. Using an AUV for under-
water photography allows the imaging of remote environ-
ments that cannot be accessed by standard methods and opens
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up new possibilities for marine science.
The Autosub Under Ice (AUI) programme

(http://www.soc.soton.ac.uk/aui) is a UK Natural
Environment Research Council (NERC)-funded thematic
programme to utilise the Autosub AUV to investigate the
nature of physical and biological processes beneath polar ice.
These high-latitude environments are among the most remote
and least known on Earth, but are of considerable signifi-
cance with far-reaching implications for the global system.
This project showcases the unique scientific capabilities of
AUVs in an area where sampling by other methods is
impossible. For the AUI missions a camera system is very
important, and this represents the first opportunity for scien-
tists to see this unstudied environment and gather quantita-
tive ecological and geological data. The camera system
needs to take and store regular high resolution photographs
of the seabed that show the greatest amount of scientific
information and that are of known physical scale to allow
the quantification of the data obtained.

ENGINEERING AN AUV FOR SCIENCE
Autosub AUV
The Autosub2 AUV is 6.7m long, 0.9m max diameter and has
a 3.6m3 form displacement.5 Over the last six years it has been
used for a wide variety of scientific missions in the fields of
ocean physics6, biology7, chemistry8 and more recently geo-
physics and glaciology in the Arctic and Antarctic.

The vehicle (Fig 1) splits into three sections: rear, central
and front. The central section comprises seven, 3m long car-
bonfibre reinforced plastic (CFRP) pressure vessels, with
interstitial spaces filled with syntactic foam. Four of the tubes
house the battery system (3900 ‘D type’ primary manganese
alkaline cells, total weight = 540 kg) which provided up to
60kWh of energy (depending upon usage rate and tempera-
ture). The three other tubes house control and sensor electron-
ics. The CFRP pressure vessels limited the safe operating
depth of Autosub2 to 1600m.

The rear section is mainly free-flooding with some extra
buoyancy (syntactic foam). It houses essential sub-systems,
(eg, navigation, control actuation and propulsion systems)
and scientific sensors (eg, digital camera, upward-looking

300kHz RDI Acoustic Doppler Current Profiler (ADCP) and
multibeam receiver). 

The navigation housing consists of a 150kHz RDI ADCP
and Ixsea PHINS fibreoptic gyro-based inertial navigation
system (INS).  For best accuracy, the navigation system needs
bottom locked velocity data aiding from the ADCP, requiring
a range to the seabed of less than 500m. With bottom tracked
aiding, operational results with Autosub2 demonstrated accu-
racy of better than 0.1% of distance travelled, even at high
latitudes (as high as 80deg north), where INS systems are
generally less accurate. This is of vital importance in under-
ice operations, where Autosub may need to return to a small
area of clear water after a long run under sea-ice or ice shelf.
A single brushless direct-drive (no gearbox) dc motor and
five-bladed propeller propels the vehicle with a speed range
of 1 to 2m/s. A rear mounted rudder and sternplane  provides
control in yaw, pitch and depth. 

The front section is free-flooding and houses other essential
sub-systems (eg, forward looking collision sensor and emer-
gency abort system) and science sensors (eg, the Conductivity
Temperature Depth (CTD) system and the multibeam transmit-
ter). The control system for Autosub was based upon a distrib-
uted, networked control architecture.9 One of the major advan-
tages of such a modular approach is that new sensors can be
integrated into the system with relative ease. 

Three small hydrophones on the base of the nose section
act as receivers for the homing system which guides the
Autosub back to the mother ship. This facility is particularly
useful when the vehicle is operated under mobile sea-ice and
it is not possible to predict in advance where there might be
an opening in the ice cover suitable for its recovery. The hom-
ing system was used to effect safe recovery of Autosub in sev-
eral of the missions during the AUI campaign in August 2004.

Collision avoidance and flight constraints
The Autosub2 mission control system executes a pre-pro-
grammed list (the mission script) of position waypoints,
depth, altitude and speed demands. For depth control, at any
segment of the mission, the vehicle can be programmed to
run at a specific depth, an altitude off the seabed or a distance
below an ice-shelf. Safety limits for depths and altitude were
set independently of, and override, the mission script
demands. For camera work, the constant altitude mode was
used. Altitude feedback was provided by range measurements
by two of the four downward-looking beams of the ADCP. 

The forward-looking echosounder provides a simple
measurement of the range to any target ahead of the vehicle.
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Fig 1: Autosub2 schematic.The camera is mounted vertically in
the tail section and the flash gun is mounted in the nose sec-
tion, angled back at 27 deg to the vertical (optimum for a fly-
ing altitude of 10m)
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The collision avoidance system triggers a ‘collision immi-
nent’ event if the following condition is true: 

Collision Imminent Set if (and only if): 
1. The range rate was greater than 1m/s for 10sec (the tar-

get is approaching continuously)
2. AND the range is less than 100m.
In a collision imminent event, the collision avoidance

control system temporarily assumes command of the vehicle.
It sets the minimum altitude limit to a safer value (40m). It
commands the vehicle to execute a reciprocal course for a set
distance (reciprocal course is assumed safe) and then it com-
mands the vehicle to attempt to go around the obstacle. If this
fails (a further collision imminent event occurs), then the
vehicle repeats the procedure, but with a new, randomly cho-
sen heading offset to the original track. Once clear of the
obstacle, the original course and safety limits are restored. 

The minimum safe altitude for Autosub to fly at depends
upon the type of terrain. In smooth, sedimented, well-know
terrain it could be flown at altitudes of about 3m, but in areas
with rougher terrain or where the terrain is less well know,
then a practical minimum safe altitude is 10m.

Camera system
Successful operation of a camera in Autosub had a number of
implications for the camera system. Integration of a camera
system into an AUV brought about limitations on size, to fit
into the limited scientific payload space on the vehicle and
power consumption of flash and camera. The camera system
required autonomy in operation as well as links to the
onboard computer systems on the AUV. 

The operational limitations of the AUV, particularly with
regard to the safe flying altitude of 10m, required solutions
for effective photography. Light dissipates through water
much faster than through air; underwater photography over a
distance of 10m is challenging. Both absorption by seawater
and scattering by suspended particulate matter rapidly reduce
light intensity. The latter effect can be reduced by minimising
the overlap between the illumination and imaging paths.
Consequently the camera and flashgun were mounted as far
apart as possible, separated by the centre section of Autosub.
At a flying altitude of 10m (round trip for light of 20m), very
little light except blue and violet returns to the camera lens.
Even in pure water very little of the red-orange end of the
spectrum returns: 99.5% is attenuated. Hence a colour cam-
era was inappropriate and as only one in four (the blue) pix-
els would register any light, the sensitivity of a colour system
would be at best 25% of a monochrome camera. Research
during the Antares underwater neutrino experiment10 meas-
ured a blue light (450nm) attenuation length of 60m at
2400m water depth in the Mediterranean. Based on this (most
likely best case, the result was close to that of pure water) for
our 20m round trip, then only 29% of the blue light would
have been attenuated. 

The camera system chosen was a Starlight SXV-H9, a
black and white CCD imager intended for use by amateur
astronomers. The imager used a Sony ICX285AL Exview
HAD CCD with square pixels size of 6.45x6.45µm and an
imaging area of 1392 x 1040 pixels. This imager was select-
ed for its good photon efficiency in the blue part of the spec-
trum and low readout noise (about 20 photons rms equiva-

lent). It was mounted on a peltier effect device that lowered
the chip temperature as much as 30oK below ambient, giving
much reduced sensor dark current. The imager signal was
digitised to 16 bit resolution, allowing the high dynamic
range of the sensor to be exploited. This high dynamic range
allowed useful images to be extracted from data with high
levels of back scatter, by subtraction of the backscatter field.
This technique has been used in astronomy to good effect to
remove the effects of light pollution and it was equally appli-
cable in the underwater, backscatter environment. The cam-
era was fitted with a 25mm focal length cine lens, which with
the water/air interface magnification factor of 1.33, gave a
field size of 2.7m x 2.0m with Autosub flying at 10m altitude
(pixel resolution on the seafloor of 2mm square). The camera
was installed pointing vertically downwards in the tail section
of Autosub within a 150mm dia, 400mm long aluminium
housing, with a plane glass window.

An efficient flash system was needed to get a good signal
to noise ratio. A Minolta 3600HS zoom flash was selected,
modified with a fixed zoom setting of 85mm (for a 35mm
camera). Tests with a photodiode indicated that 50% of the
energy was output within 1000 microseconds (1 millisecond).
Given a vehicle forward speed of 1.6 ms-1, then some image
smearing (~1.6mm) was expected along the direction of vehi-
cle travel (although this was not apparent in field results).
With a well focussed flash, narrow camera field of view and
a good (4.5m) separation between camera and flash, the prob-
lems of back-scatter from particulates were minimised, as a
result of the small intersection volumes of the camera field of
view and flash illuminated cone. The flash was mounted in a
100mm dia enclosure, with a glass window and installed in
the nose section of vehicle, angled back at 27 deg to match
the 10m flying altitude.

Field of view calculations
One of the performance limiting factors for use of such an
imaging arrangement was the depth of field (DOF) required.
A trade-off must be made between the DOF and amount of
light entering the imager as a large DOF required a small
aperture (high f-number). In-focus images were required for
a flying altitude between 9.5 and 10.5m. The field of view for
a camera system, with focal length: f, numerical aperture: N,
acceptable circle of confusion: c, range to object: R, is shown
in equation 1.

DOF=

(1)

With f = 25 x 1.33mm (focal length corrected for water/air
magnification factor), N=2.8, c=6.45µm (pixel side), R=10m,
the DOF was 3m (±1.5m). This was acceptable and allowed
the use of a reasonably large aperture. 

Data logging
The camera data logger was a PC104 format personal com-
puter running Labview under Windows 98. It communicated
with the camera via a USB port. The raw 16 bit images were
written to an 80 Gb hard disc, which could be accessed via the
Autosub Ethernet link and IEEE802.11b radio link. The abil-
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ity to download the images from the Autosub via radio was
operationally very useful. With a radio operating range of
500m, in many cases the images could be downloaded before
the vehicle was recovered onto the support ship. 

System integration of camera and flash on Autosub
A control node microcomputer, connected into the vehicle
LonWorks control network, was used to co-ordinate the syn-
chronisation of the camera and flash. The connection of the
node into the vehicle control network, with access to the vehi-
cle sensor data, facilitated its programming to fire the camera
and flash only when the vehicle was within range (15m) of the
seabed. The node also sent the serial number of the flash taken
to the vehicle engineering data logger, so that the digital photo-
graphs could be referenced to vehicle position, depth and atti-
tude at the instant of the frame. This node triggered the camera
140 milliseconds before it triggered the flash, as the camera
took this time to initialise before opening its (electronic) shutter.
The shutter was left open for 10 milliseconds. The maximum
photo rate was limited by the slow USB-1 interface between the
camera and the data logger to one frame every 8 sec. 

FIELD OPERATIONS 
Trials cruise
The first opportunity to test the camera system was during
Autosub systems trials in the general area of the Western
Approaches in May 2004. The first images proved the viabil-
ity of the general approach. Images showed good signal to
noise ratio (rms noise for a black field is 20 counts: rms sig-
nal is 1500 counts). The main technical issue was uneven illu-
mination, owing in part to shading of the flash gun within its
enclosure. This can be remedied partially by image post pro-
cessing to even out the apparent illumination, although the
less well illuminated areas at the image edges have lower sig-

nal to noise ratio. Raw data from the camera was processed
using Matlab and the image files produced using a high pass
filter and dynamic range compensation.

Arctic deployment of Autosub
An arctic deployment of Autosub from the RRS James Clark
Ross was the second of three scientific voyages in the AUI
programme. The work was carried out in the
Kangerdlugssuaq Fjord system in east Greenland. This is a
deep fjordic system impacted by seasonal ice cover and with
permanent areas of floating ice from the many glaciers that
drain into this area. Autosub conducted many successful mis-
sions in this area carrying out a suite of different operations,
seabed photographs were obtained from two stations at the
entrance to the fjord system (Fig 2). Concurrent with the
Autosub investigations, the SOC Wide Angle Seabed
Photography (WASP) towed camera system was operated in
areas clear of ice to take photographs of the seabed. This was
carried out to provide images, from a conventional towed
camera system, that could be compared with the images
acquired by Autosub. WASP is an off-bottom (2-6m) towed
camera platform, operated using an acoustic telemetry sys-
tem, carrying a vertically mounted still camera and a vertical-
ly mounted video camera. This vehicle is typically operated
for one hour at the seabed, yielding some 250 still photo-
graphs (35mm Kodak Vision 250D colour negative) and con-
tinuous video footage (mini digital video cassette). 

Comparisons with existing technology
Images obtained from Autosub (Fig 3) were broadly compa-
rable with those taken by the WASP vehicle (Fig 4). Despite
the differences in operating altitude, each frame showed a
comparable average area of seabed. Unlike Autosub which
holds a relatively constant altitude, WASP ranges in altitude
with the ships heave, producing useful images from 2m to 4m
altitude (area of seabed covered = 2.35m2 to 9.41m2). There
was a discernibly higher resolution in the WASP images
reflecting the increased resolution of conventional film over
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Fig 2: One of the first images obtained by the Autosub digital
camera in a water depth of 230m.The image area is cropped
to 2.0m x 1.6m. Illumination from the bottom of field. Notice
the fish shallows, which are more distinct than the fish
images. Date: 05/19/04;Time: 19:22:23; Altitude: 10.1m; Depth
229.4m; Position (deg): 48.25321N, 9.5942W;
Heading/Pitch/Roll (deg) 271.5, -2.84; -2.77

Fig 3: Autosub image from arctic Greenland in a water depth of
c.600m.The image area is cropped to 2.0m x 1.6m. Illumination
from the bottom of field. Date: 09/09/04;Time: 04:16:27;
Altitude: 10.31m; Depth 587.8m; Position (deg): 68.03364 N,
31.79108 W; Heading/Pitch/Roll (deg) 36.2, -5.2; -2.45



the CCD imager (1392x1040 pixels). The resolution of the
Autosub images is nevertheless highly satisfactory for scien-
tific characterisation of the seabed. The monochrome nature
of the Autosub images did not reduce the scientific value of
the image although in some cases identification of some
species is aided by colour information.

Generation of scientific data from photographs
The aim of the biological analysis of the arctic Autosub mis-
sion was to generate scientific data from the photographs. For
quantitative investigation it is first necessary to scale the
images and calculate the area of seabed shown in each frame,
this was achieved using trigonometry from the camera
acceptance angles and the altitude of the camera from the
seabed using the methods of Wakefield and Genin.11

Vertically shot images obtained from Autosub facilitated such
scaling. The fraction of the biological community identifiable
in photographs is typically referred to as megafauna.12 The
megafauna in each frame were identified as far as possible,
which was greatly aided by concurrent trawl sampling, and
numbers of each taxon counted. These values were converted
to numbers per unit area. It was often also possible to identi-
fy faunal traces or lebensspuren, such as tracks, trails,
imprints and burrows in the sediment. These traces were
identified and their area measured as a proxy for megafaunal
activity in an area. Faunal body size was also measured for
abundant or important taxa. The seabed fabric observed was
also characterised. In the case of Kangerdlugssuaq, where the
seabed was highly heterogeneous as a result of glacially
derived material, seabed sediments were classified by particle
size following the scheme of Wentworth.13 To classify seabed
type in each frame, 100 random points were projected onto
the image and the composition of the seabed at each point
noted to give percentage cover of each sediment size class.

Geological features were also noted and their presence was
assessed in relation to geophysical data (eg, swath bathyme-
try) obtained concurrently by Autosub.

While the scientific results of the arctic fieldwork will be
presented in full elsewhere, it is appropriate to present some
preliminary observations on the benthic megafauna generated
from both the Autosub and WASP images of the
Kangerdlugssuaq fjord mouth area as an example.
Photographs revealed a highly heterogeneous seabed charac-
teristic of iceberg rafting, with sediments ranging from fine
sand to large boulders, often over small spatial scales.
Multivariate similarity analysis of megafauna revealed three
distinct communities in shallow (270-375m depth), interme-
diate (480m depth) and deep waters (625-720m depth).
Faunal abundance was found to decline with depth (from
abundances of >60 000 individuals ha-1 in the shallow stations
to <2000 individuals ha-1 in the deeper stations) while diver-
sity increased (Shannon-Wiener diversity index, H’ increased
from 0.96 at the shallow stations to 2.76 at the deeper sta-
tions). Faunal trace area (0.04% total area sampled disturbed
by traces in shallow and 1.01% in deep waters) and number
(2980 traces ha-1 in shallow, 77 440 traces ha-1 in deep waters)
increased with depth, reflecting a change in dominant feeding
strategy from suspension feeders at shallow sites to deposit
feeders in deeper waters. There was high within site patchi-
ness of some fauna which may be related to iceberg distur-
bance.

DISCUSSION
The field operations have shown the capacity for Autosub to
collect high quality images of the seafloor that are suitable for
scientific analysis. Despite reductions in resolution and their
monochrome nature, Autosub images were otherwise compara-
ble with those taken with existing towed deepwater imaging
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Fig 4:WASP image from arc-
tic Greenland in a water
depth of 658m.The image
area is cropped to 1.4m x
1.0m. Illumination from the
right of field. Image originally
in colour. Date: 03/09/04;
Time: 09:46; Altitude: 2.98m;
Depth 658m; Position (deg):
68.0485 N, 31.7610W 



systems. While the expense of AUVs will be a consideration in
their imaging potential their autonomous nature allows them to
be used in remote environments that cannot be sampled with
existing technology. In addition, their autonomy from research
vessels and ability to work concurrently with other sampling
programmes, will make AUVs increasingly important for
adding extra data and value to existing research cruises.

As part of the continuing Autosub Under Ice programme,
Autosub will be used to take photographs under the Filchner
Ronne ice shelf in Antarctica. The Filchner Ronne ice shelf is
one of the biggest on earth, fed by several ice streams draining
the West Antarctic Ice Sheet. It is a very challenging environ-
ment with permanent ice cover up to 600m thick and seabed
depths of up to 1400m under the ice. At the seaward edge of the
ice shelf there is a shallow sill, rising from 1000 to 400m deep,
which may leave as little as 100m water column thickness in
some areas at the ice front.14 This area will pose some interest-
ing challenges for Autosub but may provide the first pictures of
this unique environment and some insights into the hitherto
unknown benthic biology and geology of the area. 

Deploying an AUV in the deep ocean is expensive. Hence
it is desirable to maximise the data rate from any sensor sys-
tem. The two ways of achieving this for a camera system are
to use an image sensor with more pixels and to increase the
frame rate. The average power needed by the flash system is
proportional to the number of pixels and the frame rate.
However, the power drain by the camera system from an
AUV the size of Autosub would not be an issue, even for a
multi-mega pixel camera and frame rates up to 1Hz. The pres-
ent digital camera system produces an image of an area of
2.7x2m at 10m altitude. With the present image rate of one
per ten seconds and a 1.5m/s vehicle speed, then the system
is under sampling the seabed by a factor of about ten.
Although the image rate could easily be doubled, simply by
providing a USB-2 rather than USB-1 interface for the data
logger, this would represent the maximum for this camera and
flash. An example of a sensor with good efficiency and high-
er number of pixels is the Kodak KAF-16801E(LE), which
has a 16 mega pixel monochrome sensor, with good quantum
efficiency in the blue region. Given suitable optics, this in
itself would increase the data rate by a factor of 11, with
options of either better resolution or a larger image area. Its
maximum read rate places a limit of one image every 1.6 sec.  

Autosub was among the first AUVs to have a camera sys-
tem. One of the more scientifically important alternative
approaches is that taken by the Woods Hole Oceanographic
Institution Deep Submergence Laboratory’s (WHOI DSL)
Autonomous Benthic Explorer (ABE) vehicle.15 This vehicle is
unlike Autosub in design and more adapted to precise control
over considerably shorter range than Autosub (theoretical range
<50km for ABE, 800km for Autosub), ABE has seven thrusters
and is capable of movement in any direction much like an
untethered ROV. It has a camera system currently consisting of
stereo, monochrome, downward pointing digital cameras each
providing an image resolution of 576x768 pixels with a dynam-
ic range of 8 bits. When updated as planned the ABE camera
system will allow colour imaging as the vehicle can operate
closer to the seafloor. These vehicles represent different solu-
tions to AUV imaging for science and hence will have different
scientific uses. While ABE-like systems may produce ‘better’

images over a short range they will not be able to sample in the
more remote environments or at the long ranges which vehicles
such as Autosub are capable of investigating. 

A development, parallel to ABE, at the WHOI DSL is the
SeaBED vehicle (http://www.whoi.edu/DSL/hanu/
seabed/index.html), this represents an alternative approach to
AUV imaging. It is a readily available operationally simple AUV
designed to rapidly test imaging methods and docking method-
ologies with the aim of pursuing repeat surveys for change detec-
tion and quantification of features. SeaBED is a hover-capable
vehicle that performs optical sensing with a 12 bit 1280x1024
monochrome CCD camera, combined with acoustic high resolu-
tion mapping  systems.16 The systems and protocols developed
with SeaBED will be adopted by larger systems such as Autosub
and ABE which will allow these new methods to be carried out in
deeper and more remote environments.

AUV photography has a number of novel scientific appli-
cations beyond the work in remote environments discussed,
these are predominantly in high resolution surveys over rea-
sonably large areas. Survey work is the most important area
of commercial AUV use,17 with AUV survey already being
explicitly commissioned in deepwater surveys for the oil and
gas industry.18 While this commercial survey work is princi-
pally acoustic, it is inevitable that, with imaging technology
becoming available, that this survey will extend to imaging.
In many respects these applications could be achieved by
other, existing technology such as ROVs or towed camera
platforms, however, in these cases, the use of AUVs will be
justified in terms of time or financial savings. AUVs are par-
ticularly suited to high resolution survey over long distances
which can be conducted without the need for human interven-
tion. The AUV can be launched then left to carry out the sci-
entific task while the mother ship is conducting other work
elsewhere. This was proven in the Autosub Arctic field oper-
ations where the vehicle was deployed and two WASP sta-
tions were surveyed (56512#1 and 56513#1) while Autosub
was carrying out a photography mission (mission 377). As
well as this, the ship requirements of AUVs are potentially
low, certainly without the expensive, dynamically-positioned
support vessels needed for ROV operations.

One particular aspect of AUV operations, relevant to pho-
tography is the unique ability of AUVs to closely follow terrain
and maintain a constant altitude. This can be a problem in
towed camera studies where only coarse altitude control is pos-
sible and as a result, images vary in altitude depending on
bathymetry and sea conditions (although typically ±2m), lead-
ing to many unusable images for analysis. Surveys carried out
by a large class of imaging platforms, particularly operator
driven ROVs and towed camera platforms, may typically con-
tain large rotational and scale changes between successive
images. AUVs, as a stable platform, will avoid these limita-
tions, facilitating photomosaicking of reasonably wide areas of
seafloor.19 Much current work is going into the design of dock-
ing systems, for re-charging and data download, that will allow
AUVs to operate for long periods without human interven-
tion.20 This will expand the scientific uses of AUVs allowing
temporally replicated wide area, high resolution imaging with-
out human intervention. AUV docking technology may allow
high temporal resolution through increased access to deepwa-
ter environments and substantial savings in ship time. 
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CONCLUSIONS
The following summarise the key points that relate to this
paper:
� AUVs have a unique role in science allowing the explo-

ration of remote areas and adding value to research cruis-
es, allowing multiple simultaneous operations.

� Photography has been very important in marine science
and the integration of camera systems into AUVs opens a
new range of possibilities for science.

� The Autosub vehicle represents an important develop-
ment for scientific AUVs, its torpedo-shaped body hous-
es a variety of instruments for measuring and sampling
the marine environment, including a camera system,
CTD, ADCP, multibeam bathymetry system and water
sampler.

� There are a number of important limitations and require-
ments for effective underwater photography from an AUV
including the optical properties of water, operating alti-
tude and autonomous camera control, image storage and
retrieval. 

� The Autosub camera system overcomes these limitations
through a low noise monochrome camera system with
flash separation, accurate positioning and terrain tracking
as well as onboard computer control of imaging and stor-
age with short range wireless transfer of data.

� Field operations of the Autosub show its potential for
deepwater imaging in remote areas. Its design is well suit-
ed to long range missions in remote environments without
intervention.

� The images produced by Autosub are of broadly compara-
ble scientific value to those obtained by traditional deep-
water camera systems. The high resolution image pro-
duced enable highly satisfactory identification and quan-
tification of biological and geological features.

� There are a number of improvements to the camera sys-
tem possible within the limitations set by integration into
AUVs, particularly data optimisation through increased
resolution and image rate. These features will be incorpo-
rated into future developments.

� Autosub presents an alternative approach to AUV imag-
ing to that taken by other vehicles such as the WHOI
DSL ABE vehicle. ABE is designed for smaller scale
higher resolution studies whereas Autosub represents a
longer range alternative that can work in more remote
environments.

Autonomous underwater vehicles represent an exciting
new phase of marine science where a high resolution, multi-
faceted study of the marine environment can be conducted
without the need for human intervention in the most remote
environments on earth. The Autosub camera system allows a
large number of high quality images, well suited for scientif-
ic study, to be obtained in these areas. Seabed imaging high-
lights pattern and structure in deepwater benthic systems,
allowing visualisation of ecosystems, geological processes
and formations, complementing other measurements taken
concurrently by the vehicle. The approach taken by Autosub
for imaging is well suited to its next task of investigating the
biological, physical, chemical and geological processes under
Antarctic ice.

POST-SCRIPT
An Autosub campaign to the Antarctic was undertaken on
RRS James Clark Ross cruise 97. Mission 382 was success-
fully carried out under Fimbul ice shelf (70o00S 1o25W), pen-
etrating 25km into the under ice cavity. This first mission was
run with cautious off-seabed and off-ice ranges and so afford-
ed no opportunities for photography. Unfortunately, on the
following mission (383), Autosub suffered a failure that
immobilised the vehicle some 17km under ice and therefore
beyond recovery. 

The Autosub project will continue with a rebuild of
Autosub3 and the development of a new deep-diving vehicle
Autosub6000. We hope to continue the camera operation and
development with the new vehicles.
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